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An Evaluation of Active Learning 
Causal Discovery Methods for 
Reverse-Engineering Local Causal 
Pathways of Gene Regulation
Sisi Ma1, Patrick Kemmeren2, Constantin F. Aliferis3 & Alexander Statnikov1

Reverse-engineering of causal pathways that implicate diseases and vital cellular functions is a 
fundamental problem in biomedicine. Discovery of the local causal pathway of a target variable (that 
consists of its direct causes and direct effects) is essential for effective intervention and can facilitate 
accurate diagnosis and prognosis. Recent research has provided several active learning methods that 
can leverage passively observed high-throughput data to draft causal pathways and then refine the 
inferred relations with a limited number of experiments. The current study provides a comprehensive 
evaluation of the performance of active learning methods for local causal pathway discovery in real 
biological data. Specifically, 54 active learning methods/variants from 3 families of algorithms were 
applied for local causal pathways reconstruction of gene regulation for 5 transcription factors in S. 
cerevisiae. Four aspects of the methods’ performance were assessed, including adjacency discovery 
quality, edge orientation accuracy, complete pathway discovery quality, and experimental cost. The 
results of this study show that some methods provide significant performance benefits over others 
and therefore should be routinely used for local causal pathway discovery tasks. This study also 
demonstrates the feasibility of local causal pathway reconstruction in real biological systems with 
significant quality and low experimental cost.

Identifying the molecular pathways underlining vital cellular functions and pathological states is one of the fun-
damental problems in biomedicine. Gene regulatory pathways, governing the production of proteins through 
controlling gene expression, are among the most studied molecular pathways. Under physiological conditions, 
gene regulatory pathways react to the internal and external signaling of the cell, such that correct amounts of 
protein are produced when needed. Functional gene regulatory pathways are critical in promoting normal cell 
growth, differentiation and morphogenesis1–4. Dysfunctional gene regulatory pathways could lead to various 
deadly diseases, including cancer4–6. One of the strategies to study the gene regulatory relations is to focus on 
identification of the local causal pathway of a molecule (or other target variable) of interest, which consists of its 
direct upstream regulators and direct downstream targets. This strategy is appealing for the following reasons:  
(1) The local causal pathway contains valuable mechanistic and actionable information regarding the mole-
cule/variable of interest. The knowledge of direct upstream regulators is essential for understanding the fac-
tors influencing the changes of the molecules/variable of interest and could facilitate the design of interventions 
that are effective and have minimal side-effects. The knowledge of direct downstream targets is also critical for 
understanding pathological mechanisms and beneficial for developing diagnosis and prognosis methods7. (2) 
Compared to learning the entire network, focusing on the local causal pathway of specific molecule(s)/variable(s) 
of interest is easier and cheaper both experimentally and computationally.

Two types of data can be used for causal network reconstruction: observational data and experimental data. 
Observational data is obtained from passively observing the changes of gene expression across time or the natu-
ral variation of gene expression among subjects or conditions. With the advancement in high-throughput assay 
technology over the past two decades, abundant observational datasets on gene expression are freely available in 
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public repositories and new observational datasets are relatively cheap to collect8–11. However, observational data 
alone is often insufficient for causal network reconstruction, since many causal structures cannot be distinguished 
statistically from observational data. On the other hand, experimental data, obtained from randomized control 
experiments (e.g., gene knock-out or over-expression), can unravel causal relations that are otherwise indistin-
guishable12,13. Opposite to the observational data, collecting experimental data is costly and time consuming, and 
is often infeasible and/or unethical.

To take full advantage of the cost-efficiency of the observational data while maximizing quality and complete-
ness of causal network reconstruction, several methods for active learning of casual networks has been developed 
recently14–18. The active learning methods utilize both observational and experimental data to discover causal 
networks. These methods typically first construct a draft of the causal network, generally represented as an unori-
ented or partially oriented graph, from observational data. Then, the methods select a variable for experimen-
tation/manipulation to further refine the graph. The experimental data obtained from the targeted experiment 
is used to update the draft of the causal network. The process of variable selection, experimentation, and causal 
network update is repeated until some termination criterion is satisfied, e.g. all edges in the causal network are 
oriented. Since randomized controlled experiments are costly, active learning methods employ various heuris-
tics when selecting variables for experimentation in order to minimize the required number of experiments. It 
is worth noting that most existing active learning methods are designed for discovering the entire causal net-
work14,15, which may make them computationally intractable or suboptimal for local causal pathway discovery. 
Therefore, in the present study, we modified these methods specifically for local causal pathway discovery and 
evaluated their performance alongside the original methods, as well as very recent methods that are specifically 
designed for local causal pathway discovery.

In a previous study we have systematically evaluated the local causal pathway discovery performance of var-
ious active learning methods on several simulated datasets of different characteristics. As an applied bioinfor-
matics extension of our previous work, the present study evaluates the performance of various active learning 
methods when applied to discover local causal pathways from real biological data. The gene regulatory relations 
in S. cerevisiae were explored by reconstructing the local causal pathways of transcription factors. The recon-
struction performance of 54 active learning methods/variants from three families of algorithms was assessed by 
comparing to the experimentally derived gold-standard networks. The best methods for local causal pathway 
reconstruction for this dataset were identified. To the best of our knowledge, this is the first study to systemati-
cally examine the quality of local causal pathway reconstruction from real biological data using active learning 
methods.

Results
In this section, we present the results of different active learning methods (Fig. 1) for local causal pathway dis-
covery. The local causal pathways discovered by active learning algorithms were compared to experimentally 
derived gold standard networks (Fig. 2). Four aspects of discovery performance are evaluated: adjacency dis-
covery, edge orientation, complete pathway discovery, and experimental cost. Adjacency discovery refers to the 
discovery of local causal pathway members, regardless of whether the edges between the discovered members 
and the target variable are oriented correctly. Edge orientation refers to the discovery of orientation of edges in 
the local causal pathway. The rationale for evaluating adjacency discovery and edge orientation separately is that 
most active learning algorithms perform the two tasks in distinct phases and with different quality. Therefore, 
separately assessing the efficacy of the two tasks for individual algorithms may lead to identification of potential 
bottlenecks in the algorithms, which could facilitate targeted modification of the algorithms. The overall quality 
of local causal pathway discovery, i.e. the quality of complete pathway discovery, is affected by both the quality 
of adjacency discovery and the accuracy of edge orientation. Metrics for evaluating adjacency discovery quality, 
edge orientation accuracy, and complete pathway discovery quality are illustrated in Fig. 3. Last but not the least, 
since randomized experiments are costly, active learning algorithms aims to reduce the number of experiments 
needed to orient the local causal pathway. The experimental cost, i.e. number of experiments performed to orient 
all edges in the local causal pathway over the total number of genes in the dataset, is computed for algorithms and 
compared against one and another. Detailed information regarding the local causal pathways evaluated in this 
study is listed in Table 1.

Which methods yield the best adjacency discovery quality? The quality of adjacency discovery, i.e. 
the ability to correctly identify the members of the local causal pathway of a given transcription factor of interest, 
was evaluated using the sensitivity, specificity and distance (combined metric of sensitivity/specificity). Again, a 
discovered gene is considered a true positive if it is a member of the true local causal neighborhood, regardless 
of whether it is correctly identified as an upstream regulator or a downstream target of the transcription factor 
(Fig. 3). Figure 4 and Table 2 illustrate the average sensitivity versus average specificity over 5 local pathways 
for all 54 active learning methods. In addition, the performance of 12 univariate association baseline controls 
for adjacency discovery (see Methods and Materials section for more details) are shown in the same figure. All 
univariate association methods output over 600 variables as the local casual pathway, whereas active learning 
methods output less than 60 variables. All 54 active learning methods have higher specificity but lower sensitivity 
compared to univariate methods. One variation of the ODLP algorithm (ODLP_6) achieved the best adjacency 
discovery quality with Distance =  0.56, Sensitivity =  0.45, Specificity =  0.94. All variants of the ODLP method 
have similar performance (Distance =  0.59 ±  0.01, mean ±  std), indicating that the method’s performance of 
adjacency discovery is not much affected by the parameterization. For ALCBN and HE-GENG methods, the 
local causal neighborhood is determined by the PC algorithm. Therefore, different ALCBN and HE-GENG var-
iants with the same parameterization of PC algorithm have the same sensitivity, specificity, and distance. The 
ALCBN and HE-GENG variants with PC algorithm parameterized with max-card =  1 have better combined 
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sensitivity and specificity (Distance =  0.6, Sensitivity =  0.41, Specificity =  0.94) than those with max-card =  2 
(Distance =  0.87, Sensitivity =  0.13, Specificity =  0.99). Hence, the parameterization does affect the performance 
of adjacency discovery of ALCBN and HE-GENG algorithms, especially for sensitivity.

Which methods yield the best edge orientation accuracy and require the least number of 
experiments? To evaluate the accuracy of edge orientation in the local causal neighborhood (i.e., whether 
the genes in the local causal neighborhood are correctly identified as upstream regulators or downstream targets 
of the transcription factor), the proportion of correctly oriented edges are calculated (see Table 3). Two ODLP 
algorithm variants (ODLP_3 and ODLP_6) have the highest proportion (95.0%). On average, ODLP algorithms/
variants have higher proportion of correctly oriented edges compared to ALCBN algorithms and HE-GENG 
algorithms as shown in Fig. 5A.

The experimental cost is measured by the percentage of genes manipulated in order to orient the local causal 
pathway with respect to total number of genes in the dataset (see Table 3 and Fig. 5). The ODLP variant ODLP_3 
achieved the highest proportion of correctly oriented edges (95%) by manipulating only 1.4% of variables (11.2 
variables) averaged over 5 transcription factors examined. No other algorithm is better than this particular 

Figure 1. Causal pathway learning algorithms and their parameterizations. 
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ODLP variant in both quality (proportion of correctly oriented edges) and experimental cost (percentage of 
variables manipulated) for edge orientation, as illustrated in Fig. 5C. On average, ODLP variants orient the local 
causal pathways by manipulating 0.84% ±  0.67% of variables. ALCBN global variants (ALCBN_1–3, 7–9, 13–15, 
19–21) and HE-GENG global variants (HE-GENG_1–2, 7–8, 13–14, 19–20) orient the local causal pathways 
by manipulating 6.64% ±  7.36% and 9.14% ±  9.79% of variables, respectively. HE-GENG variants based on 
local chain component (HE-GENG_3–4, 9–10, 15–16, 21–22) orient the local causal pathways by manipulating 
9.31% ±  9.96% of variables. ALCBN local variants (ALCBN_4–6, 10–12, 16–18, 22–24) and HE-GENG local 
variants (HE-GENG_5–6, 11–12, 17–18, 23–24) orient the local causal pathways by manipulating 0.06% ±  0.07% 
and 0.47% ±  0.70% of variables respectively, as shown in Fig. 5B.

Which methods have the best performance for complete pathway discovery? The quality of 
complete pathway discovery of the local causal pathway is affected by two factors: (1) the quality of adjacency 
discovery, and (2) the accuracy of edge orientation. Sensitivity, specificity, and distance (combined metric of sen-
sitivity/specificity) of complete pathway discovery was used to evaluate the quality of complete pathway discovery 
(Fig. 6). We remind the reader that in order to evaluate quality of complete pathway discovery, a discovered gene 
is considered a true positive if it is a member of the true local causal neighborhood, and the edge between this 
gene and the transcription factor of interest is oriented correctly (Fig. 3). The best method in term of distance 
is ODLP_6 (Distance =  0.58, Sensitivity =  0.43, Specificity =  0.94). On average, ODLP variants have better dis-
tance (0.61 ±  0.01) compared to ALCBN (0.81 ±  0.10) and HE-GENG (0.81 ±  0.10) methods. The relationship 
between complete pathway discovery quality (measured by the combined sensitivity/specificity distance metric) 
and orientation accuracy is shown in Fig. 7. Experimental cost is another key consideration in evaluating the 
performance of complete pathway discovery. The complete pathway discovery quality versus experimental cost 
is illustrated in Fig. 8. Algorithms that have optimal performance in terms of both distance and percentage of 
manipulated genes are all variants of ODLP method (also, see Table 4). We have also calculated the structural 
Hamming Distance as an additional metric for the complete pathway discovery quality. Results are presented in 

Figure 2. Gold standard network depicting direct regulatory relations in S. cerevisiae. Larger circles 
represent transcription factors, smaller circle represent genes. Blue circles represent transcription factors of 
interest, whereas green circles represent their local causal networks. All other transcription factors and genes 
are colored in grey. Direct edges represent direct regulatory relations. Edges connecting transcription factors of 
interests and their local causal pathways are colored in black. All other edges are colored in grey. The goal of the 
study is to discover the edges shown with black from observational data and limited experiment.
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Figure 3. Metrics for evaluating local causal pathway structure discovery. (A) Gold-standard network of 
the local causal pathway of T. Blue node represent the transcription factor of interest. Green nodes represents 
genes that belong to local causal pathway of T. Grey nodes represent other genes. (B) Local causal pathway of 
T discovered by some algorithm. (C) Metrics for local causal pathway discovery evaluation. Key metrics are 
highlighted. For adjacency discovery, a discovered gene is considered a true positive if it is in the local causal 
pathway of T, regardless of whether the edge between this gene and T is correctly oriented. Therefore, B is 
considered a true positive for adjacency discovery. However, for complete pathway discovery, a discovered 
gene is considered true positive if it is in the local causal pathway of T, and the the edge between this gene and 
T is correctly oriented. Therefore, B is not considered as true positive for complete pathway discovery. For edge 
orientation, orientation accuaracy is defined as number of correctly oriented edges over number of correctly 
identified edges. Correctly identified edges are defined as the edges that exist in both the gold standard and the 
discovered local causal pathway, regardless of orientation. Therefore the edge between B and T is considered 
correctly identified.
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Table A2. Different from the the structural hamming distance identifies the ALCBN methods and HE_GENG 
methods with max-k =  2 (ALCBN 13–24, HE_GENG 13–24) as superior. This is due to the following reasons:  
(1) The gold standard network have very few edges compared to non-edges, (2) ALCBN and HE_GENG methods 
with max-k =  2 identifies less edges compared to other methods. This suggests that the algorithm performance is 
sensitive to the metric and the choice of metric should be tailored to the specific needs of the experiment.

Performance profiles of active learning methods. The quality of adjacency discovery, accuracy of 
edge orientation and experimental cost are the three key dimensions defining the performance of active learning 
algorithms. The three performance metrics are used to construct profiles for different active learning algorithms 
and are presented in a radar plot (Fig. 9). Among all tested algorithms, The ODLP algorithms have the best per-
formance considering all three performance dimensions, as represented by the largest triangle in the radar plot.

Discussion
The current study has two major contributions. First, it demonstrated the feasibility of accurate reconstruction 
of local gene regulatory pathways from high-throughput observational data and limited number of experiments, 
using active learning methods. Second, it assessed the performance of various active learning methods on real 
biological data. Four performance metrics were evaluated: (i) adjacency discovery quality, (ii) edge orientation 
accuracy, (iii) complete pathway discovery quality, and (iv) experimental cost. The results of this study could serve 
as a guideline for the choice and further modification/improvement of existing active learning methods.

Overall, we found that the active learning methods are suitable for local causal pathway discovery and they 
produce accurate local causal pathways with low experimental cost under the experimental conditions tested in 
this study. Tested active learning methods learn the skeleton of the causal network up to a Markov equivalence 
class and then select variables for manipulation aiming to distinguish the true causal relations. The two-phase 
procedure employed by active learning methods exploits the cost efficiency of observational data and the power 
of experimental data to accurately identify causal structures that are otherwise generally undistinguishable16,17,19. 
The active learning methods tested in this study attempt to reduce the number of manipulations/experiments 
by (i) constraint-based partial orientation (variants of ALCBN and HE-GENG methods using partially oriented 
skeleton produced by PC algorithm), (ii) skeleton structure based heuristics (ALCBN and HE-GENG methods), 
and (iii) local causal pathway multiplicity and partial network-based heuristic (ODLP methods). Additional mod-
ification to the active learning methods could lead to further reduction experimental cost20, e.g. combining the 
three strategies mentioned above, employing newer methods for causal orientation of pairs of variables21–24, and 
estimating algorithmic complexity of causal relations within the equivalence cluster9. Moreover, it is also possible 
to incorporate background knowledge25 into active learning algorithms which can potentially lead to additional 
reduction of experiments.

Among the active learning methods examined in this study, ODLP variants achieved the best local pathway 
reconstruction quality with low cost on the 5 transcription factors examined. In term of experimental cost, since 
ODLP methods are specifically designed for local pathway discovery, it is not surprising that its cost is much 

Target 
variable (T) Name description Description

Systematic 
name

Number of genes 
in the local causal 

pathway of T

Number of 
direct upstream 

regulators

Number of direct 
downstream 

targets

GCN4 General Control Nonderepressible
bZIP transcriptional activator of amino acid bio-
synthetic genes; activator responds to amino acid 

starvation; expression is tightly regulated at both the 
transcriptional and translational levels.

YEL009C 44 0 44

STB5 Sin Three Binding protein

Transcription factor; involved in regulating multidrug 
resistance and oxidative stress response; forms a 

heterodimer with Pdr1p; contains a Zn(II)2Cys6 zinc 
finger domain that interacts with a pleiotropic drug 

resistance element in vitro.

YHR178W 16 0 16

STB4 Sin Three Binding protein

Putative transcription factor; contains a Zn(II)2Cys6 
zinc finger domain characteristic of DNA-binding 
proteins; computational analysis suggests a role in 

regulation of expression of genes encoding transporters; 
binds Sin3p in a two-hybrid assay.

YMR019W 6 0 6

TEC1 Transcription Enhancement Control

Transcription factor targeting filamentation genes and 
Ty1 expression; Ste12p activation of most filamentation 

gene promoters depends on Tec1p and Tec1p tran-
scriptional activity is dependent on its association with 
Ste12p; binds to TCS elements upstream of filamenta-

tion genes, which are regulated by Tec1p/Ste12p/Dig1p 
complex; competes with Dig2p for binding to Ste12p/
Dig1p; positive regulator of chronological life span; 
TEA/ATTS DNA-binding domain family member.

YBR083W 10 2 8

STE12 STErile

Transcription factor that is activated by a MAPK 
signaling cascade; activates genes involved in mating 

or pseudohyphal/invasive growth pathways; cooperates 
with Tec1p transcription factor to regulate genes specif-

ic for invasive growth.

YHR084W 35 1 34

Table 1.  Characteristics of the local causal pathways examined in this study.
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lower than the methods that are designed for global causal network discovery. In fact, after modifying ALCBN 
and HE-GENG methods for local discovery, drastic improvement in efficiency was achieved without compro-
mising the discovery quality. However, despite similar efficiency to the other active learning methods, the ODLP 

Figure 4. Quality of adjacency discovery. Sensitivity and specificity of adjacency discovery of various active 
learning algorithms are plotted. Corresponding number of true positives and false positives are also shown. 
Algorithms located closer to the top right corner of the graph have better adjacency discovery quality.

Table 2.  Quality of adjacency discovery for individual algorithms/variants. Algorithms that discover local 
causal pathways are shaded with grey; algorithms that discover the entire network are not shaded.
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algorithms also achieved superior pathway reconstruction quality. There are two potential reasons that ODLP 
outperforms other active learning methods in term of complete pathway discovery quality. First, during the adja-
cency discovery phase, the ODLP algorithms address potential multiplicity in the data (multiplicity describes 
the existence of multiple subsets of variables that contain the same amount information regarding the variable of 
interest26,27). This phenomenon is omnipresent in biological networks28. The ODLP algorithms include all local 
causal pathways consistent with the data in the draft of the local causal pathway. On the other hand, other active 
learning algorithms would only use a single local causal pathway consistent with the data, due to their assump-
tions. This could lead to both false positives and false negatives in adjacency discovery if multiplicity is indeed 
present in the observational data. For data that does not contain multiplicity, it is theoretically possible that 
the other active learning methods may produce similar reconstruction accuracy as ODLP. In that case, ALCBN 
and HE-GENG local methods are preferable since on average they have lower experimental cost. The second 
reason for ODLP’s superior performance lies in its ability to define members of the local causal pathway using 
experimental data, whereas other active learning methods tested in this study only orient the unoriented edges 
using experimental data. This allows ODLP to eliminate false positives in the local causal pathway according to 
constraints discovered from the experimental data. Moreover, ODLP has been demonstrated superior scalability 
compared to other algorithms18. In our previous study18, we found that only the ODLP algorithm is capable of 
reconstructing local causal network from a simulated dataset generated from a graph with 1,000,000 nodes and 
81,969 edges in a reasonable amount of time. None of the ALCBN and HE-GENG variants terminated in 30 days 
of a single core CPU time.

This work can be extended by evaluating the performance of the algorithms on more real-world datasets in 
biomedicine and other scientific disciplines. The current study is the first to evaluate the performance of the ODLP 
along with other state-of-the-art active learning algorithms. We would ideally like to compare the performance of 
the active learning algorithms over all transcription factors characterized in our gold standard regulatory network. 
However, we have only examined and reconstructed the local causal pathways for 5 out of 114 transcription fac-
tors due to resource limitations. In general, for individual ALCBN and HE-GENG variant, constructing the local 
causal pathway for one single transcription factor takes on average 30 days of a single CPU time. Reconstructing 
the local casual pathways of a single transcription factor using all 48 ALCBN or HE-GENG variants investigated in 
this study costs about 1,440 (30 ×  48) days of single core CPU time. Running each additional multiple, randomly 
chosen subsets of 5 TFs will require 7,200 (1,440 ×  5) days single CPU time. We note that, although genearally in 

Table 3.  Accuracy of edge orientation and metrics dependent on the number of experiments. Algorithms 
that discover local causal pathways are shaded with grey; algorithms that discover the entire network are not 
shaded.
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distribution free case one cannot base statistical inference on 5 data points, hypothesis testing is valid under distri-
bution assumptions. Given that we observed a significant gap in performance between ODLP and other methods 
over all 5 TF’s studied, we believe that the similar performance patterns (i.e., ranking of methods) will be observed 
on a larger dataset. We note that, although genearally in distribution free case one cannot base statistical inference 
on 5 data points, hypothesis testing is valid under distribution assumptions. Given that we observed a significant 
gap in performance between ODLP and other methods over all 5 TF’s studied, we believe that the similar perfor-
mance patterns (i.e., ranking of methods based) will be observed on a larger dataset. Further, evaluating active 
learning methods on real-world data from different domains could provide more insight into the efficacy of these 
algorithms on data of different characteristics. Another interesting extension of the current work is studying the 
dynamic structure of the underlying gene regulatory network. In the current study, both the gold-standard net-
work and the data used for de novo network reconstruction only captures a snapshot of the complicated biological 
interaction of the gene transcription factors (assuming the system under an equilibrium). Expansion of this study 

Figure 5. Edge orientation Performance of different active learning algorithms. (A) Average edge 
orientation accuracy; (B) Average experimental cost; (C) Edge orientation accuracy versus experimental cost; 
Edge orientation accuracy is measured by proportion of correctly oriented edges, whereas experimental cost 
is measured by number of experiments over total number of genes. In panel (C), algorithms located closer to 
the bottom right corner of the graph have better edge orientation performance in terms of both accuracy and 
experimental cost.
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to discover the dynamic interaction of gene transcription factors requires sufficient longitudinal observational data 
and experimental data collected under different biological conditions. Likewise, new active learning algorithms 
should be designed to better suit the discovery of interactions in dynamic networks29. Furthermore, the perfor-
mance metric can be designed to the preferences of experimentalists. In the current study, the distance metric 
assigns equal weight to sensitivity and specificity, which is a common practice (e.g. studies that utilize ROC as a 
performance metric) when there is no clear preference for one to the other. We have chosen to weigh sensitivity and 
specificity equally due to the fact that there is no task independent consensus on the trade-off between sensitivity 
and specificity. However, it is easy to imagine an experimentalist preferring sensitivity or specificity in specific bio-
logical applications. In that case, one could construct customized performance metrics and choose the algorithms/
parameterizaions that optimize the chosen performance metric. Similarly, when calculating experimental cost, one 
could assign different weight to different experiments to reflect the relative cost of different experiments.

The current study, as the first attempt to systematically evaluate the performance of various active learning 
algorithms for discovery of local causal pathways from real-world (non-simulated) data, demonstrates promising 
results. It is beneficial to extend this work to other domains (ecology, economics, education, and etc.) in order to 
gain insights of the behavior of these algorithms on datasets with different characteristics and facilitate further 
improvements of these methods.

Figure 6. Quality of complete pathway discovery. Sensitivity and specificity of complete pathway discovery 
of various active learning algorithms are plotted. Corresponding number of true positives and false positives 
are also shown. Algorithms located closer to the top right corner of the graph have better complete pathway 
discovery quality.

Figure 7. Complete pathway discovery quality versus edge orientation accuracy. Complete pathway 
discovery quality is measured by combined sensitivity/specificity (distance) metric of complete pathway 
discovery, and edge orientation accuracy is measured by proportion of correctly oriented edges. Methods 
located closer to the bottom right of the graph have better performance in terms of both complete pathway 
discovery quality and edge orientation accuracy.
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Methods and Materials
Construction of the gold-standard network. The gold-standard network reflecting direct gene regula-
tory interactions is constructed as described in30. Briefly, two types of data were used for constructing the gold 
standard network. (1) Targeted perturbation data originates from gene knock-out experiments and identifies reg-
ulatory targets. Specifically, we used data obtained from 1,484 gene deletion experiments conducted in a co-au-
thor’s lab (P.K.)31. The regulatory relations were determined at 0.05 alpha level. (2) High-throughput binding data 
that identifies binding targets of transcription factors. A previously published ChIP-chip dataset characterizing 
binding activity of 203 transcription factors was used in this study32. A binding relation was determined at alpha 
level of 0.001 and has to be present in at least 2 of the related Saccharomyces species (see30 and32 for more details). 

Figure 8. Complete pathway discovery quality versus experimental cost. Quality of complete pathway 
discovery is measured by the combined sensitivity/specificity (distance) metric, whereas experimental cost is 
measured by number of experiments over total number of genes. Algorithms located closer to the bottom left 
corner of the graph have better structural discovery performance in terms of both quality and cost.

Table 4.  Quality of complete pathway discovery. Algorithms that discover local causal pathways are shaded 
with grey; algorithms that discover the entire network are not shaded.
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The identified regulatory relations and binding relations were overlapped to obtain the gold standard. Therefore, 
the edges in the gold standard network represent direct regulatory functional relations between transcription 
factors and their targets. The resulting gold standard contains 1,083 edges that describe S. cerevisiae gene reg-
ulatory network, capturing the direct regulatory relations among 114 transcription factors and 5,395 genes. In 
our previous work30, we used this gold standard network to evaluate global network reconstruction and did not 
investigate edge orientation. Whereas in the current work, we aim to examine local adjacency discovery as well as 
edge orientation through active learning.

Since the focus of this study is local causal pathway discovery, 5 targets were selected randomly from the set 
of transcription factors (which play key role in the gene regulatory network) such that they represent local causal 
pathways of varying sizes. More details of these targets are given in Table 1 and visualized in Fig. 2. Local causal 
pathways around these transcription factors were reconstructed from data using various active learning methods 
as described in the sections below. Discovered networks were then compared to the gold standard network to 
evaluate the reconstruction performance.

Observational and experimental data. A previously published gene expression dataset33 was used as 
the observational data. This dataset measured the expression level of 5,717 genes in response to rapamycin in  
S. cerevisiae over time, resulting in 585 observations per gene (downloaded from ArrayExpress database, dataset 
ID: E-MTAB-412). We choose this dataset as the observational data for regulatory network reconstruction since 
Rapamycin was demonstrated to induce widespread transcriptional changes in yeast. We used experimental data 
obtained from 1,484 gene deletion experiments conducted in a co-author’s lab (P.K)31.

Local causal pathway discovery methods and their implementations. Active learning meth-
ods. We evaluated 54 active learning methods/variants for local causal pathway discovery, including 24 variants 
of ALCBN15, 24 variants of HE-GENG14 and 6 variants of ODLP18,34. The main idea of all these algorithms is 
to learn an undirected or a partially directed graph from observational data and then perform experiments or 
queries the experimental database to orient the undirected edges. In addition, 6 methods based on univariate 
association were applied for adjacency discovery as baseline controls (see below). Figure 1 summarizes variants 
of the active learning methods and additional details follow below.

Originally, ALCBN and HE-GENG were designed to learn the entire network spanning all measured varia-
bles. In this study, we used the original ALCBN/HE-GENG algorithm to discover the entire network and eval-
uated their performance for the specific local causal pathways of interest. To improve the methods’ efficiency in 
local causal pathway discovery, we also modified ALCBN and HE-GENG algorithms to better suit local causal 
pathway discovery. Specifically, when selecting variables for manipulation to orient edges, instead of attempting 
to orient all edges in the entire network, the modified methods only orient edges among the target variable and 
its neighbors. The performance of these variants were evaluated and compared against the original methods 
and other methods. For all ALCBN and HE-GENG variants, PC algorithm13 (implementation from the Causal 
Explorer library35) was used to obtain the unoriented graph or the partially oriented graph (by orienting the 
V-structures and propagating orientations) which describes the relationships among all variables in the observa-
tional data. Dependence/independence was assessed at alpha level of 0.05 using Fisher’s Z test. The PC algorithm 

Figure 9. Performance profiles of active learning algorithms. The quality of adjacency discovery, accuracy 
of edge orientation and experimental cost of individual algorithms are used to construct performance profiles 
of the algorithms. The quality of adjacency discovery was measured by the distance (combined sensitivity/
specificity metric) of adjacency discovery. The accuracy of edge orientation was measured by the proportion of 
correctly oriented edges. Experimental cost was measured by the number of experiments over total number of 
variables in the dataset. Notice that for edge orientation accuracy, the axis value grow larger when moving away 
from the origin, for adjacency quality and experimental cost, the axes grow smaller when moving away from 
the origin. The plot is arranged this way, so that the size of the triangle corresponds to the performance of a 
particular algorithm. In other words, the larger the triangle, the better performance an algorithm can achieve in 
terms of the three performance dimensions.
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with max-card =  1 and 2 was applied. The ALCBN and HE-GENG methods then selected a variable for manipula-
tion using some decision criterion. The ALCBN algorithms use either the minimax, maximin or Laplace decision 
criteria, whereas the HE-GENG methods use either maximin or maximum entropy criterion.

Unlike the ALCBN and HE-GENG methods, ODLP was designed for local causal pathway discovery18,34. 
The TIE* algorithm (implementation from Causal Explorer library) was used to obtain all local causal pathway 
members of the target consistent with the data27. The TIE* algorithms uses either max-card =  1 or 2, with three 
Markov boundary equivalence decision criteria. The ODLP algorithm uses an iterative experimental strategy to 
determine the sequence of manipulation for the variables that belong to the local causal pathway of the target, as 
identified by TIE*. This strategy is aimed at minimizing the number of experiments and utilizes knowledge and 
constraints obtained by performed experiments.

Baseline control methods (for adjacency discovery). To set up a baseline for the quality of adjacency discovery, 12 
variants of univariate association methods were applied to the observational dataset. Variables that are considered 
to have statistically significant association with the target variable are considered as members of the local causal 
pathway and are output. The 12 variants (3 ×  2 ×  2) consists of the combination of 3 association tests (Pearson 
correlation, Spearman correlation, or mutual information), two alpha levels (0.05 or 0.01), and two methods for 
correcting for multiple statistical tests (no correction or multiple comparisons correction36); see Fig. 1.

Performance metrics. Several performance metrics were used to evaluate different aspects of reconstruc-
tion quality of causal discovery methods (see Fig. 3).

The quality of adjacency discovery, i.e. the ability of correctly identifying the local causal neighborhood of a 
given target/transcription factor of interest without inferring edge orientations, was measured by the sensitivity 
and specificity. A discovered gene is considered a true positive if it is a member of the true local causal neighbor-
hood, regardless of whether it is an upstream regulator or a downstream target of the transcription factor. 
Therefore, the sensitivity and specificity address adjacency discovery specifically. Both sensitivity and specificity 
ranges from 0 to 1, with zero indicating the worst discovery quality, and 1 indicating the best discovery quality. To 
combine sensitivity and specificity into a single metric, Euclidean distance from the optimal algorithm with (with 
sensitivity of one and specificity of one) was computed as the following: − + −Sensitivity Specificity(1 ) (1 )2 2 . 
This metric is termed the distance of adjacency discovery. The distance metric is the Euclidian distance between 
a given algorithm and the optimal algorithm in the space defined by sensitivity and specificity, where the optimal 
algorithm has the sensitivity of one and specificity of one. The distance ranges from 0 to 2 . A distance of zero 
indicates the best performance (same as the optimal), whereas a distance of 2  indicates the worst performance. 
This metric implies equal weighting of sensitivity and specificity.

To evaluate the accuracy of edge orientation in the local causal neighborhood, i.e. whether the variables in the 
local causal neighborhood are correctly identified as direct causes or direct effects of the target variable, a propor-
tion of correctly oriented edges were calculated with respect to the number of edges that are correctly identified. 
The proportion of correctly oriented edges ranges from 0 to 1, with 0 indicating the worst edge orientation accu-
racy and 1 indicating the best edge orientation accuracy.

To evaluate the quality of complete pathway discovery, sensitivity and specificity of complete pathway discovery 
was computed. A discovered gene is considered a true positive if it is a member of the true local causal neighbor-
hood, and the edge between this gene and the target transcription factor is oriented correctly. Therefore, the sensi-
tivity and specificity capture the quality of both adjacency discovery and edge orientation accuracy, i.e. quality of 
complete pathway discovery. Sensitivity and specificity of complete pathway discovery were also combined into a 
single metric, the Euclidean distance from the optimal algorithm with (with sensitivity of one and specificity of 
one): − + −Sensitivity Specificity(1 ) (1 )2 2 . This metric is termed the distance of complete pathway discovery.

The experimental cost, i.e. the ratio of the number of experiments conducted for edge orientation over the 
total number of genes in the dataset was calculated and reported as percentage. This metric ranges from 0 to 
100%, with 0 indicating no experimental cost (no variables/genes manipulated) and 100% indicating maximum 
experimental cost (all variables/genes manipulated). Since experimentation (or edge orientation) is the most 
costly step in local causal pathway reconstruction, we consider the experimental cost as a good approximation to 
the overall cost of local causal pathway discovery.

All the above metrics were calculated for individual local pathways and algorithms, and then averaged across 
five local pathways yielding one set of metrics per algorithm (see Tables 2–4).
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