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Abstract: Network physiology has emerged as a promising paradigm for the extraction of clinically
relevant information from physiological signals by moving from univariate to multivariate analysis,
allowing for the inspection of interdependencies between organ systems. However, for its successful
implementation, the disruptive effects of artifactual outliers, which are a common occurrence in
physiological recordings, have to be studied, quantified, and addressed. Within the scope of this
study, we utilize Dispersion Entropy (DisEn) to initially quantify the capacity of outlier samples to
disrupt the values of univariate and multivariate features extracted with DisEn from physiological
network segments consisting of synchronised, electroencephalogram, nasal respiratory, blood pres-
sure, and electrocardiogram signals. The DisEn algorithm is selected due to its efficient computation
and good performance in the detection of changes in signals for both univariate and multivariate
time-series. The extracted features are then utilised for the training and testing of a logistic regression
classifier in univariate and multivariate configurations in an effort to partially automate the detection
of artifactual network segments. Our results indicate that outlier samples cause significant disruption
in the values of extracted features with multivariate features displaying a certain level of robustness
based on the number of signals formulating the network segments from which they are extracted.
Furthermore, the deployed classifiers achieve noteworthy performance, where the percentage of
correct network segment classification surpasses 95% in a number of experimental setups, with the
effectiveness of each configuration being affected by the signal in which outliers are located. Finally,
due to the increase in the number of features extracted within the framework of network physiology
and the observed impact of artifactual samples in the accuracy of their values, the implementation
of algorithmic steps capable of effective feature selection is highlighted as an important area for
future research.

Keywords: network physiology; dispersion entropy; multivariate analysis; outlier samples; data quality

1. Introduction

Network physiology, as a paradigm, aims to describe the interaction across diverse
organ systems in the form of physiological networks. Within this framework, each system
is represented as a node of the network, and interactions across systems are projected as
edges between the nodes [1,2]. This approach allows the monitoring of complex physiolog-
ical interactions in the body, through the detection of topological transitions which occur
within the networks when their physiological state changes. Consequently, a vital step in
this process is the utilization of methods that would allow the extraction of features for the
characterization and monitoring of the investigated network. In its initial implementation,
network physiology was used for the study of sleep stages and was limited in the utilisation
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of features extracted by the bivariate measurement of pair-wise coupling using the Time
Delay Stability (TDS) method. TDS measures the time delay with which modulation in the
output dynamics of a given node are consistently followed by corresponding modulations
in the output of another node after appropriate preprocessing of the analyzed physiolog-
ical signals [3]. The initial implementation of this framework was further expanded by
recent research through the combination of network physiology and entropy quantification
algorithms. Within this scope, non-linear entropy quantification algorithms have been used
extensively due to their capacity for effective measurement of irregularity in biological
signals [4,5]. Both univariate and multivariate algorithms have been applied to multivariate
signals with limited preprocessing for the extraction of features from each node and from
connections between two or more nodes, respectively [6,7].

Entropy quantification algorithms are based on Shannon entropy, the initial extension
of the concept of Entropy to information theory by Shannon [8], and on Conditional Entropy,
defined as the amount of information observed in a sample at a time point n, that cannot be
explained based on previous samples from up to time point n− 1 [9]. Univariate and multi-
variate algorithms based on Shannon Entropy, such as Dispersion Entropy (DisEn) [10–12]
and Permutation Entropy (PEn) [13,14] alongside algorithms based on Conditional Entropy,
such as Approximate Entropy (ApEn) [15], Sample Entropy (SampEn) [16,17], and Fuzzy
Entropy (FuzzyEn) [18,19] have been implemented for the extraction of features from
physiological recordings, to be used as nonlinear indexes for disease diagnosis and prog-
nosis. However, while their utilisation within a network physiology paradigm could aid
in the monitoring of physiological systems, the challenges introduced by the existence of
artifactual outlier samples, which are a common occurrence in physiological recordings due
to electromagnetic interference, loose equipment attachment, and user movement, have
to be addressed [20–22]. When tested, the performance of the univariate ApEn, SampEn,
and DisEn algorithms was significantly disrupted during the analysis of signal segments
containing outlier samples [23–25].

For the purposes of this study, DisEn was selected for the extraction of univariate
and multivariate features from formulated network segments. DisEn was selected due
to its favorable performance characteristics, such as increased discrimination capacity
and low computation time [11,12]. Since its original introduction in 2016 [10], novel
variations have been proposed, such as Fluctuation-based Dispersion Entropy (FDisEn) [11],
Reverse Dispersion Entropy (RDE) [26], and Reverse Fluctuation-based Dispersion Entropy
(FRDE) [27]. In this study, the original DisEn is utilised due to the availability of an efficient
multivariate implementation [12] and to test whether its sensitivity to artifactual outliers
can be used as an advantage for the separation between high-quality versus artifactual
network segments.

Addressing low data quality, arising from artifactual outliers, is a necessary step
in order to ensure that algorithmic implementations based on network physiology are
efficient at providing useful information when deployed in physiological monitoring
applications. From an effectiveness standpoint, the performance of disease prognosis and
clinical support algorithms can be severely limited when trained on noisy datasets [28,29].
Most importantly however, inaccuracy in the extracted features can lead to the already
life-threatening phenomenon of “alarm fatigue” [30,31]. Alert systems currently deployed
in intensive care units (ICU) are susceptible to producing excessive amounts of false
positive alarms by mistaking artifactual outliers as indications that the patients are in
a non-stable physiological state. The phenomenon of “alarm fatigue” is observed when
clinical staff start ignoring alarms which they perceive as false, even when they are accurate,
and as a result, put patients at risk [32,33]. While within the scope of network physiology,
the characterization of the physiological state of individuals is not based simply on the
univariate analysis of each separate physiological signal, but on the multivariate analysis of
its representative network, it is important to ensure that deployed algorithms are capable
of separating between viable network segments and network segments whose information
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content is disrupted from artifactual outliers. This is a prerequisite step prior to extracting
insights concerning the physiological state of monitored individuals.

With this study, we aim to address the challenge of artifactual outliers in the utilisation
of entropy quantification algorithms within a network physiology framework. The main
objectives of the presented work are:

• The quantification of the effect of artifactual outliers in the accuracy of univariate and
multivariate DisEn feature values extracted from physiological network segments.

• The assessment of whether a simple logistic regression classifier could be effectively
trained on distributions of features extracted from “normal” and “artifactual” network
segments to differentiate between the two.

For these objectives, network segments are formulated from four synchronised physi-
ological time-series: electroencephalogram (EEG), nasal respiratory (RESP), arterial blood
pressure (BP), and electrocardiogram (ECG) signals. Artifactual outliers are simulated
across all four signal morphologies with one signal being “disrupted” at a time to allow for
the study of differences in the effect of outliers based on the signal containing them. Multi-
ple experiments are conducted with varying percentages of outlier samples. The values
of features extracted from network segments containing artifactual outliers are compared
with the respective values of features extracted from the original network segments to
quantify the disruptive capacity of outliers.

Finally, the logistic regression classifier is tested in two configurations—a univariate,
and a network-based multivariate configuration. The two configurations are deployed to
allow for comparisons between the two approaches and identify benefits, as well as poten-
tial challenges when moving from univariate to multivariate analysis for the classification
of network segments.

2. Methods
2.1. Stages of the Study

The research presented in this manuscript is conducted in the following stages:

• Network Formulation and Feature Extraction: The available physiological signal
recordings are segmented in multivariate network segments. For each normal network
segment, 16 different variants of artifactual network segments are produced, one for
each experimental setup of interest, as described in Section 2.6. From each segment, a
total of 15 univariate and multivariate features are extracted.

• Statistical Analysis: Conducted separately in each experimental setup, statistical
analysis is applied to each extracted feature at the level of: separate feature distribu-
tions, pairs of feature distributions, and individual feature values, as described in
Section 2.7.

• Artifactual Network Segment Detection: A univariate and multivariate network-based
logistic regression classifier is trained and tested in each experimental setup to assess
the capacity of both configurations in detecting artifactual network segments when
outliers are present in different physiological signals and at varying percentages
of occurrence.

Figure 1 displays a flowchart where the methodological steps of the study are shown.
The interconnections between steps indicate the way in which the outputs of one step are
utilized as inputs by the following. The methodological steps are discussed in detail in the
following sections.
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Figure 1. The methodological steps of the study are presented, with the sections corresponding to each step indicated in
each block within {}. The arrows between each block indicate the outputs of a step that are used as inputs by the next one.

2.2. Experimental Data and Preprocessing

For the formulation of a network based on multiple synchronised physiological record-
ings, the publicly available MIT-BIH Polysomnographic Database is chosen, which contains
a total of 18 records of multiple physiological signals initially recorded for the evalua-
tion of chronic obstructive sleep apnea syndrome and digitized at a sampling interval
of 250 Hz [34,35]. For the purposes of this study, 11 records are selected based on the
availability of complete and synchronised recordings of EEG, RESP, BP, and ECG signals.

Each signal recording is segmented in non-overlapping windows of 7500 samples,
resulting in a total of 1463 physiological signal segments, 133 per record. Within the
framework of network physiology, the extracted segments are analyzed in sets of 1463
multivariate “network segments” consisting of four synchronised windows, one from each
physiological signal, following the process described in Section 2.5. The length of the
window is chosen, after consulting the respective literature [11,12] to ensure that it is long
enough as to allow a sufficient amount of samples for the effective calculation of the output
DisEn values, while at the same time being short enough to provide an adequate temporal
resolution for effective monitoring of the system. No further preprocessing is applied to the
signals prior to the application of a mapping function and the respective DisEn algorithms.

2.3. Univariate Dispersion Entropy

DisEn arises from the integration of Shannon entropy with symbolic dynamics, aiming
to quantify the degree of irregularity in an input signal segment, in low computational
time, while achieving increased discrimination capacity [10,11]. Prior to the application of
DisEn, an optional but recommended preprocessing step is the application of a non-linear
mapping function to the input time-series. The process followed by the algorithm for the
analysis of either the original or the mapped input univariate time-series xj(j = 1, 2, . . . , N)
of length N is the following:
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1. Production of a “quantised” time-series: A number of classes (c) are distributed along
the amplitude range of the time-series, and each sample is allocated to the nearest
respective class based on its amplitude. This results in the production of a "quantised"
time-series uj(j = 1, 2, . . . , N).

2. Formulation of embedded vectors: An embedding dimension (m) and a time delay
(d) are set for the creation of embedded vectors, um,c

i = {uc
i , uc

i+d, . . . , uc
i+(m−1)d},

of length m, for each i = 1, 2, ..., N − (m− 1)d.
3. Mapping to dispersion patterns: Each embedded vector um,c

i is mapped to a re-
spective dispersion pattern πv0 ...vm−1 based on its corresponding classified samples.
The number of potential unique dispersion patterns is cm, as defined by the number
of classes and the embedding dimension.

4. Calculation of Dispersion Pattern Relative Frequency: For each of the cm unique
dispersion patterns, their relative frequency is calculated as follows:

p(πv0 ...vm−1) =
#{i

∣∣i ≤ N − (m− 1)d, um,c
i has type πv0 ...vm−1 }

(N − (m− 1)d)
. (1)

5. Calculation of Univariate Dispersion Entropy: Utilizing the obtained relative fre-
quencies, the time-series’ output DisEn value is calculated using the following equa-
tion [10,11], based on Shannon’s definition of entropy:

DisEn(X, m, c, d) = −
cm

∑
π=1

p(πv0 ...vm−1) · ln
(

p(πv0 ...vm−1)
)
. (2)

Following the aforementioned steps, an input signal described by a single dispersion
pattern would result in a minimum output DisEn value (i.e., 0) as opposed to one requiring
the utilization of all possible dispersion patterns in equal probability, which would result in
a maximum output value. An in-depth analysis concerning suggested mapping functions
and optimisation of parameter values is available in [11].

2.4. Multivariate Dispersion Entropy

Multivariate Dispersion Entropy (mvDE) allows the multivariate quantification of
DisEn from multiple input time-series. Similarly to its univariate equivalent, the pre-
processing of each individual time-series using a mapping function is recommended.
Assuming a multivariate set of p-input time-series X = {xk,i}i=1,2,··· ,N

k=1,2,··· ,p of length N each,
the computational steps of mvDE are the following:

1. Production of univariate “quantised” time-series: In a process similar to its univariate
variation, a number of classes (c) are distributed along the amplitude range of each
time-series separately. For every time-series, their samples are allocated to their
nearest respective class based on their amplitude. As a result, a quantised time-series
uj(j = 1, 2, . . . , N) is produced for each respective input time-series, resulting in a set
of p-quantised time-series U = {uk,i}i=1,2,··· ,N

k=1,2,··· ,p .

2. Formulation of multivariate embedded vectors: For the production of multivariate
embedded vectors, an embedding dimension m and a time delay d are set for con-
struction of initially univariate embedded vectors of length m from each separate
signal, similarly to the respective process for univariate DisEn. The univariate em-
bedded vectors are then combined in sets of p-synchronised vectors, one from each
input signal. The vectors within each group are then serially concatenated for the
production of respective multivariate embedded vectors Z(j), of length mp, for each
j = 1, 2, . . . , N − (m− 1)d.

3. Mapping to multiple dispersion patterns: In mvDE, each embedded vector is mapped
to multiple dispersion patterns. Each subset of m elements in Z(j) is accessed, follow-
ing all possible (mp

m ) combinations. This formulates φq(j)(q = 1, . . . (mp
m )) subvectors,
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that are then mapped to their corresponding πv0 ...vm−1 dispersion pattern. As a re-
sult, the total number of dispersion pattern instances is (N − (m− 1)d)(mp

m ) and the
number of unique dispersion patterns is cm.

4. Calculation of Dispersion Pattern Relative Frequency: The relative frequency of each
dispersion pattern is calculated in a manner similar to Equation (1), but with the
correct adjustment for the increased number of instances:

p(πv0 ...vm−1) =
#{j

∣∣j ≤ N − (m− 1)d, φq(j) has type πv0 ...vm−1 }
(N − (m− 1)d)(mp

m )
. (3)

5. Calculation of Multivariate Dispersion Entropy: The extracted relative frequencies are
used for the calculation of the respective multivariate DisEn value based on Shannon’s
definition of entropy.

mvDE(X, m, c, d) = −
cm

∑
π=1

p(πv0 ...vm−1) · ln
(

p(πv0 ...vm−1)
)
. (4)

The algorithmic variation utilised in this study and described in the aforementioned
steps is the fourth and, by its designers, recommended variation of the mvDE algorithm.
Further details concerning the operation of the algorithm, its other variations, and the
comparative evaluation of their performance are available in [12].

2.5. Extraction of DisEn Features

For each normal network segment, a total of 15 features are extracted, four of which are
univariate, one for each physiological signal, and 11 of which are multivariate, based on the
subnetwork combinations of: EEG-RESP, EEG-BP, EEG-ECG, RESP-BP, RESP-ECG, BP-ECG,
EEG-BP-ECG, RESP-BP-ECG, EEG-RESP-BP, EEG-RESP-ECG, and EEG-RESP-ECG-BP.

In the case of univariate features, for each signal, its respective 7500 sample window is
fed as input to the univariate DisEn algorithm. For each multivariate feature, the respective
combination of synchronised 7500 sample windows is fed as input to the multivariate
DisEn algorithm for its calculation.

Table 1 displays the parameter values which are the same for univariate and multivari-
ate DisEn. The values were selected after consulting the performance benchmarks provided
in the respective studies [11,12] and taking into consideration the number of 7500 samples
contained within each input window. As a preprocessing step, each individual time-series
is mapped using the normal cumulative distribution function (NCDF).

Table 1. Parameter values for univariate and multivariate DisEn.

Parameter Symbol Value

Embedding Dimension m 3
Number of Classes c 9

Time Delay d 1

2.6. Production of Artifactual Network Segments

Within the scope of this study, artifactual outlier samples are simulated across all
four signal morphologies—EEG, RESP, BP, and ECG—with one signal being “disrupted”
at a time. Furthermore, the percentage of samples being outliers is determined by the
percentage factor P whose value varies across experimental setups in the levels of 0.1%,
0.5%, 1%, and 5%. As a result, a total of 16 experimental setups are formulated, containing
the 1463 normal network segments and a corresponding variation of 1463 artifactual
network segments.

The process through which the 1463 artifactual network segments of each experimental
setup are produced, is the following:
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1. Marking of Outlier Samples: Based on the percentage factor P, a percentage of
samples are uniformly drawn from each 7500-sample window, and their amplitude is
replaced with a value in the outlier amplitude range.

2. Setting the Value of Outlier Samples: The amplitude of each outlier is obtained from a
Gaussian distribution with a standard deviation (σ) equal to the absolute maximum
amplitude of each signal: σ = max|amplitude|. Concerning the distribution mean
(µ), there are two choices to be considered. The first choice, which is in alignment
with the simulation processes followed by previous studies testing the effect of out-
lier samples in the performance of ApEn, SampEn, and univariate DisEn [23–25],
would be to ensure that outlier values are outside the physiological range of each
recorded signal while maintaining the amplitude boundaries of respective sensing
equipment, leading to a distribution µ equal to outliermean = ±4×max|amplitude|.
The second choice would be to set a lower distribution µ to ensure that a minority of
outliers remain within physiological range to also cover certain scenarios where sensor
miscalibration and recording interferences could produce outliers of the respective
magnitude, and for that purpose, a µ equal to outliermean = ±2× max|amplitude|
would be set. In order to provide results that are comparable to previous studies while
at the same time covering all possible scenarios, each experimental setup is replicated
for both outlier µ; however, since the second case covers a wider range of scenarios,
its corresponding results are reported and discussed in detail, while the results of
the first case (outliermean = ±4× max|amplitude|) are available in the Appendix,
in Figures A1–A4 and Tables A1–A4 of this manuscript. In all experimental setups,
the sign of half the outliers is set to positive and the other half to negative, following
random assignment.

3. Calculation of Artifactual DisEn Features: For each experimental setup, the corre-
sponding 1463 artifactual network segments are used to calculate the respective
univariate and multivariate artifactual DisEn Features based on the same process that
was followed for the normal network segments in Section 2.5.

To facilitate the reproducibility of the presented study, the function used for the
simulation of outlier samples is made publicly available as Supplementary Material.

2.7. Statistical Analysis

To quantify the disruptive capacity of outlier samples in the accuracy of extracted
network features, the following three-stage statistical analysis is applied.

1. Kolmogorov–Smirnov Test: Initially, each feature distribution is standardised and
compared to a standard normal distribution using the Kolmogorov–Smirnov Test.

2. Mann–Whitney U Test: At the second stage, and after consulting the results of the
Kolmogorov–Smirnov test, the Mann–Whitney U test is chosen to compare each fea-
ture distribution extracted from artifactual network segments with its corresponding
feature distribution extracted from the respective normal network segments, to verify
statistically significant differences between the distributions of each pair.

3. Mean Percentage Difference: Finally, for each DisEn feature extracted from an arti-
factual network segment, the absolute percentage difference from its original value,
the one calculated from the respective network segment without outliers, is calcu-
lated. To provide a summary for every feature extracted during each experimen-
tal setup, its mean percentage difference (MPD) and σ of the percentage difference
are calculated.

2.8. Artifactual Network Segment Detection

For the detection of artifactual network segments, a logistic regression classifier is
applied in two configurations, a univariate and a multivariate one. The univariate configu-
ration is utilising, from each network segment, only the the four DisEn features that are
extracted using the physiological signal segments as separate input to the univariate DisEn
algorithm, while the multivariate configuration utilises all the available 15 features of each
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network segment. The choice to implement two separate algorithmic configurations is
made with the following aims in mind:

• To derive insights concerning the potential benefits but also challenges that arise when
moving from univariate to multivariate analysis for network segment classification.

• To identify differences in classification performance, for both configurations, based
on the physiological signal containing outlier samples in each experimental setup.

For this purpose, both algorithmic configurations were tested under the same 16 ex-
perimental setups. Each setup contains features extracted from a total of 2926 segments,
out of which 1463 are the original network segments, and the other 1463 are their arti-
factual variations, as determined by the parameters of the experiment. As mentioned
in Section 2.2, the 1463 network segments correspond to 11 records, or 133 segments per
record. The segments selected for training and testing during each experimental setup are
selected in the following two data splits.

The first data split is done at the record level, with the first nine records used for
training and the last two for testing purposes. This is done to ensure that the training
of the classifier is done on different patients than the ones it is tested on, and therefore,
its recorded performance is patient-agnostic. This leads to the feature sets of a total of 2394
segments (1197 normal vs. 1197 artifactual ones) being used for training, and a total of 532
feature sets (266 normal vs. 266 artifactual ones) being used for testing.

At this point, a second data split is introduced in the training set. It is important to
consider that in a field application, the classifier would never have access to the exact same
network segments in both normal and artifactual variations. For this reason, only half,
or 1197 training sets are used, the first 599 of which correspond to feature sets of a normal
network segment, while the other 598 correspond to different artifactual ones. As a result,
for each experimental setup, both classifier configurations are trained on 1197 distinct
training feature sets and tested on 532 testing feature sets.

Finally, the performance of each configuration for a certain experimental setup is
calculated as the percentage of correct network segment classifications observed for each
configuration when applied to the respective testing dataset.

3. Results
3.1. Kolmogorov–Smirnov and Mann–Whitney U Test Results

With 16 experimental setups and 15 features extracted from the network segments of
each setup, a total of 240 feature distributions are produced corresponding to artifactual
network segments, alongside 15 feature distributions corresponding to normal network
segments. For the outliers with a µ of: outliermean = ±2×max|amplitude|, 211 out of the
total 255 distributions displayed a statistically significant difference from a normal distribu-
tion after being standarised, rejecting the null hypothesis with p-value < 0.05. For outliers
with a µ of outliermean = ±4×max|amplitude|, 212 out of the 255 distributions rejected
the null hypothesis at p-value < 0.05. Taking into consideration the non-Gaussian nature
of most feature distributions, the Mann–Whitney U test is selected to compare in pairs,
the feature distributions extracted from artifactual network segments with the feature
distributions extracted from the corresponding normal network segments.

Since in each experimental setup, only one of the physiological signals contains
outliers, out of the 15 total features extracted per network segment, only eight of these
features were extracted from signal combinations that include the “artifactual” signal. As a
result, it is expected that in each experimental setup these eight feature distributions will
display a statistically significant difference when compared to the distributions of features
extracted from the respective normal segments. No significant difference is expected for
the seven feature distributions that do not include the "artifactual" signal.
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As expected, for both categories of outlier distributions with different µ magnitude,
and for all experimental setups, all feature distributions extracted from a combination of
segments containing outliers have a statistically significant difference to the original feature
distributions, rejecting the null hypothesis with p values < 10−12, while no statistical
difference is observed in the rest of the pairs.

3.2. Disruption of Feature Values Across Experimental Setups

The experimental setups presented in this study contain networks within which
one physiological signal contains artifactual outliers. As a result, while network fea-
tures that are not extracted from network segments containing outliers remain unaf-
fected, the values of rest of the features display significant MPD, as highlighted by the
following results. The Sections 3.2.1–3.2.4 present in detail the results for outliers with
outliermean = ±2×max|amplitude|. Furthermore, concerning outliers with outliermean =
±4 × max|amplitude|, the corresponding results are available in the appendix,
in Figures A1–A4, and tend to follow similar patterns to the outliers of the first category,
but with constant increase in the overall values of MPD, which is expected considering the
increased deviation of the mean outlier amplitude from the physiological amplitude range.

3.2.1. Setups with EEG Outliers

The MPD values for setups with EEG outliers are shown in Figure 2. For the univariate
feature, the MPD ranges from a minimum value of 17.9% with a σ of 15.8% observed at a
P factor of 0.1%, to a maximum value of 60.6% with a σ of 20% observed at a P factor of 5%.
Bivariate features display a maximum MPD of 31.5% and a σ of 11.8% observed for the
feature extracted from synchronised segments of the EEG and RESP signals at a P factor of
5%, while for the rest of the features, the MPD values do not surpass 16.6%. It is important
to note the continuous decrease of MPD observed as the number of signals forming the
network segments from which a feature is extracted, increases.
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Figure 2. The µ and σ of the percentage difference are shown for each artifactual feature distribution across experimental
setups where the EEG signal of the network contains a percentage of outliers determined by the corresponding P-factor.
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3.2.2. Setups with RESP Outliers

For setups with RESP outliers, a noteworthy change is observed in the results shown in
Figure 3. Significant but substantially smaller MPD values are observed for the univariate
feature when compared to the EEG outlier setups, with a minimum MPD of 5% and a
σ of 7.5% observed for a P factor 0.1% and a maximum MPD of 20.5% and a σ of 14.2%
observed for a P factor of 5%. The bivariate features follow closely with a maximum MPD
of 14.7% and a σ of 8.2% observed for the feature extracted from synchronised segments of
the RESP and ECG signals, at a P factor of 5%, while the MPD values for the rest of the
features do not surpass 7.6%.
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Figure 3. The µ and σ of the percentage difference are shown for each artifactual feature distribution across experimental
setups where the RESP signal of the network contains a percentage of outliers determined by the corresponding P-factor.

3.2.3. Setups with BP Outliers

The MPD values for experimental setups with BP outliers are shown in Figure 4 and
seem to follow a similar pattern to the one observed for the EEG and RESP setups. The BP
univariate feature displays significant value disruption with a minimum MPD of 11.3%
and a σ of 4.6% for a P factor of 0.1% increasing to a MPD of 48.2% with a σ of 6.4% for
a P factor of 5%. For bivariate features, a maximum MPD of 24.9% and a σ of 3.6% are
observed for the feature extracted from synchronised segments of the BP and RESP signals
at a P factor of 5%, while the rest of the features follow with MPD values that do not
exceed 13.1%.

3.2.4. Setups with ECG Outliers

Finally, the MPD values for experimental setups with outlier samples contained in
the ECG signal are shown in Figure 5 following the same pattern. The univariate feature
extracted from the ECG signal contains the highest MPD range with a minimum value
of 23.2% and a σ of 11.7% for a P factor of 0.1%, increasing to 60.1% with a σ of 9.1%
for a P factor of 5%. Bivariate features follow with a significant reduction in disruption.
Their maximum MPD is observed in the case of the feature extracted from synchronised
segments of the ECG and RESP signals with value of 29% and a σ of 7.1% observed at a
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P factor of 5%. The rest of the features follow with MPD values that are lower than 14.2%
across all respective setups.
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Figure 4. The µ and σ of the percentage difference are shown for each artifactual feature distribution across experimental
setups, where the BP signal of the network contains a percentage of outliers determined by the corresponding P-factor.
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Figure 5. The µ and σ of the percentage difference are shown for each artifactual feature distribution across experimental
setups where the ECG signal of the network contains a percentage of outliers determined by the corresponding P-factor.

3.3. Network Segment Classification Results

As indicated by the MPD results, outliers have a significant effect in the values of
the extracted features, with the univariate feature having the largest deviations from the
original values. It would therefore be important to verify whether these deviations can
be used to detect artifactual network segments, in the case of the univariate classifier,
and whether the inclusion of multivariate features improves performance or introduces
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disruptive noise. The performances of both the univariate and multivariate classifiers
are reported for the respective experimental setups which are grouped together based on
the signal of the network containing outliers, following the same format as Section 3.2.
In the following Sections 3.3.1–3.3.4, the results for outliers with outliermean = ±2 ×
max|amplitude| are presented in detail, while the results for the outliers with outliermean =
±4×max|amplitude|, are available in the appendix, Tables A1–A4.

3.3.1. Classification Performance with EEG Outliers

In the case of EEG outliers, a pattern of performance improvement is observed when
moving from univariate to multivariate classification, as shown in Table 2.
Initially, the multivariate classifier significantly outperforms the univariate one with correct
classification percentages of 88.7% compared to the univariate 70.3% for a P factor 0.1%
and of 97.2% compared to 88.5% for a P factor of 0.5%. Eventually, the univariate and
multivariate classifiers reach equivalent performance levels for P factors of 1% and 5%.

Table 2. Percentage of correct network segment classifications for univariate and multivariate
classifiers when tested on experimental setups, with outliers located in the EEG signal of the network.

EEG Univariate Multivariate

0.1% 70.3% 88.7%
0.5% 88.5% 97.2%
1% 97.7% 98.5%
5% 99.1% 99.1%

3.3.2. Classification Performance with RESP Outliers

For experimental setups with RESP outliers, limited effectiveness is initially observed
for both classifiers, while effective performance is achieved when moving from the uni-
variate to the multivariate model for a P factor of 5%. As shown in Table 3, both classifiers
display performance that does not surpass a percentage of correct classifications of 56%
for a P factor of 0.1%. However, for a P factor of 5%, the multivariate model achieves a
percentage of 96.2% of correct classifications, significantly outperforming the univariate
one with a respective percentage of 76.5%.

Table 3. Percentage of correct network segment classifications for univariate and multivariate
classifiers when tested on experimental setups with outliers located in the RESP signal of the network.

RESP Univariate Multivariate

0.1% 55.8% 55.6%
0.5% 64.1% 67.5%
1% 72.6% 71.2%
5% 76.5% 96.2%

3.3.3. Classification Performance with BP Outliers

For experimental setups with BP outliers, both univariate and multivariate classifiers
achieve similar and effective performance as displayed in Table 4. The correct classification
percentages are in the range of 94% to 100% for the univariate classifier and above 99% for
the multivariate one. In this case, artifactual segments are detected even in significantly
low percentages of outliers, indicating that the signal in which the outliers are located plays
an important role in the correct classification of the corresponding network segments.
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Table 4. Percentage of correct network segment classifications for univariate and multivariate
classifiers when tested on experimental setups with outliers located in the BP signal of the network.

BP Univariate Multivariate

0.1% 94% 99.1%
0.5% 100% 99.6%
1% 99.4% 100%
5% 100% 100%

3.3.4. Classification Performance with ECG Outliers

Finally, in the case of ECG outliers, a different pattern is observed when moving
from a univariate to a multivariate classifier. As shown in Table 5, for a P factor of
0.1%, a performance boost is noted from 61.8% of correct classifications for the univariate
classifier, increasing to 68.6% for the multivariate one. However, for larger P factors,
the univariate classifier is constantly outperforming the multivariate one with substantial
effectiveness, considering the correct classification percentage range of 94.9% to 100% as
opposed to the multivariate performance range of 74.4% to 95.7%. This indicates that after
a certain threshold of outliers in the network, the univariate classifier is effective, while the
addition of multivariate features adds noise that substantially reduces the corresponding
performance of the multivariate one.

Table 5. Percentage of correct network segment classifications for univariate and multivariate
classifiers when tested on experimental setups with outliers located in the ECG signal of the network.

ECG Univariate Multivariate

0.1% 61.8% 68.6%
0.5% 94.9% 74.4
1% 97% 80.8
5% 100% 95.7

4. Discussion

As part of this study, we quantified the disruptive capacity of signal-specific outliers
in the values of all possible univariate and multivariate DisEn features extracted from
corresponding network segments. Each network segment consists of four synchronised
physiological signal segments: EEG, RESP, BP, and ECG, resulting in a total of 16 experimen-
tal setups, with each setup being defined by the signal containing the artifactual outliers
and the percentage of samples set as outliers as specified by the corresponding P factor,
with possible values being: 0.1%, 0.5%, 1%, and 5%. Furthermore, for all 16 experimental
setups, a univariate and a multivariate logistic regression classifier is trained and tested
for the detection of artifactual network segments, with the percentage of correct segment
classifications being reported for each setup (in Tables 2–5).

4.1. Robustness of Multivariate Network Features to Univariate Outliers

Based on the results presented in Section 3.2, a pattern can be observed in the recorded
MPD values. The multivariate features have significantly lower values of MPD from
the correct feature values, when compared to the corresponding MPD of the univariate
feature for each experimental setup. This was particularly noticeable for setups with high
P factor values, such as 1% or 5%, when outliers are present in the EEG and ECG signals,
with the univariate MPD surpassing the corresponding multivariate MPD by at least
23%. Furthermore, the MPD becomes lower as the number of signals forming the network
segments from which a feature is extracted, increases. The feature extracted from all four
available signals in a network segment has consistently the lowest MPD values across all
experimental setups. Finally, in the case of experimental setups with outliers in the RESP
signal, while the same pattern persists, the reduction of the value of the MPD when moving
from univariate to multivariate features is significantly smaller. This further indicates that
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signal-specific characteristics affect the disruptive capacity of outliers, a subject that is
discussed in further detail in Section 4.2.

When comparing the operation of univariate and multivariate DisEn, a core difference
that provides a relative robustness to multivariate features when compared to univariate
ones concerns the number of quantised samples formulating the dispersion patterns from
which the value of the corresponding feature is calculated. For the univariate DisEn al-
gorithm, as indicated in Section 2.3, the embedding dimension (m) defines the number
of quantised samples used to create dispersion patterns [10,11]. In this study, m = 3 for
both the univariate and multivariate algorithms. However, as mentioned in Section 2.3,
in the case of multivariate features, the number of quantised samples formulating a dis-
persion pattern increases with the number of signals used for its extraction. As a result,
the effect of outlier samples in the formulation of the corresponding dispersion patterns is

reduced, leading to a reduction in their capacity to disrupt the calculation of the respective
DisEn value.

Therefore, while the outliers still led to a significant disruption in the distribution
of values for the corresponding multivariate features, as indicated by the results of the
Mann–Whitney U test reported in Section 3.1, the relative robustness of multivariate
features when compared to univariate ones indicates a potential advantage of multivariate
network-based methodologies for respective applications. It would be worthwhile to
expand on this study with the replication of equivalent experiments utilising other entropy
quantification algorithms, such as the univariate and multivariate variations of PEn [13,14]
and SampEn [16,17] to verify whether the robustness of multivariate features to univariate
outliers is persistent across different entropy quantification methodologies.

4.2. Disruptive Effect of Outliers Across Physiological Signals

As indicated by the results presented in Section 3.2 and mentioned in Section 4.1,
significant changes in the effect of outliers on the value of the extracted univariate features
are observed, based on the signal containing the corresponding outliers. The disruption
is more significant when outliers are present in the EEG and ECG signals, with slightly
smaller disruption observed when outliers are present in the BP signal and significantly
smaller for outliers in the RESP signal. A similar pattern was observed in a previous
study, focusing on the development of univariate DisEn variations that would be robust to
outliers [25]. When outliers are present in a signal segment, they tend to disrupt the process
of allocating classes across the amplitude range of the segment [10,12] by significantly
expanding it based on the outliers’ amplitudes. As a result, the amount of classes allocated
in the physiological range is significantly reduced, leading to a reduction of dispersion
patterns representing physiological dynamics in the signal, and therefore an overall reduc-
tion of the calculated DisEn values. Signals such as the ECG [36] and EEG [37] contain
higher-frequency components leading to rapid fluctuations in the amplitude of each signal,
relative to the BP [38] and especially the RESP [39,40] signals. As a result, the observed
decrease in DisEn values differs from signal to signal, resulting in the observed difference
in MPD magnitudes.

It is important to notice that the same pattern is not observed to the same degree in the
case of multivariate features. As discussed in Section 4.1, the multivariate features display
a certain robustness to the effect of outliers based on the number of signals formulating the
network segments from which they are extracted. No major deviations, in the values of
MPD, are observed among the same multivariate features across different experimental
setups where the signal containing the outliers, changes. These findings indicate that the
potential combination of univariate DisEn algorithms modified to be robust to the effect of
outliers [25] with the current multivariate DisEn variation [12], could provide an effective
entropy quantification interface for the extraction of features from network segments.



Entropy 2021, 23, 244 15 of 21

4.3. Performance Comparison in Artifactual Segment Detection

The classification performance observed across experimental setups and presented
in Sections 3.3.1–3.3.4, indicates promising results for the detection of artifactual network
segments. However, strong differences that should be taken into consideration are ob-
served in the performance of the univariate and multivariate classifiers based on the signal
containing the artifactual outliers. In the case of EEG and RESP experimental setups,
the multivariate classifier outperformed the univariate one, while significant performance
differences were observed between the two groups of experimental setups. In the case of
the EEG signal, significant performance was achieved by the multivariate classifier even for
low P-factor values, such as 0.5%, while the univariate classifier reached similar levels of
performance for P-factor values of 1% and 5%. However, the RESP outliers proved much
more challenging in the detection of the corresponding network segments, with only the
multivariate classifier achieving effective performance at a P factor of 5%. It is important to
consider that the reduced performance in the case of the experimental setups with RESP
outliers was expected, especially in the case of the univariate classifier, when considering
that the corresponding outliers had significantly lower disruptive capacity when compared
to experimental setups with outliers in other signals, as quantified in Section 3.3.2. In the
case of BP outliers, no significant performance differences were noted between the uni-
variate and multivariate models with both classifiers displaying effective performance,
as mentioned in Section 3.3.3.

However, the case of ECG outliers highlights an important challenge when deploying
architectures that utilise multiple multivariate features. For P factor values of 0.5% and
higher, the univariate model is not just highly effective at classifying network segments,
but also outperforms the multivariate one, indicating that in this case, the multivariate fea-
tures add noise that reduces the performance of the multivariate model. This highlights the
necessity of utilising a machine-learning architecture that would be robust to potential noise
added by the utilisation of multiple features, through effective feature selection [41–43].
This is particularly important for future applications of network physiology aiming not
just at the assessment of data quality, but also at the extraction of physiological insights
from networks [44–46], since in those types of applications, the most informative features
will be harder to detect due to the dynamics of interest having the potential to occur at any
level of multivariate interaction, as opposed to starting from outliers which initially occur
at one of the univariate signals during recording.

4.4. Limitations of Current Study and Future Work

Throughout the experimental setups of this study, it is important to note that,
as mentioned in Section 2.6, only one signal at a time contained artifactual outliers.
This design choice for the experiments of the study was made in order to prioritise experi-
mental setups that would provide insights, not just about the effect of artifactual outliers in
the quantification processes of DisEn, but also about how these effects differ based on which
physiological signal of the network contains the outliers. Consequently, this study could
be further expanded through the conduction of experiments where outliers are present
in more than one signal of the network at a time, this is expected to lead to higher MPD
observed for multivariate features, and therefore, even better classification performance in
the detection of artifactual network segments when utilising a multivariate classifier.

Furthermore, while the simulated artifactual outliers presented in this study were in
alignment with previous research in the field [24,25], it would be important to replicate
this study and especially the classification of artifactual network segments, utilising data
sets with annotated real-world artifactual segments to further assess the applicability of
the method as a deployed data quality control tool.

Finally, as indicated by the results presented in Section 3.3 and discussed in Section 4.3,
the logistic regression classifier was not able to appropriately utilise the multivariate fea-
tures in the case of experimental setups with ECG outliers, leading to reduced performance
when compared to the univariate one. Therefore, both for the purpose of artifactual seg-
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ment detection and for future applications of network physiology, it would be important to
expand on this study by designing and implementing classification architectures capable
of effective feature selection.

5. Conclusions

This study investigated and quantified the effect of artifactual outlier samples in the
accuracy of univariate and multivariate DisEn features extracted from network segments
consisting of four synchronised physiological signals. Furthermore, it presented a proof-
of-concept artifactual segment detection tool deployed in univariate and multivariate
configurations using the corresponding extracted features.

The results indicate that the distribution of values for each feature extracted from
a network segment containing artifactual outliers is significantly altered. The largest
magnitude of disruption is observed in univariate features with an MDP value in the range
of 20–48% for most experimental setups, while the multivariate features display a relative
robustness, which increases based on the number of signals from which they are extracted.
The feature extracted from all four available signals in a network segment displays an MDP
value that remains lower than 10% across experimental setups. The classification results
of the study indicate that the univariate classifier performance surpasses 90% of correct
segment classifications for the majority of experimental setups. A strong exception are
the setups with outliers in the RESP signal where a performance of 90% correct segment
classifications is surpassed only with the multivariate classifier for a P factor of 5%. The
multivariate classifier outperforms the univariate one in setups with EEG and RESP outliers,
but underperforms when compared to the univariate one in the case of ECG outliers.
These results highlight the importance of using a machine learning architecture capable of
effective feature selection when moving from univariate to multivariate analysis within the
framework of network physiology.

Finally, the changes observed both in terms of the percentage differences and the
classification effectiveness when comparing across experimental setups in which outliers
are present in different signals indicate that, in alignment with prior research [25], the char-
acteristics of each physiological signal should be taken into consideration when assessing
the impact of outlier samples in the process of entropy quantification.
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Figure A1. The µ and σ of the percentage difference are shown for each artifactual feature distribution across experimental
setups where the EEG signal of the network contains a percentage of outliers determined by the corresponding P-Factor.
These results correspond to experimental setups with outliermean = ±4×max|amplitude|.
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Figure A2. The µ and σ of the percentage difference are shown for each artifactual feature distribution across experimental
setups where the RESP signal of the network contains a percentage of outliers determined by the corresponding P-Factor.
These results correspond to experimental setups with outliermean = ±4×max|amplitude|.
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Figure A3. The µ and σ of the percentage difference are shown for each artifactual feature distribution across experimental
setups where the BP signal of the network contains a percentage of outliers determined by the corresponding P-Factor.
These results correspond to experimental setups with outliermean = ±4×max|amplitude|.
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Figure A4. The µ and σ of the percentage difference are shown for each artifactual feature distribution across experimental
setups where the ECG signal of the network contains a percentage of outliers determined by the corresponding P-Factor.
These results correspond to experimental setups with outliermean = ±4×max|amplitude|.

Appendix B

Table A1. Percentage of correct network segment classifications for univariate and multivariate
classifier when tested on experimental setups with outliers located in the EEG signal of the network.

EEG Univariate Multivariate

0.1% 84.2% 96.6%
0.5% 98.9% 99.2%
1% 99.2% 98.9%
5% 99.6% 99.6%

Table A2. Percentage of correct network segment classifications for univariate and multivariate
classifier when tested on experimental setups with outliers located in the RESP signal of the network.

RESP Univariate Multivariate

0.1% 63.7% 67.1%
0.5% 83.8% 76.3%
1% 89.1% 78.8%
5% 90.8% 95.1%

Table A3. Percentage of correct network segment classifications for univariate and multivariate
classifier when tested on experimental setups with outliers located in the BP signal of the network.

BP Univariate Multivariate

0.1% 99.4% 99.4%
0.5% 100% 100%
1% 100% 100%
5% 100% 100%
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Table A4. Percentage of correct network segment classifications for univariate and multivariate
classifier when tested on experimental setups with outliers located in the ECG signal of the network.

ECG Univariate Multivariate

0.1% 95.5% 73.1%
0.5% 100% 91%
1% 100% 97.2%
5% 99.8% 100%
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