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Protein phosphorylation is the most common and versatile post-translational modification occurring in
eukaryotes. In yeast, protein phosphorylation is fundamental for maintaining cell growth and adapting
to sudden changes in environmental conditions by regulating cellular processes and activating signal
transduction pathways. Protein kinases catalyze the reversible addition of phosphate groups to target
proteins, thereby regulating their activity. In Saccharomyces cerevisiae, kinases are classified into six major
groups based on structural and functional similarities. The NPR/Hal family of kinases comprises nine
fungal-specific kinases that, due to lack of similarity with the remaining kinases, were classified to the
‘‘Other” group. These kinases are primarily implicated in regulating fundamental cellular processes such
as maintaining ion homeostasis and controlling nutrient transporters’ concentration at the plasma mem-
brane. Despite their biological relevance, these kinases remain poorly characterized and explored. This
review provides an overview of the information available regarding each of the kinases from the NPR/
Hal family, including their known biological functions, mechanisms of regulation, and integration in sig-
naling pathways in S. cerevisiae. Information gathered for non-Saccharomyces species of biotechnological
or clinical relevance is also included.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Phosphorylation of proteins is one of the most well-studied
post-translational modifications (PTMs), indispensable for the reg-
ulation of several cellular processes and response to stimuli in
eukaryotes [1,2]. Protein kinases and phosphatases control the
phosphorylation state of a protein; thus, a protein controlled by
its phosphorylation state will have its activity dependent on the
activity of the regulating kinases and phosphatases [3]. Protein
kinases predictably phosphorylate about one-third of all the pro-
teins in humans, flies and yeasts [4]. In eukaryotic cells, kinases
catalyze the transfer of the terminal phosphate of ATP to serine,
threonine or tyrosin aminoacyl residues, which protein phos-
phatases can reverse. The specific recognition of substrates by
kinases is made through their active site [5]. Some kinases are
highly specific – only modulate the phosphorylation of a few select
substrates – while others may have a broad spectrum of protein
targets. Protein phosphorylation/dephosphorylation is an extre-
mely efficient and dynamic mechanism of control in protein activ-
ity and signaling pathways due to its rapid and reversible nature
that does not require synthesis or degradation of proteins [5,6].
This regulatory mechanism allows alterations in protein stability,
location, and activity, including modifications in catalytic function,
often through structural rearrangements that can induce alter-
ations in interacting partners or subcellular localization [5]. The
analysis of the regulation of cellular processes by phosphorylation
is complex. It includes the identification of the phosphoproteins
and respective phosphorylation sites, which is not straightforward;
the identification of the effects phosphorylation has on biological
processes, the protein kinases and phosphatases involved in phos-
phorylation regulation, and the environmental conditions and
mechanisms leading to the activation of the involved kinases and
phosphatases [7,8]. The currently proposed kinase classification
systems are based on sequence conservation, phylogeny analysis
of the catalytic domains, presence of accessory domains, and sim-
ilarity in their modes of regulation [9–11]. The classification of the
eukaryotic protein kinase superfamily comprises nine groups of
‘‘conventional” protein kinases (ePKs) and four groups of ‘‘atypical”
protein kinases (aPKs), which are proteins with kinase activity but
do not share clear sequence similarity with ePKs [9]. In the bud-
ding yeast Saccharomyces cerevisiae, kinases are classified into six
ePKs groups: the AGC group; the CAMK group (calmodulin-
regulated kinases); the CKI group (casein kinases); the GMGC
group (cyclin-dependent kinases, mitogen-activated protein
kinases, glycogen synthase kinases and CDK-like kinases); the
STE group (including protein kinases involved in MAP kinase cas-
cades); and the Other kinases group (kinases that could not be
easily classified into one of the other groups due to lack of similar-
ity) [9,12]. The atypical kinases in S. cerevisiae include the PIKK
group (phosphatidyl inositol 3’ kinase-related kinases); the PDHK
group (pyruvate dehydrogenase kinases); and the RIO group
(named after ‘‘right open reading frame”) [9,12]. Originally consid-
ered as part of the ‘‘Other” kinases group, the NPR/Hal family
includes nine fungal-specific kinases primarily associated with
the regulation of plasma membrane transporters: Hal4 (Sat4),
Hal5, Hrk1, Kkq8, Npr1, Prr2, Ptk1, Ptk2, and Rtk1 [12]. More
recently, these kinases have been assigned as part of the CAMK
group – based on the automatic classification of syntenic homo-
logues from Ashbya gossypii and S. cerevisiae [9] – or even classified
as ‘‘Snf1-related” – based on a re-analysis using full-length primary
sequences (instead of only the catalytic domains) [13]. The NPR/
Hal kinases play important roles in signaling pathways associated
with the yeast response to nutrient availability and environmental
stress but are often overlooked in the scientific literature. The
objective of this review article was to update, integrate and
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consolidate the information available to date regarding the NPR/
Hal family of kinases in S. cerevisiae and, when available, in other
yeast species of biotechnological or clinical relevance. These pro-
tein kinases’ biological roles and regulation in diverse environmen-
tal conditions are reviewed, and data from genome-wide analyses
are explored.
2. The NPR/Hal family of kinases

The NPR/Hal family of kinases comprises nine fungal-specific
kinases whose functions are mainly associated with the regulation
of the stability of nutrient transporters at the plasma membrane
and the maintenance of ion homeostasis [13–15]. Yeast adaptation
to diverse and ever-changing environments relies on the proper
sensing, transport and utilization of nutrients, as well as the effi-
cient regulation of the intracellular levels of metabolites and ions
[16]. Nutrient minerals, found as charged ions in the extracellular
environment, are also essential to create and sustain electrochem-
ical gradients across the plasma membrane to drive nutrient trans-
port, protein structure and function, and activating signaling
pathways [17]. Despite the importance of the NPR/Hal kinases in
yeast cells’ growth and development pathways, many of these
kinases’ regulating mechanisms, signaling pathways, and functions
are largely unknown or poorly characterized. There are many
modalities of kinase regulation: some kinases have constitutive
activity (unregulated), while many are regulated in a complex
manner, involving more than one regulation mechanism [18].
The most common regulation mechanism of kinase activity is the
phosphorylation of its activation loop. The activation loop is a
motif containing one or more conserved phosphorylatable residues
that, upon phosphorylation, cause a conformational change within
the kinase resulting in its activation [19]. Inspection of the activa-
tion loop of the NPR/Hal kinases reveals that they do not contain a
conserved phosphorylatable residue, indicating that this mecha-
nism of regulation is unlikely to occur. The regulation mechanism
of these kinases is probably based on phosphorylation outside the
activation loop, which can either activate or inactivate protein
function. Indeed, Npr1, the most studied kinase from the family,
is regulated in a complex manner involving inactivation through
phosphorylation outside the activation loop, being dephosphoryla-
tion an activation mechanism [20,21]. Given the high conservation
of the catalytic domains among the nine NPR/Hal kinases, their
regulation mechanisms might be similar and likely suggest func-
tional relationships [22]. Phylogenetic clustering of the NPR/Hal
kinases protein sequences from S. cerevisiae is shown in Fig. 1, evi-
dencing three major clusters: Ptk1 and Ptk2; Hal5, Hal4 and Kkq8;
Npr1, Prr2, Hrk1 and Rtk1. Since most of the NPR/Hal kinases are
functionally uncharacterized, a collection of phenotypes resulting
from the deletion of each of these kinases in S. cerevisiae cells
exposed to a wide variety of chemical compounds and environ-
mental conditions is presented in Table 1.

As described below, members of each cluster tend to display
similar functions or belong to the same signaling pathways. The
following sections give a detailed description of the information
gathered from the literature for each of the NPR/Hal kinases under
analysis.
2.1. NPR1 (YNL183C) plays a pleiotropic role in the regulation of
nutrient transporters

The Npr1 (nitrogen permease reactivator 1) protein kinase is
the most well functionally characterized kinase from the NPR/Hal
family of kinases. The predicted Npr1 consensus sequence (ob-
tained with synthetic peptides) is (K/R)-X-X-S-(K/R) [25]. Npr1



Fig. 1. NPR/Hal kinase family members phylogenetic clustering. A multiple sequence alignment of the Npr/Hal kinases complete amino acid sequences from S. cerevisiae
S288c (retrieved from NCBI https://www.ncbi.nlm.nih.gov/) was performed using MAFFT [23], followed by phylogenetic inference by maximum likelihood using IQ-Tree
[24]. Protein kinase domains (Pkinase) are colored blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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appears to have a requirement for a basic residue at the P-3 posi-
tion and a substantial favoring for basic P + 1 residues, while a pro-
line at the position P + 1 is disadvantageous [25]. Npr1 displays
pleiotropic roles; however, it is best characterized and first
described as a regulator of the sorting and stabilization of several
amino acid and ammonium permeases at the plasma membrane
[20,26–28]. The modulation of the activity of plasma membrane
proteins is essential for proper yeast response to nutrient fluctua-
tions. Yeast growth and proliferation are dependent on the avail-
ability of nitrogen sources. S. cerevisiae is able to grow in a
variety of nitrogen sources and discriminates between preferred
or non-preferred sources [29]. In the presence of preferred nitrogen
sources (ammonia, glutamate, glutamine), yeast activate the nitro-
gen catabolite repression (NCR) pathway, resulting in the repres-
sion of the expression of genes responsible for the use of non-
preferred sources (proline, urea, allantoin, gamma-aminobutyric
acid (GABA)) [29]. The regulation of nitrogen metabolism is the
result of the interplay of different complex regulatory pathways,
which mainly include the Ssy1-Ptr3-Ssy5 (SPS) sensor system,
the target of rapamycin (TOR) pathway, NCR, and the general
amino acid control (GAAC) pathway (reviewed by [30]). The sens-
ing of nitrogen sources is made through the SPS sensor system (ex-
tracellular amino acid sensing) and the TOR pathway (intracellular
amino acid sensing) [30].

TheNpr1kinase is integrated into the TORC1-Sit4-Npr1 signaling
pathway, which controls nutrient plasma membrane transporters’
stability, trafficking and endocytosis. The phospho-regulation
within this pathway is complex, andmany aspects remain to be elu-
cidated. The currentmodel for the TORC1-Sit4-Npr1 pathway states
that in the presence of preferred nitrogen sources, the TOR complex
1 (TORC1) is activatedby thePib2andGtrproteins and theSit4phos-
phatase is bound to Tap42, forming a complex, which impedes Sit4
from dephosphorylating Npr1 [31]. Therefore, Npr1 is found in its
hyperphosphorylated state and presumed to be largely inactive.
Under these conditions, the ammonium transport through Mep1
andMep3 is inhibited by Par32 (Amu1), which is found dephospho-
rylated [32]. Contrastingly, under nitrogen limiting conditions or
upon cells exposure to rapamycin, TORC1 is inactive, leading to
the Ptc1- Tip41-mediated activation of Sit4 by dissociation from
Tap42, effectively reducing the phosphorylation levels of Npr1 and
rendering it active [21,33]. Activation of Npr1 results in the phos-
phorylation of a-arrestins (selective protein trafficking adaptors),
such as Bul1/Bul2, Art1 and Aly2, causing their association with
14–3-3 proteins (in the case of Bul1/Bul2) or inhibiting the recruit-
ment of the Rsp5 ubiquitin ligase (in the case of Art1), thereby
impairing their endocytic function, and in turn leading to the stabi-
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lizationof plasmamembrane amino acid permeases (AAPs) [34–38].
Under these conditions, Npr1 further enhances the stabilization of
the general AAP Gap1 through direct phosphorylation of the pro-
teins Orm1 and Orm2 (mediators of sphingolipid homeostasis),
which in turn promote the de novo synthesis of complex sphin-
golipids [39–41]. Npr1 also inactivates Par32 through phosphoryla-
tion, keeping the ammonium transporters Mep1 and Mep3 active,
and directly phosphorylates the transporter Mep2, thereby leading
to its activation [32,42]. The inhibition of Par32 activity leads to
increased intracellular ammonium levels preventing the reactiva-
tion of TORC1 [43].

The activity of Npr1 is regulated through phosphorylation in a
complex manner [22]. Npr1 phosphorylation occurs in different
degrees depending on the environmental conditions: in nitrogen
limiting conditions, it is almost completely dephosphorylated; in
rapamycin-induced TORC1 inhibition conditions, it displays inter-
mediate phosphorylation; and in nitrogen-rich conditions, it is
hyperphosphorylated by TORC1 [21,37]. Npr1 is also described to
be autophosphorylated (at the residues Ser47, Ser257, and
Ser357). However, this autophosphorylation seems to occur inde-
pendently of thequality of the nitrogen source andhasno regulatory
effect [22,44]. Expansionof the aforementionedmodel extendsNpr1
and Sit4 regulatory activities upon some targets (such as a-
arrestins) even in conditions where TORC1 is active (where both
Sit4 and Npr1 are presumably inactive) [37]. Npr1 and Sit4 presum-
ablywork as counterbalancing effectors of their targets’ phosphory-
lation levels, while Sit4 negatively regulates the activity of Npr1.
This observation is derived from the demonstrated ability of Npr1
to mediate the phosphorylation of selective targets (Mep2, Aly2)
despite being in a hyperphosphorylated state in cells not expressing
the Sit4 phosphatase [37,42]. While Npr1 is mainly inactive during
TORC1 activation, Sit4 may dephosphorylate select a-arrestins,
thereby stabilising specific AAPs at the plasma membrane and
inducing the endocytosis of general AAPs. Furthermore, Npr1 can
reduce TORC1 activity [45]. This negative regulation was recently
found to be through the Npr1-mediated phosphorylation of Pib2
upon non-preferred nitrogen source supplementation, and even
possibly under conditions where Npr1 activation is intermediate,
creating a regulatory feedback loop [31,46].

The Npr1 kinase was also implicated in the transition to fila-
mentous growth and suggested to have a role in the pheromone-
response pathway in S. cerevisiae [47,48]. Contrarily to its par-
alogue PRR2 (see Section 2.2), both overexpression and gene dele-
tion of NPR1 result in the exhibition of a filamentous growth
phenotype [49–52]. The requirement of Npr1 for filamentous
growth was shown to be exerted through the control of the ammo-

https://www.ncbi.nlm.nih.gov/


Table 1
Summary of NPR/Hal kinases deletion mutants phenotypes. Information collected from genetic screens based on S. cerevisiae deletion mutant cells for each of the NPR/Hal kinases exposed to diverse compounds and conditions. S is used
when the deletion mutant strain displays sensitivity to the respective compound/condition compared to the parental strain, while R is used for resistance. Non-detected (ND) or non-tested (NT) phenotypes are also indicated.

Type of stress/drug or cellular
component/process affected

Compound/Condition Kinase

HAL5 HRK1 KKQ8 NPR1 PRR2 PTK1 PTK2 RTK1 SAT4

Actin Latrunculin S [60] ND S [60] S [60] ND ND ND S [60] S [60]
Wiskostatin S [60] S [60] ND S [60] ND ND S [60] S [60] S [60]

Alcohol stress Ethanol ND ND ND ND ND ND S [152,153] ND ND
Alkaline pH pH 8.0 S [59,91] ND ND ND ND ND S [59,90,91] ND ND
Anti-bacterial Acriflavinium

Hydrochloride
ND ND ND ND S [60] S [60] ND ND ND

Anti-fungal NaD1 ND ND ND ND ND ND R [154] R [154] ND
Thiabendazole ND ND ND S [60] ND ND ND ND S [60]

Anti-metabolite 5-Fluorouracil S [60] ND ND ND S [60] S [60] S [60] ND S [60]
Methotrexate S [60] ND S [60] ND S [60] ND ND ND S [60]

Anti-neoplastic 1,3-Diallylurea ND S [60] S [60] ND S [60] ND ND ND ND
Actinomycin d ND ND ND S [59] ND ND ND ND ND
Amsacrine S [60] ND ND S [60] ND ND ND ND S [60]
Indirubin ND ND ND ND ND ND S [60] ND ND
Methoxsalen ND ND S [60] ND ND ND ND ND ND

Anti-oxidant Allyl disulfide ND ND ND S [60] ND ND ND S [60] ND
Allyl sulfide ND ND ND ND ND ND ND S [60] ND
Potassium disulfite ND ND ND ND ND ND ND S [60] ND

Calcineurin function FK506 ND ND ND R [20] ND ND ND ND S [60]
Cell cycle progression

inhibition
Zymocin ND S [83] ND ND ND ND R [83] ND ND

Cell wall Calcofluor white S [155] ND ND ND ND ND ND ND ND
Chloroquine ND ND ND ND ND ND ND ND S [156]
HM-I (kiler toxin) NT ND NT NT ND NT S [157] ND ND
K28 (killer toxin) NT ND NT NT ND NT S [157] ND ND
KI (killer toxin) NT ND NT NT ND NT S [157] ND ND
Papulacandin NT ND NT NT ND NT R [157] ND ND

DNA damaging Bleomycin S [60] R [158] ND S [60] ND ND R [87] ND S [60]
Carboplatin S [60] ND ND ND ND ND ND ND ND
Chlorambucil ND ND ND S [60] ND ND ND ND S [60]
Cisplatin S [60] ND ND S [60] ND S [60] ND ND S [60]
Doxorubicin S [59,159] ND ND ND ND ND ND ND ND
Hydroxyurea ND ND S [60] S [60] ND ND ND S [60] S [60]
Melphalan S [60] ND ND ND ND ND ND ND S [60]
Mechlorethamine S [60] S [60] ND ND S [60] ND ND ND S [60]
Mitomycin c ND S [60] ND ND ND ND ND ND ND
MMS S [160] S [60] ND ND ND ND ND ND ND
Oxaliplatin S [59,60] ND ND ND ND ND S [60] ND S [60]
Streptozotocin ND ND ND ND ND ND S [60] ND ND

Endoplasmatic reticulum Dithiothreitol ND S [161] R [161] ND ND ND ND R [161] ND
Fatty acid elongation Cerulenin ND ND ND ND ND ND ND S [162] ND
Ionophore Calcium ionophore ND ND ND ND S [162] ND ND ND ND

Nigericin ND ND ND ND ND S [162] ND ND ND
Valinomycin ND ND ND S [162] ND S [162] ND ND ND

Lipid modifying Lovastatin S [60] S [60] ND S [60] ND ND ND S [60] S [60]
Membrane biogenesis/

integrity
Amphotericin b ND ND ND S [60] ND ND S [60,162] ND S [60]
Clotrimazole S [60] ND S [60] ND ND ND ND ND S [60]
Miconazole S [60] ND ND ND R [163] ND S [60] ND S [60]
Nystatin ND S [60] S [60] S [60] ND ND ND ND S [60]

Microtubules Benomyl ND ND ND S [162] ND ND ND S [60] ND
Nocodazole S [60] ND ND ND ND ND S [60] ND ND

(continued on next page)
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Table 1 (continued)

Type of stress/drug or cellular
component/process affected

Compound/Condition Kinase

HAL5 HRK1 KKQ8 NPR1 PRR2 PTK1 PTK2 RTK1 SAT4

Multiple stresses Desiccation ND ND ND ND ND ND S [164] ND ND
Synthetic must S [165] ND ND R [165] ND ND ND ND ND
WSH inhibitory
compounds

ND S [166] ND ND ND ND S [166] ND ND

Nutrient limitation Zinc deficiency ND ND ND S [167] ND ND R [167] ND S [167]
Oxidative stress Berberine chloride S [60] ND ND ND ND ND ND ND S [60]

Cadmium chloride ND S [60] ND ND S [60] ND S [60] S [60] ND
Cobalt chloride S [60] ND ND ND ND ND ND S [60] S [60]
Cobalt sulfate R [168] ND ND ND ND ND ND ND R [168]
Copper sulfate S [60,168] ND ND S [60] ND ND ND ND S [60,168]
Diamide S [168] S [161] R [161] ND ND S [169]/

R [161]
ND ND S [168]

Ferric sulfate S [168] ND ND ND ND ND ND ND S [168]
Ferrous sulfate R [168] ND ND ND ND ND ND ND R [168]
Hydrogen peroxide S [160]/

R [168]
S [60] ND ND ND ND S [170,60] S [60] R [168]

Linoleic acid
13-hydroperoxide

S [169] ND ND ND ND ND ND ND S [169]

Menadione ND ND ND S [169] ND S [169] ND ND ND
Mpp+ S [60] ND ND ND ND ND ND ND S [60]
Nickel sulfate S [168] ND ND ND ND ND ND ND ND
Nitric oxide S [60] ND ND ND S [60] ND ND ND S [60]
Paraquat S [60,161] ND R [161] R [161] ND R [161] R [87,161] ND S [60,161]
Potassium dichromate S [60] ND ND ND ND ND ND S [60] S [60]
Sodium arsenite ND S [60] ND S [60] ND ND ND S [60] ND
Sodium fluoride ND S [60] ND ND ND S [60] S [60] S [60] ND
Zinc sulfate S [168] ND ND ND ND ND ND ND S [168]

Phosphatase inhibitor Calyculin A ND ND ND ND ND ND ND S [60] ND
Cantharidin S [60] ND ND ND ND ND S [60] ND S [60]
Norcantharidin ND ND ND ND ND S [60] S [60] ND S [60]
Ptp2 S [60] ND ND S [60] ND ND S [60] S [60] S [60]

Phosphatidylinositol kinase
signaling

Wortmannin ND S [162] ND ND ND ND ND ND ND

PKC inhibitor Staurosporine ND ND ND S [60] ND ND ND ND ND
Pol II inhibitor (Chelator) Phenantroline ND ND ND ND ND ND ND S [162] ND
Proteasome Aclacinomycin a ND ND ND ND ND ND ND ND S [60]

Canavanine ND ND ND R [171] ND ND ND ND ND
Protracted fermentation High-sugar medium ND S [172] ND ND ND ND S [172] ND ND
Ribosome function Neomycin sulfate S [162] S [162] ND ND ND ND ND ND S [162]
Sphigolipid biosynthesis Myriocin ND ND ND ND ND ND S [60] ND ND
TOR signaling Dieldrin ND R [173] ND S [173] ND ND S [173] ND S [173]

Rapamycin S [60] S [60] ND R [174,20] ND ND ND ND S [60]
Toxic cation Aluminium R [168] ND ND ND ND ND R [81] ND R [168]

Calcium chloride S [168] ND ND ND ND ND S [157] ND ND
Dysprosium R [175] S [175] ND ND ND ND ND ND ND
Erbium ND S [175] ND ND ND ND ND ND ND
Europium R [175] S [175] R [175] ND R [175] S [175] R [175] ND R [175]
Gadolinium ND S [175] ND ND ND ND ND ND ND
Hygromycin B S [15,59,60,

155,82,162]
R [15,82,83] ND ND ND ND R [15,14,

82–84]
R [15,82] S [15,59,

60,82,162]
Holmium R [175] ND ND R [175] ND ND ND ND ND
Lithium chloride S [60,82] R [82] ND S [60] S [60] ND R [85,14,

86,82,84]
S [60]/
R [82]

S [60,82]
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nium transporter Mep2 activity [47,53]. In cells lacking NPR1,
Mep2 localizes to the plasma membrane and is properly
expressed; however, it is not able to transport ammonium [47].
Mep2 is an ammonium sensor essential for filamentous growth
in conditions of low extracellular ammonium and independent of
the available nitrogen source quality [47,54,55]. In the mating
pheromone response case, Npr1 was shown to be dephosphory-
lated after pheromone treatment, or upon the deletion of SAP155
(encoding a protein that forms a complex with the Sit4 phos-
phatase) [48]. In addition, Par32, also belonging to the TORC1-
Sit4-Npr1 pathway, displays increased phosphorylation levels in
this condition [48]. The TORC1-Sit4-Npr1 pathway is also linked
to the regulation of intracellular potassium levels (see Section 2.5).
Npr1 was shown to have low activity (is hyperphosphorylated) in
potassium-limiting conditions or in hal4Dhal5D mutant cells while
acting as a multicopy suppressor of the hal4Dhal5D phenotypes
[56]. Inhibition of the Npr1 activity increases a-arrestins-
mediated endocytosis of nutrient transporters in hal4Dhal5D cells
[56]. Moreover, the TORC1-responsive transcription factor Gln3,
presumably regulated by Npr1, was reported to localize in the
cytoplasm (thereby being inactive) in hal4Dhal5D cells, whose
intracellular potassium levels are low (favoring TORC1 activation
and Npr1 inactivation) [57,58]. The regulation of the osmotic stress
response is another process in which Npr1 is presumably involved
through phosphorylation of Rho5, which is consistent with the salt
stress sensitivity of npr1D deletion mutant cells (Table 1) [44,59–
61]. Rho5 is a Rho-type GTPase implicated in the cell wall integrity
signaling pathway and response to oxidative stress, which inter-
acts with Ste50 leading to the activation of the osmotic stress-
responsive HOG MAPK pathway [44].

In the fungal pathogen Candida albicans, the transition from bud-
ding yeast morphology to filamentous growth is also induced in
response to the low availability of nitrogen sources. C. albicans
Npr1 (CaNpr1 (orf19.6232)) inactivation confers resistance to rapa-
mycin, suggesting that this kinase activity, identically to S. cerevisiae,
is controlled by TOR [62]. C. albicans has two ammoniumpermeases,
CaMep1 and CaMep2. Similarly to S. cerevisiae, CaMep2, but not
CaMep1, is required for filamentous growth induction [62,63]. The
dependency on Npr1 of the ammonium permeases in C. albicans dif-
fers from S. cerevisiae. In S. cerevisiae, neither ammoniumpermeases
(Mep1-3) can support growth in the absence of Npr1, whereas in C.
albicans only CaMep2 transport activity appears to be significantly
impaired in the absence of CaNpr1. Curiously, the dependence of
CaMep2 on CaNpr1 is abolished when the cultivation temperature
is increased to 37 �C, indicating that such temperature increase
alone can induce a conformational change in CaMep2 permissive
for transport [53,62]. In the nitrate-assimilatory yeast Hansenula
polymorpha, the sole nitrate transporter Ynt1 activity is controlled
by phosphorylation in an Npr1-dependent manner in conditions of
nitrogen limitation [64]. Ynt1 phosphorylation mediated by the H.
polymorpha Npr1 (HpNpr1) prevents its sorting to the vacuole.
HpNPR1 disruption, identically to S. cerevisiae, leads to reduced
growth in ammoniummedium [64].

2.2. PRR2 (YDL214C), an inhibitor of the pheromone-response
pathway

The Prr2 (Pheromone Response Regulator 2) kinase was first
identified as an inhibitor of pheromone-induced signaling in the
S. cerevisiae mating pathway [65,66]. Overexpression of the PRR2
kinase was shown to inhibit pheromone-dependent transcriptional
induction [65]. Several mitogen-activated protein kinase (MAPK)
signal transduction pathways have been characterized in S. cere-
visiae [67]. The best described MAPK pathway modulates the mat-
ing of haploid cells. In haploid S. cerevisiae cells mating is induced
by pheromone sensing, resulting in the fusion of two cells of



Fig. 2. Npr1 and Prr2 roles in the pheromone-response and filamentous growth
pathways. Model depicting the functional integration of Prr2 and Npr1 into the
pheromone-response and filamentous growth signaling pathways. Transcriptional
and post-translational regulations are indicated by activating (green) or inhibitory
(red) arrows. Kinases are highlighted in pink and transcription factors in blue. P
designates phosphorylation. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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opposite mating types (reviewed in [68]). Most elements of the
mating pheromone response are also required for filamentous
growth, which is observed when S. cerevisiae cells grow on a semi-
solid medium with limited nutrients. In haploid cells, this filamen-
tous growth is often termed invasive growth, whereas, in diploids,
it is termed pseudohyphal growth and is induced by the lack of a
fermentable carbon source or by nitrogen limitation conditions
[69]. The functional mechanism of Prr2 was inferred using a Prr2
kinase-inactive version (Prr2-KD) by demonstrating that Prr2-KD
still led to signaling inhibition but in a less potent way than in
its wild-type counterpart [65]. This observation suggested that
Prr2 may act through two different mechanisms: enhanced phos-
phorylation (inhibition of a pathway element through phosphory-
lation) and competitive binding (binding to the regulatory subunit
of a substrate protein, effectively reducing its phosphorylation and
activity) [65]. Moreover, Prr2 was suggested to be a downstream
effector of the Fus3 pheromone module (MAPK pathway), respon-
sible for regulation of cell–cell fusion in response to pheromone
signaling [65]. This conclusion was based on the inability of the
PRR2 overexpression or Prr2-KD to affect the pheromone-induced
feedback phosphorylation of Ste7 [65]. Overexpression of PRR2
inhibits transcriptional induction resultant from STE12 overexpres-
sion, suggesting that Prr2 might act in conjunction with Ste12
through direct or indirect modulation of its activity [65]. Ste12
was shown to directly bind PRR2’s promotor in S. cerevisiae cells
grown in synthetic low-ammonium dextrose (SLAD) medium
(filamentous growth-inducing) [70]. The exact mechanism of
action, as well as Prr2 targets and upstream regulators, remain elu-
sive. Like PRR2, its paralogue NPR1 (see Section 2.1) has also been
implicated in the filamentous growth pathway [49–51,71,72].
PRR2 and NPR1 were identified as targets of the transcription fac-
tors Sut1, Sut2, Upc2, and Ecm22 [66,71,73]. The zinc cluster tran-
scription factors Sut1, Sut2, Upc2 and Ecm22, initially implicated in
the regulation of sterol uptake under anaerobic conditions, have
key regulatory roles in filamentation and mating (reviewed in
[74]). Briefly, in filamentous growth conditions, Ecm22 and Upc2
are both inducers, whereas Sut1 and Sut2 are inhibitors by par-
tially repressing their targets in nutrient-replete conditions
[71,73]. In nutrient-limiting conditions, Ste12 becomes active and
consequently downregulates the expression of Sut1 and Sut2,
resulting in the induction of Sut1/Sut2 targets, including UPC2,
which in turn upregulates its targets [71]. In mating, Sut1 and
Sut2 are positive regulators through inhibition of the expression
of their targets, such as PRR2 [66]. Ecm22 and Upc2 also seem to
play a role in mating regulation through a mechanism independent
of PRR2 expression modulation [72]. Based on the gathered infor-
mation, a model integrating Prr2 and Npr1 in the pheromone-
response and filamentous growth signaling pathways was assem-
bled and is depicted in Fig. 2.

Despite being an inhibitor of the pheromone-induced signaling
pathway and playing a role in filamentation, the deletion of PRR2
does not originate any phenotype in either condition; only PRR2
overexpression does [65,71]. One of the possibilities is that the
presence of NPR1, which displays similar expression patterns and
overlapping functions with PRR2 in the transition to filamentous
growth, can compensate for the loss of PRR2 [71,75]. Another pos-
sibility would be regulation by Prr2 of both the positive and nega-
tive components from the mating or filamentous growth signaling
pathways [65].

2.3. PTK1 (YKL198C) and PTK2 (YJR059W) are regulators of polyamine
uptake

The paralogues PTK1 and PTK2 were first identified through
genetic screens as positive regulators of membrane polyamine
transport in S. cerevisiae [76,77]. Polyamines (putrescine, sper-
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midine and spermine) are polycations that interact with negatively
charged molecules such as DNA, RNA and proteins. They are essen-
tial for maintaining cell growth, survival and macromolecular
biosynthesis in yeasts [78]. In S. cerevisiae, the intracellular levels
of polyamines are strictly regulated; low levels are insufficient to
maintain cell growth, while high levels are cytotoxic [79]. The reg-
ulation of polyamine levels is exerted through biosynthesis, degra-
dation and transport. In S.cerevisiae, the polyamine transport
system comprises five genes, TPO1-5, encoding polyamine excre-
tion proteins and five genes, GAP1, AGP2, UGA4, DUR3, and SAM3,
encoding polyamine uptake proteins [80]. Ptk2 is described as a
regulator of polyamines’ uptake through phosphorylation of the
polyamine transporter Dur3 [80]. Moreover, abrogation of PTK2
expression leads to increased tolerance of the cells to toxic cations,
such as lithium, sodium, manganese, aluminium, and Hygromycin
B, in addition to polyamines (Table 1) [14,15,81–87]. Contrarily to
PTK2, which is a crucial determinant of high-affinity polyamine
uptake, PTK1 is expressed at shallow levels, and only appears to
affect low-affinity, low-capacity polyamine uptake [86]. It was sug-
gested that the minor effects observed resulting from PTK1 dele-
tion on polyamine uptake might be masked by the activity of
Ptk2 [86]. Indeed, there may be regulatory interplays between both
encoding genes since the transcript levels of PTK1 increased upon
PTK2 disruption [86]. Nevertheless, PTK1 remains largely unex-
plored and uncharacterized.

The uptake of polyamines and several cations in S. cerevisiae is
energy-dependent. The transmembrane proton gradient generated
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at the plasma membrane by the proton plasma membrane ATPase
(H+-ATPase) Pma1 is essential for secondary transport of nutrients,
regulation of intracellular pH, and uptake and extrusion of differ-
ent ions, such as polyamines and toxic cations [88]. The activity
of Pma1 is highly affected by PTK2 expression; overexpression of
PTK2 significantly increases glucose-induced Pma1 activity,
whereas its deletion significantly decreases Pma1 activity
[14,84,85]. The modulation of Pma1 activity through Ptk2 indicates
that polyamine and ion transport is affected by alterations in the
plasma membrane electrochemical potential [85]. Ptk2 was shown
to be localized at the plasma membrane and regulate Pma1 activity
during glucose activation through phosphorylation of Pma1-
Ser899, which causes a decrease in the H+-ATPase Km (or, in other
words, an increase in affinity for ATP) [89]. This observation is
based on the phenotype displayed by the PTK2 deletion mutant
strain (defective in H+-ATPase activation through glucose-
dependent Km decrease) and in vitro and in vivo phosphorylation
assays [14,82,89]. Altogether, Ptk2 appears to be involved in both
direct (through Dun3) and indirect (through Pma1) regulation of
polyamine transport.

In line with the aforementioned roles, Ptk2 has also been impli-
cated in the adaptation to alkaline stress conditions, which are
known to affect plasma membrane proton gradient [90]. Deletion
of PTK2 leads to high sensitivity towards alkaline conditions (pH
8.0) (Table 1) [59,60,91]. Adaptation and resistance to alkaline
stress depend on Pma1 as a major regulator of plasma membrane
potential and intracellular pH [90]. Alkaline stress induces the
expression of PTK2 [92], which is directly controlled by the tran-
scription factor Pho4, responsible for the activation of the PHO
genes in response to inorganic phosphate (Pi) starvation [90,93].

In the pathogenic yeast C. albicans, Ptk2 was described as a
potential target of CaSky2 [94]. CaSky2 and CaSky1 are protein
kinases homologous to the S. cerevisiae kinase Sky1, which is an
essential factor in the regulation of polyamine transport, in addi-
tion to Ptk2, and a regulator of the Trk1/Trk2 potassium transport
system [85,95]. CaSky1 presumably functions similarly to Sky1
since its deletion results in resistance to salt stress and toxic poly-
amine concentrations [94]. On the other hand, CaSky2 is function-
ally different from CaSky1, being described as playing a role in
dipeptide utilization [94].

2.4. HRK1 (YOR267C), a determinant of tolerance to short-chain weak
acids-induced stress

Hrk1 is a 759-residue polypeptide whose first biological role
attributed was the activation of S. cerevisiae yeast plasma mem-
brane H+-ATPase (Pma1); however, this Hrk1-mediated activation
occurs at a much lesser extent than the Ptk2-mediated activation
(see Section 2.3) [14,84]. Phosphoproteomic analyses, including
the Hrk1 kinase, indicate that it primarily regulates plasma mem-
brane transporter proteins and proteins implicated in carbohydrate
metabolism [75,96]. One of the most remarkable phenotypes asso-
ciated with the HRK1 gene is the conferred tolerance in S. cerevisiae
to short-chain weak acids, such as acetic acid and formic acid; its
deletion results in hypersensitivity to acetic acid or formic acid
stress (Table 1) [97,98]. Moreover, HRK1 expression is activated
in yeast cells exposed to acetic acid stress [99].

Acetic acid is an important inhibitory compound present in lig-
nocellulosic hydrolysates used as feedstock in advanced biorefiner-
ies and a byproduct of alcoholic fermentation. It is also a widely
used preservative in foods and beverages. Knowledge of the mech-
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anisms underlying yeast tolerance to this weak acid is therefore
important to guide the development of robust industrial strains
or preservation practices in the Food Industry (reviewed by
[100]). In response to acetic acid stress, HRK1 transcription is reg-
ulated by the transcription factor Haa1, the main player controlling
the expression levels of 80% of the genes involved in the acetic acid
response in S. cerevisiae [99]. The regulation of HRK1 expression by
Haa1 is yet to be demonstrated to be direct or indirect; however,
based on the reported Haa1 binding motif (Haa1-responsive ele-
ment (HRE)) [101], and making use of the YEASTRACT database
[102], three HREs are found at the HRK1 promoter.

The effect of HRK1 expression in S. cerevisiae plasma membrane
phosphoproteome profile was investigated during the early
response of yeast cells suddenly exposed to acetic acid stress
[96]. Hrk1 was shown to mediate the phosphorylation levels of
40% of membrane-associated acetic acid-responsive proteins [96].
One important mechanism of tolerance to weak acids is the remod-
elling of the cell wall, and plasma membrane [103–106]. Increasing
the synthesis of sphingolipids has been proposed to enhance the
tolerance to acetic acid in S. cerevisiae based on the observed
increase in sphingolipids in this yeast species upon acetic acid
stress [107]. In conditions of sphingolipid synthesis inhibition
(30 min or 90 min exposure to myriocin), Hrk1 has significantly
altered phosphorylation levels [108], suggesting a possible role of
this kinase in sphingolipid regulatory mechanisms, even though
no significant changes in the levels of sphingolipids could be
observed in hrk1D mutant cells either in the absence or presence
of acetic acid stress [96]. The lipid composition of hrk1D deletion
mutant cells displayed increased levels of dihydroceramide in the
absence or presence of acetic acid stress when compared to the
parental strain and significantly decreased levels of phosphatidyli-
nositol and phosphatidylcholine in hrk1D deletion mutant cells
exposed to acetic acid stress [96]. Furthermore, the TORC2-
mediated phosphorylation of Ypk1 and Ypk2 and Ypk1-mediated
Orm1 were not perturbed in hrk1D mutant cells under acetic acid
stress; indicating that Hrk1 is likely, not involved in the activation
of TOR complex 2 (TORC2) or Ypk1 from the sphingolipid biosyn-
thetic pathway under acetic acid stress conditions [103]. The
expression levels of HRK1 were also reported to increase signifi-
cantly upon exposure to high temperatures [109,110]. In fact,
Hsf1, a transcription factor described as the master regulator of
heat shock response, binds to the HRK1 promoter of yeast cells
under basal conditions (30 �C) [111], following acute heat shock
(30 �C to 39 �C for 5 min or 20 min) [111–113], or when chronically
exposed to thermal stress (30 �C to 39 �C for 120 min) [112].

Curiously, HRK1 contains a microsatellite locus that is com-
monly used for the estimation of levels of genetic variability within
populations due to its high degree of polymorphism; YOR267C
contains a poly CAA (encoding Gln) motif of variable length
[114]. This motif is located outside the protein kinase domain in
the region between residues 634 and 647 and is hypervariable
among S. cerevisiae strains (additional information about
microsatellites can be found in [115]).

In non-Saccharomyces yeasts, HRK1 was also described as a
determinant of tolerance to weak acid stress. In Zygosaccharomyces
bailii/parabailii, two remarkably acetic acid-tolerant yeast species,
the homologous HRK1 gene – ZbHRK1 (ZBIST_0481) – displays sig-
nificantly lower mRNA levels in cells not expressing the ZbHAA1
(ZBIST_2620) transcription factor [116]. ZbHaa1 is a functional
homologue of ScHaa1 and is required for adaptive response and
tolerance to both acetic acid and copper stresses [116,117] (re-



M. Antunes and I. Sá-Correia Computational and Structural Biotechnology Journal 20 (2022) 5698–5712
viewed by [100,118]). Unlike ZbHaa1, in S. cerevisiae ScHaa1 is not
bifunctional and only controls the adaptive response to acetic acid,
whereas the response to elevated copper concentrations is exerted
through the transcription factor ScCup2 [116].

In the methylotrophic yeast species Komagataella phaffii (for-
merly Pichia pastoris), the HRK1 orthologue PpHRK1
(PAS_chr3_1091) was identified in a screening for kinases confer-
ring resistance to acetic acid using a K. phaffii kinase deletion
library [119]. Deletion of PpHRK1 resulted in impairment of the cell
growth upon exposure to acetic acid. On the other hand, its over-
expression resulted in an improved acetate metabolism, a produc-
tivity improvement compared to the parental strain of 55% of
acetyl-CoA-dependent 6-methylsalicylic acid (6-MSA) in a yeast
culture with 30 mM acetate [119]. However, PpHRK1 did not seem
to be involved in the activation of PpPma1, and the molecular
mechanism of Hrk1-mediated signal transduction in K. phaffii
remains unclear [119].

In the pathogenic yeast C. albicans, deletion of CaHRK1
(orf19.5408) results in increased resistance to LiCl and spermine,
suggesting it might be a potential target of CaSky1 (see Section 2.3)
[94]. A transcriptomic analysis study of the pathogenic yeast Can-
dida glabrata during the early response to acetic acid stress
revealed that the orthologue of HRK1 in C. glabrata, CgHrk1
(CAGL0C02893g), displayed increased expression levels upon expo-
sure to acetic acid stress [120]. Furthermore, a decrease of more
than 50% of its expression levels was observed in Cghaa1D cells
under acetic acid stress compared to the parental strain, suggesting
that CgHRK1 activity is also modulated by the transcription factor
CgHaa1 (CAGL0L09339g) [120]. This transcription factor is an
essential determinant of C. glabrata tolerance and response to
acetic acid stress, and an orthologue of S. cerevisiae Haa1 transcrip-
tion factor [120].

HRK1 and HAL4 (see Section 2.5) were identified as genetic
determinants of lipid accumulation in the oleaginous yeast Rhodo-
torula toruloides through fitness analysis of deletion mutants [121].
This yeast species can produce lipids and carotenoids from diverse
carbon sources, including xylose, and displays relatively high toler-
ance to inhibitory compounds present in lignocellulosic hydroly-
sates, making it an attractive host for the production of
biotechnological relevant compounds [122].

2.5. HAL5 (YJL165C) and HAL4 (YCR008W) stabilize several cation and
nutrient plasma membrane transporters

The partially redundant kinases Hal5 and Hal4 (alias Sat4) were
first identified through a genetic screen to confer tolerance to inhi-
bitory concentrations of NaCl and LiCl upon overexpression, but
not to osmotic stress in media with high concentrations of KCl or
sorbitol [123]. Deletion of either HAL5 or HAL4 leads to salt sensi-
tivity (Table 1), which is enhanced in the hal4Dhal5D double
mutant [82,123]. These kinases were therefore described as key
determinants of ion homeostasis and salt tolerance. S. cerevisiae
makes use of complex homeostatic pathways for the modulation
of cellular ion homeostasis, which are essential to ensure the cor-
rect function of several cellular systems. In yeast, potassium (K+)
is the major intracellular cation, retained intracellularly at high
concentrations. In contrast, the intracellular accumulation of other
monovalent cations such as sodium (Na+) or lithium (Li+) must be
kept low due to their toxicity [123]. Potassium is required for
essential physiological functions, including the regulation of cell
volume and maintenance of plasma membrane electrochemical
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potential and intracellular pH [124]. At the yeast plasma mem-
brane, the alkali metal cation transport systems comprise the
potassium uptake transporters Trk1 and Trk2, the potassium chan-
nel Tok1, the K+-Na+/H+ antiporter Nha1, and the Ena Na+-ATPases
efflux systems [125]. The tolerance mechanism of Hal4 and Hal5 to
salt stress results from the modulation of cation uptake through
the Trk1 and Trk2 potassium transporters and independently from
the Ena Na+-ATPases activity [123]. The regulation exerted by Hal5
and Hal4 is a result of the stabilization of Trk1 at the plasma mem-
brane: the double mutant strain hal4Dhal5D displays a rapid degra-
dation of the Trk1 transporter in limiting potassium conditions,
and overexpression of HAL5 leads to Trk1 accumulation at the
plasma membrane [126,127]. Overexpression of HAL5 was also
described to suppress lithium-sensitive mutations of genes
involved in sporulation and meiosis, in the biosynthesis of ergos-
terol, in the Rho1 signaling to the actin cytoskeleton, and in the
Hal3/Ppz1/Calcineurin pathway [128]. The transcription regulation
of HAL5 gene expression, and consequently the control of Trk1
activity in the cell, was shown to be induced in response to salt
stress and alkaline pH conditions in a calcineurin/Crz1-
dependent manner [124,129,130]. Moreover, HAL4 (IPF11548)
expression was also found to be activated by calcium in a
calcineurin/Crz1-dependent manner in the pathogenic yeast C.
albicans [131]. Calcineurin is a Ca2+/calmodulin-dependent phos-
phatase that modulates the activity of the transcription factor
Crz1 and is activated under specific conditions, including exposure
to high concentrations of Ca2+ or Na+, high temperatures or pro-
longed incubation with a-factor [129]. Furthermore, both Hal4
and Hal5 are determinants of susceptibility to formic acid (Table 1),
possibly acting through the stabilization of the Trk1 transporter
[98].

Besides Trk1, Hal4 and Hal5 are also presumably responsible for
the stabilization of different nutrient transporters at the plasma
membrane (some of them regulated by the ART-Rsp5 pathway),
such as amino acid permeases (Can1, Fur4, Mup1, and Gap1), and
glucose permeases (Hxt1), some of them dependent on the intra-
cellular potassium levels [13,126], but the underlying molecular
mechanism remains unclear. In fact, the hal4Dhal5D mutant dis-
plays a constitutive activation of the GCN pathway and decreased
uptake of amino acids, and glucose [127]. This double mutant also
has an altered metabolic state toward respiration [127]. Interest-
ingly, a small fraction of the Hal4 protein was described to localize
to the mitochondria, while Hal4 protein is mainly cytosolic [132–
134]. Although deletion of HAL4 does not significantly affect mito-
chondrial functions or mitochondrial proteome, its overexpression
does lead to impaired growth on non-fermentable carbon sources
and significant changes in the mitochondrial proteome; its regula-
tory role was proposed to involve the regulation of late steps of the
maturation of mitochondrial iron-sulfur cluster proteins [132].
Hal5 was found to be a nutrient-responsive kinase that localizes
to the plasma membrane depending on the availability of specific
nutrients such as amino acids [13]. Excess concentration of certain
amino acids in the media reduces Hal5 localization to the plasma
membrane in a TORC1-independent manner (increasing the Hal5
cytosolic pool), while exposure to stress-inducing salt concentra-
tions has the opposite effect. Furthermore, the N-terminal region
(upstream of the kinase domain) was shown to be essential for
the recruitment of Hal5 to the plasma membrane and regulation
of endocytosis [13]. HAL5 overexpression suppresses the lithium
sensitivity phenotype displayed by S. cerevisiae cells deleted for
genes encoding proteins involved in the vacuolar targeting of
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nutrient-permeases [128,135]. This is consistent with the role
attributed to Hal5 in sorting and stabilization of nutrient trans-
porters at the plasma membrane.
2.6. RTK1 (YDL025C) and KKQ8 (YKL168C) remain largely
uncharacterized

Information concerning the protein kinase Rtk1 is very limited.
Rtk1 may play a role in the peroxisomal biogenesis process since
deletion of RTK1 leads to fewer and enlarged peroxisomes; how-
ever, the derived morphological defects did not affect peroxisome
functionality [136]. Deleting of either RTK1 or PTK2 (see Section 2.3)
results in high-impact consequences in the lipidome of S. cere-
visiae, suggesting a role in lipid homeostasis regulation. Lipid
homeostasis modulation is highly dynamic and represents an
essential mechanism for yeast cell adaptation to environmental
challenges [137].

The protein abundance and phosphorylation levels of Rtk1
were found to be increased in yeast cells exposed to acetic acid
stress [138]. In addition, overexpression of RTK1 led to enhanced
acetic acid tolerance, ethanol productivity, and better fermenta-
tion performance when yeast cells were grown in a medium con-
taining a corn stover hydrolysate-simulated inhibitory mixture
[138]. Curiously, deletion of RTK1 does not cause a phenotype
upon acetic acid stress [97], which likely indicates its activity
is compensated by another kinase (Hog1, Hrk1, and Ptk2 are pos-
sible candidates). Indeed, a yeast two–hybrid assay revealed that
Hog1 – known to play a role in acetic acid stress tolerance
[97,139–141] – interacts with Rtk1 in vivo, suggesting that these
kinases might belong to the same signaling pathway in response
to acetic acid stress [138]. RTK1 overexpressing strain response to
other stresses was also tested: exposure to salt stress (NaCl) did
not significantly affect its growth, whereas growth upon expo-
sure to hydrogen peroxide (H2O2) was significantly improved
compared to the wild-type counterpart [138]. These results are
in agreement with the phenotypes displayed by strains deleted
for RTK1 exposed to oxidative stress or toxic cations (Table 1).
Deletion of RTK1 renders the cell resistant to toxic cations such
as Hygromycin B, spermine, tetramethylammonium, lithium
chloride, and sodium chloride and sensitive to oxidative stress-
inducing compounds such as H2O2, potassium dichromate,
cadmium chloride, sodium fluoride, and sodium arsenate.
[15,60,82,142]. Moreover, RTK1 expression is significantly
increased in cells exposed to a combination of citrinin and ochra-
toxin A and in response to selenide stress, which mainly trigger a
response to oxidative stress [143,144]. Yap1, a transcription fac-
tor essential for oxidative stress response and tolerance, was also
described to bind the RTK1 gene promoter in vivo [144]. Alto-
gether, this data suggests involvement of Rtk1 in the yeast cell
response to oxidative stress.

The Kkq8 kinase is the most uncharacterized kinase from the
NPR/Hal family. Phylogenetically, it is the closest kinase to Hal5;
however, it does not seem to function in a similar manner. Contrar-
ily to HAL5, overexpression of KKQ8 does not confer salt tolerance
[123]. Deletion of KKQ8 was described to render S. cerevisiae cells
sensitive to anti-fungals such as clotrimazole and nystatin (Table 1)
[60]. Additionally, the absence of KKQ8 suppresses the plasma
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membrane localization of the drug efflux transporters Pdr5 and
Yor1, which are under the control of the transcription factors
Pdr1/3, in cells treated with the anti-fungal and PDR substrate
atorvastatin [145].
3. Concluding remarks

This review article compiles the currently available information
on the NPR/Hal kinases, including their integration into signaling
pathways responsive to environmental changes. It also makes
use of data obtained by high-throughput analyses, whose main
goal was not to examine specifically those kinases. Although a sig-
nificant amount of information was put together, much remains to
be uncovered and explored. The study of protein kinases is not
straightforward. Most of the experimental evidence regarding their
regulation targets is provident from genome-wide analyses, such
as phosphoproteomic analysis, in vitro protein chip analysis, and
quantitative genetic interaction mapping. Despite uncovering pos-
sible phosphorylation targets, phosphoproteomic analyses do not
offer information regarding the functional and biological relevance
of the uncovered phosphorylation sites. Furthermore, studies
focused on specific kinases often overlook relevant connections
and crosstalk beyond the different kinases and the involved signal-
ing pathways.

The fungal-specific kinases from the NPR/Hal family have key
roles in regulating nutrient transport and ion homeostasis. These
kinases display several overlapping and complementary functions.
The most prominent examples of function overlap are the kinase
paralogue pairs Npr1/Prr2 and Ptk2/Ptk1. Npr1 and Prr2 both have
roles in the pheromone-response and filamentous growth path-
ways (see Sections 2.1 and 2.2), whereas Ptk1 and Ptk2 regulate
polyamine uptake (see Section 2.3). Additionally, the kinase pair
Hal4 and Hal5, although not paralogues, are partially redundant
in regulating plasma membrane transporters’ stabilization and
potassium homeostasis (see Section 2.5). Hrk1, despite having a
higher similarity to Rtk1, Npr1 and Prr2, appears to function more
similarly to the Ptk2 kinase (see Section 2.4). The remaining
kinases, Rtk1 and Kkq8, remain functionally uncharacterized and
unexplored (see Section 2.6). The majority of NPR/Hal kinases
appear to function in a coordinated manner in regulating plasma
membrane nutrient transporters and ion homeostasis in S. cere-
visiae. As an example, alterations in potassium availability or regu-
lation of its uptake have influence on the modulation mechanisms
of phosphate uptake and metabolism [146,147]. Perturbations in
the potassium uptake lead to the hyperactivation of Pma1 and
affect the phosphate metabolism by triggering a response similar
to phosphate starvation [146]. The activation of PTK2 transcription
by the transcription factor Pho4 (active in phosphate-limiting and
alkaline pH conditions) in these conditions might have a role in the
increased activity levels displayed by Pma1. Furthermore, the
TORC1-Sit4-Npr1 pathway (described in Section 2.1) activity is also
linked with intracellular potassium levels. The observation was
based on the hypersensibility displayed by the hal4Dhal5D and
trk1Dtrk2D mutants to rapamycin and the Trk1/2-independent
decreased potassium accumulation resultant from TORC1 inhibi-
tion [56,148]. A model displaying currently known complex regu-
lation mechanisms of the NPR/Hal kinases is shown in Fig. 3.



Fig. 3. Model of NPR/Hal kinases mechanisms of regulation. Schematic model displaying a simplified version of the known molecular mechanisms and signaling pathways
underlying NPR/Hal kinases regulation of cellular processes in S. cerevisiae. Kinases are represented in orange, phosphatases in gray, a-arrestins in pink, and transcription
factors in red. Regulations are indicated by activating (green) or inhibitory (red), and when relevant proteins are marked as ‘‘Active” or ‘‘Inactive”. P designates
phosphorylation and Ub ubiquitylation. AAP stands for amino acid permease. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Knowledge of the mechanisms of regulation of these kinases,
their phosphorylation targets, and involvement and organization
in signaling pathways in yeast is valuable in understanding the
processes underlying ion homeostasis maintenance and regulation
of intracellular pH and plasma membrane nutrient transporters.
Some applications include the identification of potential targets
for genome manipulation to generate more robust yeast species
for producing high-value metabolites with high tolerance capacity
to stresses occurring during industrial bioprocesses. The character-
istics of the NPR/Hal kinases in pathogenic yeast species also make
them attractive candidates as therapeutic targets. Protein kinases
play essential roles in the regulation of the pathogenicity of Can-
dida species. A recent in silico study identified the protein kinases
Npr1 and Ptk2 as potential drug targets and tools to discover
new lead compounds to fight fungal infections, such as candidiasis
[149]. Npr1 and Ptk2 were selected due to their key roles in the
mechanisms regulating Candida spp. pathogenicity, their fungal
specificity, and lack of human homologues [62,63,149–151]. More
in-depth molecular and cellular studies are fundamental to better
understand the overlooked role of the NPR/Hal kinases in the reg-
ulation of cellular processes in yeasts with impact in biological
knowledge and in biotechnological and clinical applications.
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