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STEPS is a stochastic reaction-diffusion simulation engine that implements a spatial
extension of Gillespie’s Stochastic Simulation Algorithm (SSA) in complex tetrahedral
geometries. An extensive Python-based interface is provided to STEPS so that it
can interact with the large number of scientific packages in Python. However, a gap
existed between the interfaces of these packages and the STEPS user interface, where
supporting toolkits could reduce the amount of scripting required for research projects.
This paper introduces two new supporting toolkits that support geometry preparation and
visualization for STEPS simulations.
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INTRODUCTION
Advanced research on neuronal signaling pathways frequently
requires assistance from computational modeling and simula-
tions, causing the development of several molecular reaction-
diffusion simulators in recent years. In this domain, the general
assumption of mass action kinetics in a well-mixed volume is
often invalid, whilst stochasticity and spatiality have been demon-
strated to play essential roles in regulating behaviors of the system
(Santamaria et al., 2006; Antunes and De Schutter, 2012; Anwar
et al., 2013). Several spatial stochastic reaction-diffusion simula-
tors have been developed, following two fundamentally different
approaches; particle-based and voxel-based. Particle-based simu-
lators track the Brownian motion of individual molecules during
the simulation, simulating reactions based on molecule collisions.
MCell (Stiles and Bartol, 2001) and Smoldyn (Andrews, 2012)
are two examples of such simulators. Voxel-based simulators
partition the simulated geometry as a volume mesh formed by
small cubes or tetrahedrons, called voxels or subvolumes, within
which the laws of chemical kinetics determine changes of the
number of molecules. Diffusion is then simulated as the trans-
port of molecules from one subvolume to another. A commonly
used approach in stochastic voxel-based simulators is Gillespie’s
Stochastic Simulation Algorithm (Gillespie, 1977), which can eas-
ily be extended to deal with diffusion, referred to as “spatial
SSA” or “spatial Gillespie.” Simulators that fall into this category
include MesoRD (Hattne et al., 2005) and NeuroRD (Kotaleski
and Blackwell, 2010), which implement variations of SSA in cubic
meshes.

STEPS, short for STochastic Engine for Pathway Simulation,
is a GPL-licensed, reaction-diffusion simulator that implements
a spatial extension of Gillespie’s SSA in tetrahedral geometries
(Hepburn et al., 2012). While mainly focusing on spatial stochas-
tic signal pathway simulations, STEPS is also able to simulate
stochastic/deterministic well-mixed models as well as 3D deter-
ministic models in tetrahedral meshes.

One feature that distinguishes STEPS from other spatial SSA
simulators is its extensive Python interface. Python (http://www.

python.org/) is a dynamic programming language with many
packages that are beneficial for scientific research, such as NumPy
(http://www.numpy.org/) and SciPy (http://www.scipy.org/) for
scientific computing, and Matplotlib (http://matplotlib.org/) for
data plotting. The simplicity, readability and ultimate flexibil-
ity of the language have raised interest from the computational
neuroscience community, where many simulators now support
Python as their optional or even default user interfaces, including
NEURON (Carnevale and Hines, 2006; Hines et al., 2009), NEST
(Diesmann and Gewaltig, 2002; Eppler et al., 2008), MOOSE (Ray
and Bhalla, 2008), and more. Efforts have also been devoted to the
integration of these simulators through Python, such as PyNN
(Davison et al., 2008), which aims to provide a Python-based
description for neuronal network models that can be executed
in several supported simulators without modification. It is well
known that one disadvantage of using pure Python coding is the
sacrifice of computing speed for flexibility. Pure Python modules
are normally one to two orders of magnitude slower than their
C/C++ equivalents due to its runtime interpretation. A general
solution for this issue is to implement the computational intensive
modules in C/C++ and expose its APIs to Python using SWIG
(Beazley, 1996) or the Boost library (Karlsson, 2005). With this
solution, efficiency is maintained as most of the computation is
executed by compiled C/C++ code, yet users can still appreciate
benefits granted from the flexible Python-based interface. STEPS
used this approach in its development (Wils and De Schutter,
2009). Internally it is implemented in C/C++ for computa-
tional efficiency, while many of its APIs are exposed to Python
using SWIG, including those for model description, simulation
control and data access. The Python interface approach is signif-
icantly different from the non-interactive approach employed in
other stochastic reaction-diffusion simulators where a formatted
file, with full model description as well as simulation parameter
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settings, is used as the input of the simulation, and results are
exported to an output file.

As a stochastic pathway simulation engine, the user interface
of STEPS is mostly generic and focuses on simulation control
and data access. Thus, STEPS users rely on the massive num-
ber of scientific Python packages to achieve varying research
objectives, from simple plots of molecule distribution, to com-
plicated results analysis. However, some customized toolkits are
required to reduce the amount of scripting by the user. The
collection of these Python-based, customized toolkits is called
the “STEPS supporting environment,” part of which has been
described previously (Hepburn et al., 2012).

This paper describes two new supporting toolkits in this envi-
ronment: the geometry preparation toolkit handles production
of geometry data for STEPS simulations, while the visualiza-
tion toolkit provides runtime visualization of simulations. In the
following sections we will describe the details of both toolkits,
including their functionality and the underling mechanisms and
development principles. We will also provide examples to show-
case their use, and discuss plans for the future improvements of
the toolkits and the overall supporting environment.

MATERIALS AND METHODS
GEOMETRY PREPARATION TOOLKIT FOR STEPS
Geometry preparation is an important prerequisite for reaction-
diffusion simulation. It involves multiple procedures, starting
with “geometry construction,” where a surface/volume mesh,
or a set of geometry boundary representations, is created.
Substructures and specific regions in the geometry that are of
research interest or require extra simulation controls are then
identified in a procedure of “component identification.” This
is followed by “model association,” where biochemical models
are assigned to the geometry components. Finally, the outcomes
of these procedures are integrated together and prepared for
simulation.

Reaction-diffusion simulators commonly accept formatted
text files as data input, where geometry is described either as a
combination of predefined primitives like spheres and cubes, or
as a surface or volume mesh. The data is then dealt with differ-
ently among simulators. SSA based simulators like MesoRD and
NeuroRD generate cubic meshes according to the input primi-
tive geometries, while particle based simulators like Smoldyn and
MCell establish mathematical boundary representations of the
geometries. Data files for simplified geometries can be produced
manually, but the generation of complex or realistic geometries,
like those based on reconstructions from electron microscopic
imaging, often relies on third party professional applications.
Therefore, toolkits that integrate the geometry generator and the
simulator can be beneficial. One example is CellBlender (http://
www.mcell.psc.edu/), a toolkit that integrates MCell with Blender
(http://www.blender.org/), providing a complete solution for tri-
angular surface mesh construction, component identification,
MCell model association and simulation result visualization.

Different from MesoRD and NeuroRD, STEPS does not gen-
erate meshes itself, but makes use of professional mesh gen-
erators. A generic mesh importing mechanism is provided,
together with importing functions for common mesh formats

such as Abaqus (http://www.3ds.com/products-services/simulia/
portfolio/abaqus/), TetGen (http://tetgen.berlios.de/), and Gmsh
(http://geuz.org/gmsh/). To further enhance this interaction,
we developed a Python-based toolkit that integrates STEPS
with CUBIT (https://cubit.sandia.gov/), a sophisticated sur-
face/volume mesh generator. CUBIT provides both commercial
and academic licensing as well as a 30-day full trial version.
There are several reasons that we choose CUBIT as the primary
supporting application. Unlike MCell, which accepts triangular
surface meshes as its geometry inputs and is thus able to utilize
free surface mesh generators such as Blender, STEPS simulations
require tetrahedral meshes that are not supported by those gen-
erators. Open source tetrahedral mesh generators such as TetGen
and Gmsh remain focused on a non-interactive scripting based
generation approach and are therefore unqualified for the mesh
preparation tasks described here. CUBIT not only implements
multiple tetrahedron mesh generation algorithms, from simple
automatic approaches to complex, geometry adapting methods,
but also embeds an interactive Python environment and a large
set of Python base APIs, which enables flexible data and function
integration with STEPS. It supports importing of multiple mesh
formats including the Abaqus format, the primary mesh format
used in STEPS. Additionally, CUBIT supports both primitive-
based mesh generation that is suitable for simplified geometry
generation, and a facet-based engine for realistic geometry recon-
struction, and is therefore suitable for a wider range of research
compared to other generators that support a single approach.

As mesh generation is mostly controlled by CUBIT itself, the
geometry preparation toolkit focuses on facilitating the remain-
ing procedures that support five major functionalities in CUBIT
and STEPS.

Element selection in CUBIT
In STEPS, geometry components are identified as groups of tetra-
hedrons and triangles. Technically this means that to create a
component one has to select mesh elements and produce a list
of their indices. There are several ways to select mesh elements
in CUBIT depending on the condition. For simple geometries,
components can be predefined before mesh generation and used
to guide the generation process. They can also be separated and
identified easily by simple mathematical spacing after mesh con-
struction. However, these approaches become inadequate as the
complexity and irregularity of the geometry increase, where extra
support is necessary to ensure accuracy and efficiency.

In order to explain the element selection mechanism, we first
classify mesh elements into two different categories, skin and
inner elements. Skin elements are directly visible from the out-
side, while inner elements are covered by skin elements and are
thus not directly visible. In CUBIT, skin elements can be selected
directly using box/polygon range selection. CUBIT also provides
an x-ray option which, together with range selection, is able to
select all elements within the range, regardless of whether they
are skin or inner, as shown in Figure 1A. This method, however,
cannot be used to select pure inner elements, because the covered
skin elements are also selected. Our toolkit addresses this issue
by implementing an indirect element selection method, which
makes use of CUBIT’s Python-based API. With this method,
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FIGURE 1 | Different element selection methods in CUBIT. (A) Direct
range selection of elements. Elements within the red dot line range are
selected. (B) Indirect bounding object selection. Elements within the purple
hemisphere are selected.

a bounding object is firstly created using CUBIT to virtually
bound all the desired elements in the mesh. The toolkit then
loops over all existing elements and opts for those that overlap
with the bounding object by coordinate matching (Figure 1B).
While mainly developed for inner element selection, this method
can also be used to select elements within any arbitrarily cre-
ated boundaries in general. In practice, the element selection
approaches often have to be combined for different conditions.

ElementProxy object and index mapping in STEPS
Elements selected in CUBIT can be output as a Python list that
contains their indices. However, for reasons of computational effi-
ciency STEPS uses an internal indexing system, which is different
from the one generated in CUBIT. Thus, a mapping mecha-
nism is necessary for data enquiry and index conversion between
the two systems. This mapping is handled by “ElementProxy,”
a Python-based utility object implemented in STEPS. In short,
the ElementProxy is a generic object for the storage of both
geometry data as well as the mapping of indexing systems for
a given type of geometry elements such as vertex, triangle and
tetrahedron. During mesh import, coordinates, connectivity and
other geometry data of an element are recorded in the associ-
ated ElementProxy object, together with its original index. The
ElementProxy then assigns a STEPS index for the element and
stores the mapping between them. The object is implemented
purely in Python so that it can be archived and retrieved by the
standard Pickle module in Python. This mechanism allows the
toolkit to translate element indices between STEPS and CUBIT,
which is necessary for the construction of the steps.geom.Tetmesh
geometry object used for reaction-diffusion simulation in STEPS

(Hepburn et al., 2012) and for other mesh preparation function-
alities such as element highlighting.

Tetmesh geometry and region of interest datasets in STEPS
STEPS spatial geometry consists of two basic components: “com-
partment” and “patch.” A compartment, described by a collec-
tion of tetrahedrons in the mesh, is a 3D volume within which
molecules can diffuse and react. A patch, described by a collection
of triangles, is a 2D surface connected to one or two compart-
ments, where molecules may be embedded. “Surface reaction”
and “surface diffusion” can be assigned to a patch to describe
membrane-related phenomena such as molecular channeling,
transportation, and lateral diffusion. Compartments and patches
can be based on lists of, respectively, tetrahedral and triangle
indices from the element selection process shown in Figure 1,
and then index mapping can be used to construct corresponding
geometry components in the steps.geom.Tetmesh geometry.

Beside compartments and patches, smaller geometry element
groups, for example, tetrahedrons that form a spine in a spiny
dendrite, often need to be accessed repeatedly, either for the
change of simulation parameters or for recording of results. In
general, they can be stored as Python lists in an external file
and loaded from the file during simulation. However, the manual
creation and maintenance of external files can be exhausting, par-
ticularly for large simulations. Alternatively, the Tetmesh object
provides an auxiliary “Region of Interest” (ROI) dataset where
element lists can be named and stored. ROI datasets are accessi-
ble by name once created. A set of ROI operation APIs are also
implemented in STEPS so that stored elements can be reused in
the simulation.

Biochemical model association in STEPS
To form a spatial reaction-diffusion system, groups of reaction
and diffusion rules (“volume systems”) defined in the biochem-
ical model need to be added to corresponding compartments in
the geometry, and groups of defined surface reaction rules and
other surface phenomena (“surface systems”) need to be added to
related patches. Volume systems and surface systems are defined
separately in a steps.model.Model object. STEPS associates bio-
chemical systems with geometry components by storing system
ids in corresponding components in the geometry object. The
model and geometry objects are then combined to construct the
stochastic spatial solver (steps.solver.Tetexact). The separation of
biochemical model definition and geometry description not only
helps modelers to maintain focus, but also enhances the reusabil-
ity of scripts as a single model definition can be reused with
different geometries, and vice versa.

Mesh input and output in STEPS
In practice, biochemical model and geometry are often prepared
by different individuals, therefore it is necessary for a Tetmesh to
be stored in a file and retrieved later for simulation. This func-
tionality is provided by the MeshIO utility, which saves and loads
a Tetmesh object, compartment and patch definitions, biochemi-
cal model association and lists of element groups, to and from an
xml file.
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Though geometry preparation can be accomplished manually
using the above mechanisms, the toolkit combines these mech-
anisms and provides flexible pipeline functions in Python that
significantly reduce the labor required. For example, selected
tetrahedrons in CUBIT can be directly used to create a compart-
ment with biochemical system association in Tetmesh geometry
within a single function call in the toolkit, instead of going
through the steps of index translation, compartment object cre-
ation and model association. This is particularly beneficial when
using complex geometries.

VISUALIZATION TOOLKIT FOR STEPS SIMULATIONS
The importance of visualization for spatial reaction-diffusion
simulations is a matter of debate. Though visualization provides
an intuitive way for understanding simple biochemical models,
its value for simulations with complex biochemical systems and
geometries is unclear. This leads to divergent strategies in existing
simulators. Some simulators, for example Smoldyn and MesoRD,
implement built-in runtime visualization support. Other simula-
tors such as MCell focus on post-simulation result playback using
third-party applications. Both approaches have their advantages
and disadvantages, thus whether a simulator supports one over
another mainly depends on developer preference and applica-
tion focus. Runtime visualization provides immediate informa-
tion of how the simulated system behaves, important for model
debugging and runtime simulation adjustment. However, a con-
siderable amount of computational resource is required, reducing
the overall efficiency of the simulator. Moreover, modern neu-
roscience simulations are often executed on clusters where no
visualization is allowed. Therefore, runtime visualization is often
implemented as an optional feature that can be switched off when
necessary. Post-simulation result playback does not affect runtime
performance of the simulation significantly, although history data
storage is required. The amount of history data increases pro-
portionally to simulation time, making this approach resource-
consuming for long simulations. In addition, result playback can
only be visualized after a simulation is completed, so it is unable
to perform runtime adjustment of the simulation.

STEPS implements a Python-based, interactive 3D visualiza-
tion toolkit for spatial reaction diffusion simulations. Currently,
the toolkit focuses on supporting runtime visualization, but sim-
ulation recording and playback will be added as extensions in
the future. Despite the general understanding that visualization
is limited to simulations with simple models and geometries
and mostly for demonstration purposes, the STEPS visualization
toolkit attempts to provide efficient, accurate and comprehensible
visualization support for simulations with complex biochemi-
cal models and geometries, a goal that is not trivial to achieve.
Here we detail the challenges encountered during the toolkit
development and explain the solutions taken to tackle those
challenges.

Component assembly strategy for visualization of complex
biochemical models and geometry
The fundamental goal of the visualization toolkit is to visualize
simulations with complex biochemical model and geometry. A
major challenge lies in the presentation, that is, how to produce

human comprehensible visual output of a complex system.
Visualization support in existing simulators often adopt an “All-
In-One” strategy, where all molecules as well as the full geometry
are displayed in a single window. Although this approach may
be adequate for models with several reactions and simple geome-
tries, due to the limitation of human perception, the visual output
of such a presentation soon becomes incomprehensible as the
complexity of the system increases.

To address this problem, the STEPS visualization toolkit aban-
dons the “All-In-One” approach and introduces the “Component
Assembly” concept to the implementation instead. Figure 2 pro-
vides an overview of the complete framework of the toolkit. The
main building blocks in this implementation are “visual com-
ponents,” which are independently functional Python classes for
visualization of specified simulation data. Visual components can
be divided into static components and dynamic components.
Geometry of the simulation is represented by static compo-
nents, including “compartment mesh” and “patch mesh,” which
compartments and patches defined in the Tetmesh object can
be associated with and visualized. These components are static
since there is no further data update required once the com-
ponents are created. Molecule changes that require constant
updates during the simulation are represented by dynamic com-
ponents. Several dynamic components are available for different
visualization requirements. The “compartment species” compo-
nent provides visualization of quantity and spatial changes of a
given type of molecule species in a compartment, and the “patch
species” component is the counterpart for molecule species on a
patch. “Tetrahedron species” and “triangle species” components
are the reduced version of the above two components, which dis-
play molecule changes within a list of tetrahedrons or triangles.
In a STEPS simulation, species on patches are often composed
to represent multiple-state channels, which switch between states
depending on conditions such as membrane potential. These

FIGURE 2 | Component Assembly strategy for the visualization

toolkit. Visual components, including static and dynamic component,
are assembled in a display. The display is then assigned to a simulation
control together with the visualized simulation.
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“channel species” can be visualized using the “patch channel”
and “triangle channel” components. To distinguish between each
other, each visual component has its own appearance configura-
tion such as color and molecule size that can be either randomly
generated or manually defined. Tetrahedral and triangular ROI
datasets stored during geometry preparation can also be used to
create respective species components.

Visual components are then assembled in a “display,” an
interactive 3D window environment that displays assigned com-
ponents. One pivotal feature of the visualization toolkit is the
“Many-To-Many” association between visual components and
displays: instead of creating a single display window, the toolkit
allows multiple displays to be created for a single simulation.
Multiple visual components can be assembled in a display and
each visual component can also appear in multiple displays.
Visual components that appear in multiple displays maintain
a single instance of internal data and synchronize their visual
appearance among all displays when the data is updated during
simulation, thus the increase of memory cost is insignificant.

This implementation provides flexible solutions for differ-
ent visual scenarios that may be encountered in practice. One
common example is the “Global-ROI” scenario, where a single
window displays all geometry components and molecule changes
as a global view of system behavior, while a number of displays
highlight changes of specific molecule species in different geome-
try regions. Another example is the “Species of Interest” scenario.
In a complex simulation, molecules in different parts of the same
geometry region often visually overlap with each other, signifi-
cantly reducing the comprehensibility of the visualization. With
the visualization toolkit, molecule species that are of interest
can be isolated from the others and visualized in several dis-
plays separately, with the same static component as the geometry
background of all displays.

Visual components and displays are extensions of generic
OpenGL visual items provided by PyQtGraph (http://www.

pyqtgraph.org/), a Python based scientific graphics and GUI
library built on PyQt4 (http://www.riverbankcomputing.com/
software/pyqt), PyOpenGL (http://pyopengl.sourceforge.net/)
and NumPy. Visualization and interaction such as panning and
rotation of views are handled directly by the package, allowing
our implementation to focus on high level data representation
instead of basic functionality coding. The package also supports
runtime console interaction so that components can be added to
or removed from displays to form new views of the simulation.

Displays with dynamic visual components need to be fur-
ther assigned to a “simulation control” so that visualization
can be synchronized with the simulation. Multiple simulation
instances with different biochemical models and geometries can
be assigned to a controller, where a background execution thread
is generated for each of the simulations using Python’s multi-
threading mechanism. Although all simulations are executed in
parallel, they share a global configuration of simulation end time
and visual update interval, which can be overwritten during simu-
lation. The simulation control also unlocks the Global Interpreter
Lock (GIL) in Python, thus users can interact with the visual
system freely even when the simulations are in execution in the
background.

Accurate representation of SSA-based spatial reaction diffusion
simulations
Visualization of SSA-based spatial reaction diffusion simulation
faces an intrinsic representation challenge that seldom appears
in particle-based simulations, where the spatial position of each
molecule is tracked and recorded accurately through simulation.
The fact that SSA-based simulators do not track molecule move-
ment but monitor the quantity changes of molecules in each
subvolume means that the exact position of individual molecules
is not known. Different approximations have been used to solve
this problem. For instance, MesoRD allows users to predefine
the maximum number of molecules that can be visualized per
cubic subvolume. Based on this value, it then generates all pos-
sible molecule positions in advance by evenly partitioning the
axes of the subvolume space. During simulation, each subvol-
ume updates its condition iteratively and determines whether a
molecule should appear on any of the positions. However, this
approach was not suitable for STEPS visualization for several
reasons. First, tetrahedral subvolumes have a much wider range
of size and shape compared to the ones in a cubic mesh, thus
it is practically difficult to partition the space evenly for each
subvolume. Second, if all molecule positions are generated in
advance it is possible for a molecule to be shown at a fixed posi-
tion over time, giving the wrong impression that no movement
has occurred for that molecule where instead conceptually it has
changed position inside the subvolume. Third, as the maximum
number of visible molecules is fixed for each subvolume, sub-
volumes with high concentrations of molecules may be visually
over-simplified due to a lack of available positions, while the ones
with low concentrations retain large amounts of unused coor-
dinate data. Finally, the number of coordinates that need to be
generated scales linearly with the number of subvolumes in the
simulation, causing a large memory cost for simulations with fine
meshes even if the amount of molecules in the system is small.

Because of these reasons, the STEPS visualization toolkit,
instead, adopts a runtime generation approach for molecule
visualization. At each visual update iteration, tetrahedral and
triangular SSA subsystems in every dynamic visual component
calculate the number of molecules within themselves and gener-
ate the exact number of corresponding random positions. The
toolkit uses a fast algorithm that guarantees all these random
positions are uniformly distributed and bound by the subsystem’s
geometry. These positions are then fed to individual visual com-
ponents and rendered in the corresponding displays as dots with
different sizes and colors, predefined in the component. The pro-
cess repeats when the simulation reaches the next visual update
interval. One exception is the multiple-state “channel species” on
patches, whose positions are permanent after initialization except
when they diffuse inside the membrane.

In the above solution, the number of random positions gen-
erated at each iteration equals the total number of molecules
over all visual components. While this is achievable for simula-
tions with a small numbers of molecules, as this number increases
it becomes difficult and eventually unfeasible to render them
due to limited graphical resources. Therefore the visualization
toolkit regulates the position generation with two restrictions.
The first restriction is the “maximum amount of points” that

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 37 | 5

http://www.pyqtgraph.org/
http://www.pyqtgraph.org/
http://www.riverbankcomputing.com/software/pyqt
http://www.riverbankcomputing.com/software/pyqt
http://pyopengl.sourceforge.net/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Chen and De Schutter Python-based toolkits for STEPS

can be generated for each visual component. Once the number
of molecules in a component exceeds this maximum, a reducing
function is called to lessen the amount of points generated accord-
ing to the second restriction: “maximum point density,” defined
as the maximum number of possible points being generated per
unit of measurement (m3 for tetrahedron, and m2 for triangle).
For each associated tetrahedron/triangle of the visual compo-
nents, the maximum number of points that can be generated
within is determined by multiplying the density with its volume
or area, reflecting the proportional distribution of molecules. The
density can be either predefined by the user, or adjusted automat-
ically according to the ratio of maximum against actual amount
of points that will be generated when the auto-adjust mode in the
reducing function is enabled. Each visual component has its own
maximum amount and density configuration so that they can be
specified for individual species but remain consistent within the
component.

The runtime point generation approach requires fast data syn-
chronization between visualization and simulation, which is often
considered to be a weakness of pure Python applications. In our
toolkit, this issue is managed by allowing direct data interfacing
between STEPS and NumPy. NumPy is a Python extension pack-
age that supports large, multi-dimensional array construction
and fast array operation. It is currently the standard Python pack-
age for numerical computing and is supported by many scientific
computing packages. NumPy arrays are also the fundamental data
structure for PyQtGraph, the package we used to implement our
visualization toolkit. Using the SWIG interface, NumPy arrays
can be directly accessed by other C/C++ packages, including
STEPS. At each visual update cycle, molecule distribution data
from the simulation is written directly in formatted NumPy arrays
that will be assigned to visual components, eliminating expensive
STEPS-Python-NumPy data copying. Our implementation also
further speeds up the visual system by implementing all com-
putational intensive routines, such as random point generation,
in C++.

Quantitative visualization of simulations
Although the approach described above provides an intuitive
grasp of how the simulation performs, information acquired

from it is generally vague and qualitative. Important model-
ing information such as concentration and spatial distribution
changes of molecules can only be observed with more accu-
rate, quantitative analysis of the simulation. For this reason our
visualization toolkit also implements a set of data plotting func-
tions that enable dynamic monitoring of the amount and spatial
distribution of molecules, which can be synchronized with the
visualization updates during simulation. The quantitative plot-
ting allows modelers to rapidly validate and debug their models
at the early stage of model development, which is essential for
complex computational models.

RESULTS
Application of the above toolkits highly depends on the condi-
tions and research interests of specific projects. In this section we
present two examples that originate from our previous research
to explain how the toolkits can be used in practice. The meshes
and Python scripts used for these simulations can be down-
loaded from ModelDB (http://senselab.med.yale.edu/modeldb/
ShowModel.asp?model=153351). Video recordings of these two
examples are provided as Supplementary Materials.

IP3 RECEPTOR MODEL
The first example is the inositol 1,4,5-trisphosphate receptor
(IP3R) model described in (Doi et al., 2005). In this model, IP3R
on the membrane between Endoplasmic Reticulum (ER) and
cytosol of a spine can be opened by first binding with cytosolic
IP3 and then Ca2+, or can be inactivated by binding with Ca2+
directly. While open, IP3Rs release Ca2+ stored in the ER into the
cytosol. Figure 3 provides a schematic illustration of the model.
The goal of our example is to visualize the dependency between
the existence of the open IP3R state and the Ca2+concentration
increase in the cytosol.

To create a suitable geometry for the simulation, we extract
a triangular spine morphology from an electron microscopic
reconstruction of spiny dendrites (http://synapses.clm.utexas.
edu/anatomy/Ca1pyrmd/radiatum/K24/K24.stm) and artificially
create a triangle mesh inside to represent the ER membrane of
the spine (Figure 4). This combined triangular surface mesh is
then converted to a tetrahedral mesh in CUBIT. The geometry

FIGURE 3 | Schematic description of the IP3R model on a spine. IP3

receptors on the membrane can be opened by firstly binding with
cytosolic IP3 then Ca2+, or can be inactivated by binding Ca2+ directly.

Four inactivated states exist, depending on the number of Ca2+ ions
bound to the receptor. Open IP3 receptors release Ca2+ from the ER
into the cytosol.

Frontiers in Neuroinformatics www.frontiersin.org April 2014 | Volume 8 | Article 37 | 6

http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=153351
http://synapses.clm.utexas.edu/anatomy/Ca1pyrmd/radiatum/K24/K24.stm
http://synapses.clm.utexas.edu/anatomy/Ca1pyrmd/radiatum/K24/K24.stm
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive


Chen and De Schutter Python-based toolkits for STEPS

FIGURE 4 | Geometry for the IP3R model simulation. Green: A spine
morphology extracted from EM spiny dendrite reconstruction. Purple:
triangular surface that divides the spine into ER and cytosol.

preparation toolkit is used to create the Tetmesh object, which
consists of two compartments: an inner compartment represent-
ing the ER and an outer compartment representing the cytosol,
and a patch for the ER membrane. The compartments and patch
are associated with the biochemical model where Ca2+ bindings
and transitions of different IP3 receptor sites are represented as
surface reactions on the patch, and Ca2+ as well as IP3 are set to be
diffusible in the cytosol compartment and Ca2+ is also diffusible
in the ER compartment.

In the visualization, Ca2+ in cytosol and ER is represented in
orange, while IP3 in cytosol is represented in red, using the “com-
partment species” visual component. Different IP3 receptor sites
on the membrane are represented as different states of a “patch
channel” component with individual color and transparency con-
figurations. Native and Ca2+ bound receptor states are colored in
blue with different transparencies, while the IP3 bound state and
the open state are colored in magenta with 20 and 100% opacity,
respectively.

Figure 5 shows a combined, “All-In-One” view of the simula-
tion where all components are visualized in a single display, while
an independent view of individual components at the same sim-
ulation state is provided in Figure 6 for comparison. Although
multiple open receptors exist on the membrane, as confirmed in
Figure 6C, they are invisible in Figure 5 due to the large num-
ber of Ca2+ ions and IP3 molecules present in the model. This
is a common issue of visualization when dealing with complex
simulations. Figure 6 provides an alternative solution where com-
ponents are split and visualized in four different displays. In this
solution, site transitions of IP3 receptor on the membrane can
be clearly visualized in Figure 6C, while the increase of cytoso-
lic Ca2+ concentration can also be seen in Figure 6A during
simulation, thus the visualization is more comprehensible.

FIGURE 5 | A complete view of the IP3R simulation. Red: IP3 in cytosol,
Orange: Ca2+(Ca2+ in ER is rendered as yellow due to the color
combination with ER compartment), Blue: inactivated IP3 receptors, Dark
magenta: IP3 bound receptors, Bright magenta: IP3 receptors in open state.

FIGURE 6 | A split view of the same simulation state as Figure 5. (A)

Ca2+ distribution in cytosol, (B) IP3 in cytosol, (C) IP3 receptors on the
membrane with different states, (D) Ca2+ in ER.

In order to quantitatively analyze the relationship between the
number of open states of the IP3 receptor and cytosolic Ca2+ con-
centration, we create dynamic plots with these two measures and
monitor their changes throughout the simulation. As shown in
Figure 7, the initial cytosolic Ca2+ activated an IP3 receptor at
approximately 20 ms, leading to the release of Ca2+ from ER and
the rapid increase of cytosolic Ca2+ concentration, which in turn
increases the number of open-state IP3 receptors.

ANOMALOUS DIFFUSION IN SPINY DENDRITES
The second example originates from our previous research
(Santamaria et al., 2006, 2011) showing that molecules trapped
by dendritic spines cause diffusion along spiny dendrites to be
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FIGURE 7 | Plots of cytosolic Ca2+ concentration (top) and the amount of IP3 receptors in open state (bottom) over time.

anomalous, with the degree of anomalousness proportional to
spine density. This example aims to demonstrate this effect via
diffusion simulations on simplified dendritic meshes with varying
spine densities.

Four meshes were generated for this example, using project
specified scripts for the CUBIT Python API. The mesh gen-
eration script is available upon request and can be modified
to produce variations of the meshes. Each mesh consisted of
a cylinder of 20 µm length and 0.7 µm diameter, represent-
ing the dendritic shaft. We then randomly attached a number
of simplified spines, each formed by a spherical head and a
cylindrical neck, onto the shaft cylinder. Spines were generated
according to statistics from EM studies (Harris and Stevens,
1989) and distributed randomly along the shaft cylinder with
densities varying from 0 (as smooth dendrite) to 8 spines/µm
length. Figure 8 gives an overview of these meshes. A biochem-
ical model with one diffusible molecule species is associated
with the meshes. We initialize each simulation by injecting 2000
molecules into a cylindrical zone of 0.7 µm length and 0.7 µm
diameter at the center of each shaft cylinder. This can be achieved
using the indirect element selection method described previously
(Figure 9A). Tetrahedrons chosen by the selector are stored in the
ROI dataset of the corresponding Tetmesh object. Using a similar
approach we also select and store indices to all tetrahedrons

FIGURE 8 | Meshes of simplified dendrites with different spine

densities. Spine density for each mesh (in top–down order): 0, 2, 4, 8
spines/µm.

within the shaft cylinder (Figure 9B) and use them in later
visualization.

Four simulations are assigned to and executed by a simula-
tion control, each of which simulates molecule diffusion in one
of the four meshes. States of the simulations are visualized in
separated displays. In each display, the mesh for the simula-
tion is rendered by the compartment mesh component. As this
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FIGURE 9 | Tetrahedron selection using geometry preparation toolkit

of (A) Injection zone and (B) dendritic shaft. A cylinder-bounding object is
firstly created, as highlighted in the figure. Tetrahedrons in the mesh that
are within the bounding object are selected by the toolkit and stored in the
ROI dataset.

research mainly focuses on the molecule distribution in the den-
dritic shaft, we use the shaft tetrahedron indices stored in the
ROI dataset to create a tetrahedron species component that only
displays molecules inside these tetrahedrons. This is a better solu-
tion compared to the one where all molecules in the simulation
are displayed, particularly for meshes with high spine densities
(Figure 10). Visual updates of displays are synchronized by the
simulation control so that their results are visually comparable.
As shown in Figure 11, noticeable difference of molecule dis-
tribution in dendritic shafts can be observed after a period of
simulation, indicating the anomalous diffusion effect.

To quantitatively visualize the difference of molecule distri-
bution caused by varying spine density, we plot the spatial dis-
tributions along dendritic shafts using the visualization toolkit
(Figure 12). With increase of spine density, more molecules
become trapped in the spines and are thus are unable to diffuse
along the dendritic shaft. The distribution result corroborates our
previous study (Santamaria et al., 2006, 2011).

DISCUSSION
In this paper we have described two supporting toolkits for
STEPS that are implemented in Python. We’ve introduced the
geometry preparation toolkit that integrates CUBIT with STEPS
via Python, allowing complete mesh preparation solutions for
STEPS simulations. We’ve also analyzed approaches to improve
efficiency, accuracy and comprehensibility of visualization for
spatial reaction diffusion simulations, which are adopted in our
implementation of the visualization toolkit. Two examples are
presented to showcase the application of the toolkits in real
research projects. The IP3R model example demonstrates how
compartments and patches are identified and created in realis-
tic spine morphology using the geometry preparation toolkit,
and how the simulation can be visualized properly by splitting

FIGURE 10 | Comparison between the visualization of Top:

compartment species component and Bottom: tetrahedron species

component in anomalous diffusion simulation with the 8/µm spine

density mesh. Molecules that are trapped in spines are displayed in the
compartment species component, but are filtered by the tetrahedron
species component. The latter produces a more clear view of molecule
distribution in the shaft cylinder.

FIGURE 11 | Comparison of diffusion simulations in meshes with

different spine densities. As the spine density increases molecules can
clearly be seen to diffuse more slowly along the dendritic shaft, indicating
the anomalous diffusion effect.

molecule species in multiple displays. The anomalous diffusion
example showcases the usage of “Regions of Interest” datasets
for visually filtering molecules in a specific region. This exam-
ple also demonstrates how multiple simulations are executed and
visualized simultaneously for comparison.
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FIGURE 12 | Spatial distributions of molecules along dendritic shafts for

simulations with varying spine densities (in top–down order: 0, 2, 4, 8

spines/µm). Left: distributions of molecules in the dendritic shafts. Right:

distributions of molecules in the whole dendrite. As spine density increases,
more molecules are trapped in spines, significantly delaying the diffusion
along dendritic shafts.

The toolkits are components of the STEPS supporting envi-
ronment, where Python-based submodules are implemented to
close the gaps between interfaces of various Python packages and
the generic interface of STEPS. The Python world is an open
and rapidly growing community where hundreds of new pack-
ages are available to the public everyday. On one hand, this
provides rich and flexible package options for research projects
using STEPS, on the other hand, packages selected to implement
a customized toolkit may soon be out of date or lack improved
features provided in new packages. Therefore, instead of detailing
the package-dependent, technical implementation of the toolkits,
we’ve concentrated on introducing novel, underlying mecha-
nisms and principles involved. The approaches described in this
paper are beneficial not only to the implementation of current
toolkits, but also to the design and implementation of toolkits for
other simulators in the same category.

At the moment the STEPS supporting environment is not yet
completed, and the existing toolkits can be further improved in
several aspects. The generation of biochemical models remains
text based, requiring significant amount of human efforts in

scripting and maintenance, despite the availability of the SBML
(Hucka et al., 2003) import introduced since STEPS ver. 1.2
(Hepburn et al., 2012). A graphical model description and gen-
eration system would therefore be beneficial. Data gathering and
recording have not yet been included in STEPS, thus result analy-
sis still greatly relies on inefficient, non-generic Python scripting
by the individual user. A data recording system is in development,
where data in STEPS simulations can be stored directly in for-
matted NumPy arrays via the SWIG interface described before,
according to user-defined recording schedules.

As for the toolkits described in this paper, the geometry sup-
port toolkit requires CUBIT, which is commercially licensed.
We anticipate alternatives with similar functionality that can be
obtained freely so that the whole geometry preparation process
can be achieved without extra financial cost. One candidate is
TetGen, whose format has been supported in STEPS since early
versions, although it still lacks several features such as graphical
interaction with meshes. So far, the visualization toolkit supports
visualization of spatial reaction diffusion systems, but does not
yet support visualization of new features in STEPS version 2, such
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as membrane potential and current, which is implemented in the
EField system (Hepburn et al., 2013). This can be achieved by
implementing new visual components within the current toolkit
framework. We are also investigating how to further speed up
the real time 3D rendering, which is essential in the support of
large-scale simulation visualization.

STEPS 2.2 with both toolkits described in this paper, as well
as API references and a user manual, can be accessed from http://
steps.sourceforge.net.
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