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Abstract
The gut microbiome is a critical modulator of host immunity and is linked to the immune response to
respiratory viral infections. However, few studies have gone beyond describing broad compositional
alterations in severe COVID-19, de�ned as acute respiratory or other organ failure. We pro�led 127
hospitalized patients with COVID-19 (n=79 with severe COVID-19 and 48 with moderate) who collectively
provided 241 stool samples from April 2020 to May 2021 to identify links between COVID-19 severity and
gut microbial taxa, their biochemical pathways, and stool metabolites. 48 species were associated with
severe disease after accounting for antibiotic use, age, sex, and various comorbidities. These included
signi�cant in-hospital depletions of Fusicatenibacter saccharivorans and Roseburia hominis, each
previously linked to post-acute COVID syndrome or “long COVID”, suggesting these microbes may serve
as early biomarkers for the eventual development of long COVID. A random forest classi�er achieved
excellent performance when tasked with predicting whether stool was obtained from patients with severe
vs. moderate COVID-19. Dedicated network analyses demonstrated fragile microbial ecology in severe
disease, characterized by fracturing of clusters and reduced negative selection. We also observed shifts
in predicted stool metabolite pools, implicating perturbed bile acid metabolism in severe disease. Here, we
show that the gut microbiome differentiates individuals with a more severe disease course after infection
with COVID-19 and offer several tractable and biologically plausible mechanisms through which gut
microbial communities may in�uence COVID-19 disease course. Further studies are needed to validate
these observations to better leverage the gut microbiome as a potential biomarker for disease severity
and as a target for therapeutic intervention.

Introduction
Over 530 million individuals worldwide have been infected with SARS-CoV-2 and developed coronavirus
disease-2019 (COVID-19), culminating in more than 6 million lives lost1. The gut microbiome is a critical
modulator of host immunity2 and affects the immune response to respiratory viral infections (e.g.,
in�uenza A virus subtype H1N1, Severe Acute Respiratory Syndrome [SARS], and Middle East Respiratory
Syndrome)3–6. Several early studies have explored the link between broad alterations in gut microbial
communities and COVID-19, demonstrating the generalized enrichment of opportunistic pathogens and
depletion of commensals7–18.

Most prior studies have largely focused on the presence, absence, or the differential abundance of
speci�c microbes in COVID-19,7,9−16, and few have interrogated microbial network dynamics to identify
which co-occurring or co-excluded species are foundational to maintaining microbial homeostasis. This
represents a missed opportunity to identify potential bacterial targets to restore a more favorable, health-
promoting gut con�guration. Similarly, other studies have not considered how these shifts might
in�uence gut metabolite pools. Finally, prior studies interested in exploring the gut microbiome in COVID-
19 have largely sought to characterize the differences in healthy controls compared to infected patients
rather than those with moderate compared to severe disease7, 10–12,14,16. Establishing a predictive
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biomarker of disease severity may improve early identi�cation of at-risk patient populations that require
immediate intervention or those that are more likely to bene�t from effective antiviral therapies19.

It remains unclear what role the gut microbiome plays in regulating the severity of COVID-19 in
hospitalized patients and what speci�c microbially-mediated mechanisms may underlie this relationship.
To address these questions, we conducted a study of hospitalized patients with COVID-19 at a U.S.
tertiary medical center. Using metagenomic pro�ling of fecal samples collected from these patients, we
demonstrate signi�cant depletions of Fusicatenibacter saccharivorans and Roseburia hominis in severe
COVID-19, reductions of which have previously been linked to post-acute COVID-19 syndrome (PASC) or
long COVID18,20. Strikingly, we observed these declines during patients’ index hospitalizations, suggesting
the presence of an early microbial signal that may predict the development of a long-term complication.
We further use network analysis to identify several critical taxa central to maintaining a gut microbial
con�guration less likely to be found in severe COVID-19 and perform complementary predicted metabolite
analyses to further link these changes to alterations in bile acid pool and short-chain fatty acid (SCFA)
levels, offering biologically plausible mechanisms to explain the link between gut microbial communities
and COVID-19 disease severity.

Results

Participant characteristics and overall gut community
structure
From April 2020 to May 2021, we prospectively enrolled hospitalized patients aged ≥ 18 years with
con�rmed COVID-19 at the Massachusetts General Hospital to a longitudinal COVID-19 disease
surveillance study. Patients were categorized as having severe COVID-19 if they required admission to the
intensive care unit with acute respiratory failure (the need for oxygen supplementation ≥ 15 liters per
minute (LPM), non-invasive positive pressure ventilation, or mechanical ventilation) or other organ failure
(such as shock requiring vasopressor initiation)21. Otherwise, they were categorized as having moderate
COVID-19. We enrolled 127 hospitalized COVID-19 patients. 79 (62.2%) had severe disease and 48
(37.8%) had moderate disease. Collectively, they provided 241 stool samples (Fig. 1a). No statistically
signi�cant differences were observed between severity groups based on age, sex, race, ethnicity, various
comorbidities, and smoking history (Suppl. Table 1). Patients with severe COVID-19 had a higher mean
body mass index (BMI) as well as Simpli�ed Acute Physiology Score II (SAPS II)22 and Sequential Organ
Failure Assessment (SOFA) scores23, each a validated clinical assessment tool to risk stratify
hospitalized patients’ risk of mortality24,25. Severe COVID-19 patients more frequently received antibiotics,
antivirals, and ICU therapies. Patients with severe COVID-19 had higher 90-day mortality compared to
those with moderate disease (22.8% vs. 4.2%, p-value = 0.01).

Gut microbial diversity was signi�cantly reduced in severe COVID-19 after adjusting for factors such as
recent antibiotic use (Fig. 1b, p-value < 0.001). Overall gut community structure also appeared to differ
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based on COVID-19 disease severity (multivariable R2 = 2.4%, p-value = 0.002), a �nding not fully
explained by characteristic trade-offs along the Bacteroidetes/Firmicutes axes of variation or prior
antibiotic usage (Fig. 1c).

Differential abundance testing
Using multivariable linear mixed-effects modeling accounting for age, sex, antibiotic use, race/ethnicity,
SARS-CoV-2 stool viral load and other relevant clinical metadata (Methods), we observed statistically
signi�cant differences in 48 species-level taxa between severe and moderate COVID-19 (FDR-corrected p-
value < 0.05, Fig. 2a & Suppl. Table 2). All but two of these taxa (Candida albicans & Enterococcus
faecalis) were relatively depleted in severe disease (Fig. 2a & 2b), a trend concordant with the observed
decrease in species richness and evenness. We identi�ed signi�cant depletions of Fusicatenibacter
saccharivorans and Roseburia hominis (Fig. 2b), consistent with prior work showing the relative
contraction of each in patients with post-acute COVID-19 syndrome (PASC), also known as “long
COVID18,20.” Eight taxa were positively associated with stool SARS-CoV-2 viral load, including several
linked to pro-in�ammatory sulfur metabolism, such as Methanobrevibacter smithii and Bilophila
wadsworthia, as well as several Alistipes spp (Suppl. Table 2). Interestingly, an expansion of R. hominis
was associated with increased stool viral load despite a corresponding decrease among patients with
severe COVID-19, suggesting an interaction between stool SARS-CoV-2 viral load, R. hominis, and severe
COVID-19 (Suppl. Table 2). Corresponding to community-wide depletions in microbial diversity,
biochemical pathways encoded by gut bacteria were also signi�cantly altered in severe COVID-19,
including reductions in amino acid biosynthesis (e.g., glutamine synthesis), isoprenoid biosynthesis, and
short-chain fatty acid production (SCFA) pathways, including glycerol degradation, acetyl-CoA
fermentation, and methanogenesis from acetate (Suppl. Table 3 & Suppl. Figure 1).

Machine learning to predict severe COVID-19
Given our �ndings of both community-wide and feature-level alterations linked to severe COVID-19, we
next used a machine learner to predict whether metagenomic features could serve as inputs to classify
samples derived from patients with severe vs. moderate COVID-19. To assess whether non-microbial
metadata (i.e., participant characteristics) should be jointly considered with microbial taxa in training our
classi�er, we generated an entropy heatmap to quantify the unique row-wise information with respect to
column-wise data (in which non-informative variables would have a value of 0). As all the covariates
used in our prior linear modeling (Methods) contributed unique information to label/disease severity
prediction (Suppl. Figure 2), each was included in our machine learning work�ow.

Using both differentially abundant microbial features and clinical characteristics as our input (Fig. 3a),
our random forest regressor achieved an area under the receiver operating characteristic (AUROC) of
0.925 when tasked with predicting whether stool was obtained from patients with severe vs. moderate
COVID-19 (Fig. 3b & Fig. 3c). Our �ndings were only modestly attenuated when modeled without clinical
metadata (AUROC 0.922) and stool SARS-CoV-2 viral load (AUROC 0.923), respectively. To robustly
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assess this result, we trained our model using only the top 20 differentially abundant microbial features,
which only modestly degraded task performance (AUROC 0.898). Finally, though we ensured samples
from the same individual were con�ned to a single cross-fold, to minimize the possibility of over�tting
data from personalized gut microbial communities, we trained and assessed our model using only the
�rst stool sample from each participant, which again performed with excellent accuracy (AUROC 0.871),
further supporting the role of metagenomic pro�ling as a diagnostic biomarker for disease severity.

Systems approaches to interrogate microbial assemblages
To explore the possible biological mechanisms underlying our observations, we next sought to
characterize whether ecological networks were signi�cantly altered based on COVID-19 severity
(Methods). We hypothesized that the community-wide and feature-level alterations observed in moderate
vs. severe COVID-19 would change microbial network topology. First, we evaluated global microbial
network properties. The adjusted Rand Index (ARI) is a measure of similarities in clustering, quantifying
the likelihood that pairs of microbial clades would be assigned to the same cluster in both networks. An
ARI value of 0 indicates random clustering across comparator groups, a value of 1 indicates identical
clustering, and a value of -1 indicates perfect disagreement26,27. When comparing moderate to severe
COVID-19, the ARI was 0.199 (p-value < 0.001). Jaccard's index (JI) evaluates differences among central
nodes between our two severity-speci�c networks, where a value of 0 indicates completely different sets
of central nodes and a value of 1 indicates identical central nodes28. While there were no statistically
signi�cant differences in overall centrality measures when comparing moderate to severe cases, there
were alterations in proportion of positive edges network-wide (92.9% vs 100%, p-value < 0.001), indicating
a loss of moderate negative correlations in severe COVID-19. For example, C. albicans, which was
relatively more abundant in severe compared to moderate COVID-19, has 0 vs. 3 negative edges in each
disease state, respectively, raising the possibility that the loss of negative selective pressure can promote
the growth of certain microbial clades in severe COVID-19.

We identi�ed 16 taxa as network hubs, i.e., species with high putative importance given their centrality to
the surrounding microbial networks (Fig. 4 & Suppl. Table 4a). Five species were identi�ed as hubs in
both moderate and severe disease (Blautia wexlerae, Eubacterium hallii, Gordonibacter pamelaeae,
Odoribacter splanchnicus, and Alistipes shahii), while 11 were unique to one network or the other (Suppl.
Table 4b, Suppl. Table 4c, & Suppl. Figure 3). Critically, 9 of these 16 identi�ed hubs, including Blautia
wexlerae and Eubacterium hallii, were shown to be differentially abundant by disease severity (Suppl.
Table 2), and the relative abundance of two hubs, Eubacterium rectale and Alistipes putredenis, were
associated with stool viral load. We further observed that highly-connected clusters in moderate disease
become fragmented in severe COVID-19, as evidenced by an increase in singletons, a decrease in the
number of hubs, and dynamic taxa-level cluster reassignment (Fig. 4). Notably, all but one of the hubs
shown to be differentially abundant by disease severity belonged to the same cluster, suggesting that
signi�cant loss of these central taxa in severe disease may contribute to the observed network instability.
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Predicted stool metabolites linked to disease severity
We next sought to evaluate whether changes in microbial communities affected local metabolite
production. Using a validated computational work�ow to generate putative metabolic pro�les from stool
metagenomes29 (Methods), we found 57 of 80 well-predicted known stool metabolites to be differentially
abundant based on COVID-19 disease severity (all FDR-corrected p-value < 0.05; Fig. 5a & Suppl. Table 5).
We identi�ed the perturbation of bile acid metabolism in severe COVID-19, with relative enrichment of
primary bile acids (chenodeoxycholate, cholate, and ketodeoxycholate) alongside depletion of secondary
bile acids (lithocholate, lithocholic acid, and deoxycholic acid) (Fig. 5b). Similar to our microbial pathway
analysis which revealed reductions in MetaCyc pathways related to SCFA production, predicted levels of
butyrate, isobutyrate, and propionate were also reduced in severe COVID-19 (Suppl. Table 5). Furthermore,
we con�rmed prior data showing relative enrichment of bilirubin30, creatine and polyamines (e.g., acetyl-
spermidine31), and pantothenic acid32 in severe COVID-19, as well as a relative depletion of
deoxyinosine32 (Suppl. Table 5).

Discussion
In a large U.S. hospital-based cohort of diverse patients admitted with con�rmed COVID-19 during the
initial year of the pandemic, we found community- and species-level alterations linked to disease severity.
Using a random forest machine learner, these microbial features could accurately classify patients based
on disease severity, indicating that speci�c gut microbial con�gurations may predict a more severe
disease course. Network analyses identi�ed signi�cant disruptions to gut ecologic topology in severe
COVID-19. Differential abundance testing of microbial pathways and predicted stool metabolites suggest
that these disruptions may change the balance of bile acids and SCFAs in the gut, identifying novel
treatment opportunities that may ameliorate the severity of COVID-19. We also found signi�cant
depletions of two microbes previously associated with long COVID, suggesting early gut microbial
disturbances may precede the development of a long-term complication.

Determining who will require a higher level of care remains one of the most challenging questions facing
clinicians caring for patients with COVID-19. Our machine learning algorithm demonstrated excellent
discrimination between moderate and severe COVID-19 using only gut microbial features. Notably, the
inclusion of clinical data did not signi�cantly improve the classi�cation accuracy of our model. Prior work
has incorporated such information from initial presentation33, multi-cytokine panels34, and previously
validated illness severity scores35 to forecast whether a given patient will suffer from a more severe
COVID-19 course. However, based on their performance characteristics, these approaches appear to be
less predictive than our microbiome-centered approach.

Our �ndings expand on prior research linking changes in gut microbial ecology to COVID-19. However, it
should be noted that much of the initial work has been done on a smaller scale7, 9–11,14 and typically
outside of North America7–15, limiting their generalizability. Further, these comparative analyses may
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have focused on specialized populations, such as the very young, the asymptomatic, or patients in
recovery12,16−18, and may not have been well-suited to consider clinical factors that may confound the
relationship between gut microbial communities and COVID-19 using more robust multivariable
approaches7,8,10−17. Prior studies also predominantly relied on 16S rRNA sequencing to demonstrate
community- or genus-level shifts related to COVID-197,14−17, falling short of the species-level resolution
and biochemical insights gained by employing next-generation sequencing of gut metagenomes and
other functional multi-omic technologies. In contrast, we assembled a large, representative North
American patient population admitted with symptomatic COVID-19 whose gut microbial communities
were interrogated using metagenomic techniques, allowing us to identify novel microbial features to more
comprehensively characterize disease severity with high predictive accuracy.

Prior investigations have observed similar community- and taxa-level alterations in microbial composition
in COVID-19. In the earliest phase of the pandemic, a study from Hong Kong (n = 36) also demonstrated
relative reductions in the group Eubacterium among the gut metagenomes of COVID-19-infected patients
compared to referent populations, and like our work, found widespread depletion of typical gut colonizers
such as Faecalibacterium and Roseburia spp. in severe COVID-199. In an expanded population of 100
patients, the same group rea�rmed a reduction in diversity and a loss of health-associated gut
commensals in severe COVID-1913. Finally, a study of 30 SARS-CoV-2 infected patients in mainland China
using 16S rRNA-based sequencing similarly demonstrated a change in gut community structure with
reductions in �-diversity compared to referent counterparts14. Notably, they also achieved success in
classifying stool samples from patients with COVID-19 compared to those from healthy controls or those
infected with in�uenza, indicating the relatively distinct gut ecology of COVID-19. However, their
classi�cation tasks were conducted in a smaller population using supervised feature selection (i.e., the
top results from their linear discriminant analysis) of genus-level taxa, and arguably, the role of a gut
microbial biomarker in discriminating COVID-19 from non-infected individuals is uncertain now that
SARS-CoV-2 testing is more widely available36.

Our work offers insights beyond these broad characterizations of the gut microbiome in COVID-19. It is
appreciated that gut microbial ecology in�uences the host immune response to viral respiratory
infections3–6. Our identi�cation of Blautia wexlerae and Eubacterium hallii as network hubs depleted in
severe COVID-19 (both Lachnospiraceae implicated in other immune-mediated diseases37) suggests
these bacteria may engage in important roles in the regulation of immunity to SARS-CoV-2. Predicted
depletion of secondary bile acids in severe disease provides another mechanism by which changes in gut
microbial communities may in�uence the immune response to SARS-CoV-2. Bile acids regulate mucosal
and systemic immunity in several ways38. Prior work has suggested that secondary bile acids are the
primary ligand for TGR539 through which they may suppress pro-in�ammatory signaling38,40, resulting in
impaired immunity to viral infections41,42. The predicted shift in bile acid pools may also result in
increased regulation of bile acid-sensitive transcription factors, as increased primary bile acids will
preferentially activate farsenoid X Receptor, while depletions in secondary bile acids will reduce activation
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of vitamin D receptor (VDR)43,44 and pregnane X receptor (PXR)45. Decreased VDR/PXR signaling during
active infection are associated with increased systemic in�ammation and increased morbidity and
mortality46,47, possibly contributing to the clinical milieu observed in severe COVID-19. This is a
particularly noteworthy hypothesis given emerging epidemiologic data on the link between diet48, vitamin
D status49, and COVID-19 disease risk and severity, as well as early work linking depletion of secondary
bile acids to COVID-19-related mortality50.

Our study has several key strengths. First, we assembled a large representative cohort of patients at a
U.S.-based tertiary care center for whom we collected relevant clinical metadata to complement serial
stool sampling. Second, our computational work�ow allowed us to not only link community-level
changes in gut microbial ecology but species-resolved signatures of severe COVID-19. Third, network
analyses identi�ed critical taxa central to maintaining a fragile gut microbial con�guration less likely to
be found in severe COVID-19, and complementary MetaCyc pathway and predicted metabolite analyses
further link these changes to alterations in bile acid pool and SCFA levels. Taken together, these
observations serve as proof of principle that using NGS to interrogate gut microbial ecology may
generate tractable hypotheses to be explored in follow-up investigations. Finally, our results �t well in the
context of independent works from other groups–lending credence to our �ndings–and using a machine
learning classi�er, we demonstrate excellent accuracy in discriminating samples from moderate vs.
severe COVID-19. These �ndings hint at the possibility that modulating gut microbial communities may
be a viable disease prevention or therapeutic strategy in COVID-19.

We acknowledge several limitations. We were not positioned to assess whether �ndings differed on the
basis of SARS-CoV-2 strain or variants. Our study enrolled patients from April 2020 to May 2021 during
which genomic surveillance infrastructure in the U.S. was not equipped to comprehensively explore this
question. Prior to the Delta variant wave beginning in June 2021, the majority of COVID-19 cases were
either Alpha or other less consequential variants of interest51. Given the observational nature of our study,
we cannot exclude the possibility of residual confounding. However, we adjusted for multiple potential
confounders. All enrolled patients were hospitalized, which may minimize study heterogeneity at the
expense of overall generalizability. We also assessed the gut microbiome at the earliest feasible time
point on admission. This resulted in variation in the timing of collection, which limits our ability to infer
causality. Despite these limitations, our �ndings are intended to be hypothesis-generating to inform the
continuum of research that may logically follow.

Leveraging the gut microbiome as a potential biomarker for disease severity and modulating this fragile
ecology to improve COVID-19 outcomes each hold signi�cant appeal in the �ght to end this pandemic.
Multidisciplinary approaches will be needed to con�rm our early �ndings. Validation of a non-invasive
indicator predictive of disease severity could readily identify and target at-risk individuals for more
aggressive therapy. Finally, directed probiotic restoration or targeted depletion of severe COVID-19-linked
microbes could offer a novel therapeutic modality to complement existing therapies.
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Methods

Study population
Patients were screened daily for inclusion from among all admitted individuals for whom a designation
of possible SARS-CoV-2 infection was �agged by hospital infection control. COVID-19 infection status
was subsequently con�rmed with at least one positive nasopharyngeal SARS-CoV-2 polymerase chain
reaction (PCR) test. An optional biospecimen collection protocol was nested within this longitudinal
study, which allowed collection of additional clinically relevant biospecimens, including stool samples.

Sample/data collection
Fresh stool was collected and refrigerated at 4℃ until aliquoting/freezing at -80℃ (typically within 4
hours of collection) from adult patients enrolled in the prospective biospecimen collection study.
Participants were able to provide stool samples as frequently as once daily, as well as declining donation
on any given day (while remaining in the study). Study coordinators blinded to case status abstracted
data from the electronic health record using a double data entry approach with discrepancies adjudicated
by re-abstraction or after discussions with supervising authors. We collected information on admission
age (years), biological sex (male, female, other), race (White, Black, Asian, American Indian, Mixed, or
Other), ethnicity (non-Hispanic or Hispanic), admission BMI (kg/m2), comorbidities including history of
cancer, pulmonary, or cardiac disease, hypertension, hyperlipidemia, and diabetes mellitus (each yes/no),
smoking history (active, former, never, unknown, and pack-years among smokers), and their composite
admission Charlson Comorbiditiy Index, a validated score predictive of in-hospital mortality52.
Information on hospital course, including admission Simpli�ed Acute Physiology Score II (SAPS II)22 and
Sequential Organ Failure Assessment (SOFA) scores23 were calculated from routine laboratory results
and clinical assessments. The use of antibiotics, antivirals including remdesivir, hydroxychloroquine,
corticosteroids, anti-IL-6 therapy, any form of oxygen support, high-�ow oxygen, bilevel positive airway
pressure (BiPAP) ventilation, or mechanical ventilation (each yes/no) was collected. Mortality within 90
days of admission was ascertained in the post-study period.

Extraction protocols
Stool samples, reagent-only negative controls, and mock community positive controls (Zymo Research)
were extracted using either the AllPrep PowerFecal DNA/RNA 96 Kit (Qiagen) or the Maxwell HT 96 gDNA
Blood Isolation System (Promega)53. SARS-CoV-2 viral load was quanti�ed as per CDC guidelines54 using
the 2019-nCoV N1 primer and probe set54, as well as human RNaseP as an internal control. Each RT-qPCR
reaction contained TaqPath™ 1-Step RT-qPCR Master Mix (Thermo Fisher), RNA template, the CDC N1 or
RNaseP forward and reverse primers (IDT), probe, and RNase-free water to a total reaction volume of 10
µl. Viral copy numbers were quanti�ed using N1 quantitative PCR (qPCR) standards (IDT) in 10-fold
dilutions to generate a standard curve. The assay was run in triplicate for each sample with three no-
template control wells per 384 well plate.

Microbial Sequencing
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Samples were sequenced by two metagenomic sequencing facilities at the Broad Institute and Baylor
College of Medicine according to their standard established platforms. DNA was prepared for sequencing
using the Illumina Nextera XT DNA library preparation kit. All libraries were sequenced with a target of
3GB output at 2x150bp read length using the Illumina NovaSeq platform. No major batch effects
attributable to sequencing center were observed, and thus, subsequent analyses were conducted on
pooled samples (multivariable PERMANOVA R2 for batch = 1.2%, p-value = 0.12, Suppl. Figure 4).

Sequence bioinformatics
Taxonomic and functional pro�les were generated using the bioBakery 3 shotgun metagenome work�ow
3.0.0, the details of which have previously been described55. Brie�y, human reads were �ltered using
KneadData 0.10.0 and taxonomic pro�les generated using MetaPhlAn 3.0.056. Functional pro�ling was
conducted using HUMAnN 3.0.056, resulting in gene family abundance tables assembled into higher order
MetaCyc pathways57.

Given the tight coupling and relatively conserved nature of gut taxonomic and metabolite pro�les58, we
used the MelonnPan-predict 0.99.023 work�ow29 to interrogate the functional relationship between
COVID-19 severity and microbial community metabolism. In brief, MelonnPan uses an elastic net model
to conservatively predict putative metabolite levels based on stool UniRef90 gene family abundance.

Statistical Analysis
To compare patient characteristics between study groups, we used standard statistical tests, including
chi-squared (χ2) tests or Fisher's exact testing for categorical variables, the Student’s t-test for normally
distributed, non-categorical variables and nonparametric Wilcoxon rank sum tests for all others.
Differences with two-tailed p-value ≤ 0.05 were considered signi�cant.

�-diversity was calculated using the Shannon index with the “diversity” function from the R package
vegan. Principal coordinates analyses (PCoA) were performed using species-level Bray-Curtis dissimilarity
metrics with the “vegdist” function in the vegan package.

After �ltering out features with no variance and low (< 10%) prevalence, we performed differential
abundance testing of species-level taxonomy, MetaCyc pathways, and predicted stool metabolites using
linear mixed-effects models to account for a nested data structure from repeated sampling:

log(feature) ~ intercept + COVID-19 severity + age + sex + prior antibiotic use + race + ethnicity + BMI + 
Charlson Comorbidity Index + remdesivir + corticosteroids + days since admission + SARS-CoV-2 stool
viral load + sequencing depth + (1 | participant)

Machine learning model building and evaluation were conducted using the SIAMCAT v.1.13.3 package59.
Log-transformed species with pseudocount were �ltered to remove biomarkers with low overall
abundance and z-transformed. A nested cross-validation procedure was applied to calculate prediction
accuracy by splitting data into training and testing sets for twice-repeated, �ve-fold-cross-validation. To
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account for longitudinal sampling59, data splits were strati�ed by participant ID, ensuring samples from
the same individual were used in the same fold. For each split, a random forest (RF) regressor was
trained and subsequently used to predict COVID-19 disease severity. To evaluate model performance, we
used the lambda parameter to maximize the area under the receiver operator characteristic curve
(AUROC) with a 95% con�dence interval (CI) for cross-validation error.

To assess whether ecological dynamics may help explain observed differences in taxonomy, we
performed dedicated microbial network analyses. To account for our longitudinal data structure and to
avoid over�tting, we restricted this analysis to each participant’s �rst collected stool. Network
construction was conducted using the “netConstruct” function in NetCoMi v.1.0.260, normalized using a
modi�ed centered-log ratio and limited the resulting network to microbes with an absolute Pearson
correlation ≥ 0.4 (approximately equal to the 95th percentile of correlation matrix distribution). Network
hubs were identi�ed as those in the top quintile of degree, betweenness, and closeness centrality in each
network (moderate vs. severe COVID-19, respectively). Finally, comparison of moderate and severe
networks was performed using the “netCompare” function with 10,000 permutations.

Regulatory compliance and data availability
Study protocols were approved by the Mass General Brigham Institutional Review Board. Study
enrollment with written informed consent was conducted with the patient or their healthcare proxy. Prior
to publication, raw sequencing data will be deposited at the National Center for Biotechnology
Information’s (NCBI) Sequence Read Archive (SRA) under a to-be-determined BioProject accession ID.
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Figure 1

Study overview and overall community structure. a. Study enrollment of hospitalized patients with
con�rmed COVID-19 with weekly stool sampling until the time of discharge or death, whichever occurred
�rst. b. Marked reduction in species richness and evenness in severe COVID-19 (inverse Simpson �-
diversity metric, p-value <0.0001 from multivariable linear modeling adjusting for age, sex, prior antibiotic
use, race, ethnicity, body mass index, Charlson Comorbidity Index, use of remdesivir or corticosteroids,
days since admission, SARS-CoV-2 stool viral load, sequencing depth, and a participant-level random
effect). Boxes represent median and interquartile range, while whiskers represent 95%ile. c. Community-
level disturbances in severe vs. moderate COVID-19 as depicted by joint ordination and principal
coordinates analysis (PCoA), not fully explained by characteristic trade-offs in Bacteroidetes/Firmicutes
or prior antibiotic use.

Figure 2

Taxonomic depletions linked to COVID-19 severity. a. Volcano plot of species-level expansions and
depletions linked to severe vs. moderate COVID-19. Effect sizes (β-coe�cients) from multivariable linear
modeling plotted against FDR-corrected p-value. Full results in Suppl. Table 2. b. Highlighted box and
scatter plots of taxa abundance by COVID-19 severity. For visualization purposes, technical/true 0s were
imputed with a given taxa’s minimum non-zero value. Boxes represent median and interquartile ranges,
while whiskers represent 95%ile.

Figure 3

Stool-based classi�er for COVID-19 disease severity. a. Box and scatter plots of the top 50 microbial
features and their differential abundance by COVID-19 severity with barplots indicating
univariate/nominal p-value, fold change by study group, prevalence, and taxa-level contribution to area-
under-the curve for a random forest-based machine learner. b. Receiver operator characteristic (ROC) and
precision-recall curves demonstrating excellent performance in classifying stool samples by COVID-19
severity. The removal of stool SARS-CoV-2 viral load and clinical metadata resulted in only modestly
decreased task performance, as did limiting our input to only the top 20 differentially abundant microbes
by disease class. A sensitivity analysis using only the �rst provided stool from each participant, which
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should minimize the possibility of over�tting data due to repeated measures and longitudinal sampling,
still performed well.

Figure 4

Comparative microbial assemblages in moderate vs. severe COVID-19. We assembled discrete microbial
networks for moderate vs. severe disease to demonstrate signi�cant ecological heterogeneity
characterized by fractured clustering and taxa-level reassignment in severe disease. Species are
represented by circles (nodes) and species-species correlations were weighted by strength of correlation
(edges drawn if absolute Pearson’s �>0.4). Node size indicates normalized relative abundance, and node
colors indicate cluster membership. Cluster colors are retained across networks if two or more taxa are
shared. Edge color re�ects the direction of correlation, with red edges indicating a negative, and green
edges indicating a positive correlation, respectively. Hubs have been numbered, while clusters are referred
to by their nominate node, or the taxa with the highest edge count in a given cluster by network.

Figure 5

Predicted stool metabolite pro�les. a. Volcano plot of enrichments and depletions in predicted stool
metabolites linked to severe compared to moderate COVID-19. Adjusted log2fold change calculated from
β-coe�cients extracted from multivariable linear modeling plotted against FDR-corrected p-value. Full
results in Suppl. Table 5. b. Highlighted box and scatter plots of predicted metabolite abundance by
COVID-19 severity. For visualization purposes, technical/true 0s were imputed with a given taxa’s
minimum non-zero value prior to log-transformation. Boxes represent medians and interquartile ranges,
while whiskers represent 95%ile.
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