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Abstract

The pairing of CRISPR/Cas9-based gene editing with massively parallel single-cell readouts now enables large-scale
lineage tracing. However, the rapid growth in complexity of data from these assays has outpaced our ability to
accurately infer phylogenetic relationships. First, we introduce Cassiopeia—a suite of scalable maximum parsimony
approaches for tree reconstruction. Second, we provide a simulation framework for evaluating algorithms and
exploring lineage tracer design principles. Finally, we generate the most complex experimental lineage tracing
dataset to date, 34,557 human cells continuously traced over 15 generations, and use it for benchmarking
phylogenetic inference approaches. We show that Cassiopeia outperforms traditional methods by several metrics and
under a wide variety of parameter regimes, and provide insight into the principles for the design of improved
Cas9-enabled recorders. Together, these should broadly enable large-scale mammalian lineage tracing efforts.
Cassiopeia and its benchmarking resources are publicly available at www.github.com/YosefLab/Cassiopeia.
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The ability to track fates of individual cells during the
course of biological processes such as development is
of fundamental biological importance, as exemplified by
the ground-breaking work creating cell fate maps in
Caenorhabditis elegans through meticulous visual obser-
vation [1, 2]. More recently, CRISPR/Cas9 genome engi-
neering has been coupled with high-throughput single-
cell sequencing to enable lineage tracing technologies that
can track the relationships between a large number of
cells over many generations (Fig. 1a, [3, 4]). Generally,
these approaches begin with cells engineered with one
or more recording “target sites” where Cas9-induced her-
itable insertions or deletions (“indels") accumulate and
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are subsequently read out by sequencing. A phylogenetic
reconstruction algorithm is then used to infer cellular
relationships from the pattern of indels. These tech-
nologies have enabled the unprecedented exploration of
zebrafish [5–8] and mouse development [9, 10].
However, the scale and complexity of the data produced

by these methods are rapidly becoming a bottleneck for
the accurate inference of phylogenies. Specifically, tradi-
tional algorithms for reconstructing phylogenies (such as
neighbor joining [11] or Camin-Sokal [12]) have not been
fully assessed with respect to lineage tracing data and may
not be well suited for analyzing large-scale lineage tracing
experiments for several reasons. First, traditional algo-
rithms were developed for the cases of few samples (in this
case cells), and thus, scalability is amajor limitation (Addi-
tional file 1: Fig S1). Second, these algorithms are not well
suited to handle the amount of missing data that is typical
of lineage tracing experiments, which can be “herita-
ble” (resulting from either large Cas9-induced resections
that remove target sites or transcriptional silencing) or
“stochastic” (caused by incomplete capture of target sites).
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Fig. 1 A generalized approach to lineage tracing and lineage reconstruction. a The workflow of a lineage tracing experiment. First, cells are
engineered with lineage tracing machinery, namely Cas9 that cuts a genomic target site; the target site accrues heritable, Cas9-induced indels
(“character states”). Next, the indels are read off from single cells (e.g., by scRNA-seq) and summarized in a “character matrix,” where rows represent
cells, columns represent individual target sites (or “characters”), and values represent the observed indel (or “character state”). Finally, the character
matrix is used to infer phylogenies by one of various methods. b The Cassiopeia processing pipeline. The Cassiopeia software includes modules for
the processing of target-site sequencing data: first, identical reads are collapsed together and similar reads are error corrected; second, these reads
are locally aligned to a reference sequence and indels are called from this alignment; third, unique molecules are aggregated per cell and
intra-doublets are called from this information; finally, the cell population is segmented into clones (or lineage groups) and inter-doublets are called.
These clones are then passed to Cassiopeia’s reconstruction module for phylogenetic inference. c The Cassiopeia reconstruction framework.
Cassiopeia takes as input a “character matrix,” summarizing the mutations seen at heritable target sites across cells. Cassiopeia-Hybrid merges two
novel algorithms: the “greedy” (Cassiopeia-Greedy) and “Steiner tree/integer linear programming” (Cassiopeia-ILP) approaches. First, the greedy
phase identifies mutations that likely occurred early in the lineage and splits cells recursively into groups based on the presence or absence of these
mutations. Next, when these groups reach a predefined threshold, we infer Steiner trees, finding the tree of minimum weight connecting all
observed cell states across all possible evolutionary histories in a “potential graph,” using integer linear programming (ILP). Finally, these trees
(corresponding to the maximum parsimony solutions for each group) are returned and merged into a complete phylogeny

Third, these approaches do not explicitly take into con-
sideration the design principles of lineage tracers, such
as the irreversibility of mutations or the unedited state of
the founder cell. Together, these reasons necessitate the

development of an adaptable approach for reconstructing
single-cell phylogenies and an appropriate benchmarking
resource that can aid in the development of such algo-
rithms.
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Ideally, an algorithm for phylogeny inference from lin-
eage tracing data would be robust to experimental param-
eters (e.g., rate of mutagenesis, the number of Cas9 target
sites), scalable to at least tens of thousands of cells, and
resilient to missing data. In this study, we introduce Cas-
siopeia: a novel suite of three algorithms specifically aimed
at reconstructing large phylogenies from lineage trac-
ing experiments with special consideration for the Cas9-
mutagenesis process andmissing data. Cassiopeia’s frame-
work consists of three modules: (1) a greedy algorithm
(Cassiopeia-Greedy), which attempts to construct trees
efficiently based on mutations that likely occurred earli-
est in the experiment; (2) a near-optimal algorithm that
attempts to find the most parsimonious solution using a
Steiner tree approach (Cassiopeia-ILP); and (3) a hybrid
algorithm (Cassiopeia-Hybrid) that blends the scalability
of the greedy algorithm and the exactness of the Steiner
tree approach to support massive single-cell lineage trac-
ing phylogeny reconstruction. To demonstrate the utility
of these algorithms, we compare Cassiopeia to existing
methods using two resources: first, we benchmark the
algorithms using a custom simulation framework for gen-
erating synthetic lineage tracing datasets across varying
experimental parameters. Second, enabled by a customiz-
able target-site processing pipeline (Fig. 1b), we assess
these algorithms using a new reference in vitro lineage
tracing dataset consisting of 34,557 cells over 11 clonal
populations. Finally, we use Cassiopeia to explore exper-
imental design principles that could improve the next
generation of Cas9-enabled lineage tracing systems.

Results
Cassiopeia: a scalable framework for single-cell lineage
tracing phylogeny inference
Typically, phylogenetic trees are constructed by attempt-
ing to optimize a predefined objective over characters (i.e.,
target sites) and their states (i.e., indels) [13]. Distance-
based methods (such as neighbor joining [11, 14, 15]
or phylogenetic least-squares [16, 17]) aim to infer a
weighted tree that best approximates the dissimilarity
between nodes (i.e., the number of characters differen-
tiating two cells should be similar to their distance in
the tree). Alternatively, character-based methods aim to
infer a tree of maximum parsimony [18, 19]. Convention-
ally, in this approach, the returned object is a rooted tree
(consisting of observed “leaves” and unobserved “ances-
tral” internal nodes) in which all nodes are associated
with a set of character states such that the overall num-
ber of changes in character states (between ancestor and
child nodes) is minimized. Finally, a third class of meth-
ods closely related to character-based ones takes a prob-
abilistic approach over the characters using maximum
likelihood [20, 21] or posterior probability [22] as an
objective.

We chose to focus our attention on maximum
parsimony-based methods due to the early success of
applying these methods to lineage tracing data [5, 6] as
well as the wealth of theory and applications of these
approaches in domains outside of lineage tracing [23].
Our framework, Cassiopeia, consists of three algorithms
for solving phylogenies. In smaller datasets, we propose
the use of a Steiner tree approach (Cassiopeia-ILP) [24]
for finding the maximum parsimony tree over observed
cells. Steiner trees have been extensively used as a way
of abstracting network connectivity problems in various
settings, such as routing in circuit design [25], and have
previously been proposed as a general approach for find-
ing maximum parsimony phylogenies [26, 27]. To adapt
Steiner trees to single-cell lineage tracing, we devised a
method for inferring a large underlying “potential graph”
where vertices represent unique cells (both observed and
plausible ancestors) and edges represent possible evolu-
tionary paths between cells. Importantly, we tailor this
inference specifically to single-cell lineage tracing assays:
we model the irreversibility of Cas9 mutations and impute
missing data using an exhaustive approach, considering
all possible indels in the respective target sites (see the
“Methods” section). After formulating the potential graph,
we use integer linear programming (ILP) as a technique
for finding near-optimal solutions to the Steiner tree prob-
lem. Because of the NP-Hard complexity of Steiner trees
and the difficult approximation of the potential graph
(whose effect on solution stability is assessed in Addi-
tional file 1: Fig S2), the main limitation of this approach
is that it cannot in practice scale to very large numbers of
cells.
To enable Cassiopeia to scale to tens of thousands

of cells, we apply a heuristic-based greedy algorithm
(Cassiopeia-Greedy) to group cells using mutations that
likely occurred early in the lineage experiment. Our
heuristic is inspired by the idea of “perfect phylogeny”
[28, 29]—a phylogenetic regime in which every muta-
tion (here, Cas9-derived indels) is unique and occurred at
most once. For the case of binary characters (i.e., mutated
yes/no without accounting for the specific indel), there
exists an efficient algorithm [30] for deciding whether
a perfect phylogeny exists and if so, to also reconstruct
this phylogeny. However, two facets of the lineage trac-
ing problem complicate the deduction of whether or not a
perfect phylogeny exists: first, the “multi-state” nature of
characters (i.e., each character is not binary, but rather can
take on several different states, which makes the problem
NP-Hard) [31, 32]; and second, the existence of missing
data [33]. To address these issues, we first take a the-
oretical approach and prove that since the founder cell
(root of the phylogeny) is unedited (i.e., includes only
uncut target sites) and that the mutational process is irre-
versible (i.e., edited sites cannot be recut by Cas9), we are
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able to reduce the multi-state instance to a binary one so
that it can be resolved using a perfect phylogeny-based
greedy algorithm. Though Cassiopeia-Greedy does not
require a perfect phylogeny, we also prove that if one does
exist in the dataset, our proposed algorithm is guaran-
teed to find it (Theorem 1). Secondly, Cassiopeia-Greedy
takes a data-driven approach to handle cells with missing
data (see the “Methods” section). Unlike Cassiopeia-ILP,
Cassiopeia-Greedy is not by design robust to parallel
evolution (i.e., “homoplasy,” where a given state indepen-
dently arises more than once in a phylogeny in different
parts of the tree). However, we demonstrate theoretically
that in expectation, mutations observed in more cells are
more likely to have occurred fewer times in the experi-
ment for sufficiently small, but realistic, ranges of muta-
tion rates (see the “Methods” section; Additional file 1:
Fig S3), thus supporting the heuristic. Moreover, using
simulations, we quantify the precision of this greedy
heuristic for varying numbers of states and mutation
rates, finding in general these splits are precise (especially
in these regimes of realistic parameterizations; see the
“Methods” section and Additional file 1: Fig S4). Below, we
further discuss simulation-based analyses that illustrate
Cassiopeia-Greedy’s effectiveness with varying amounts
of parallel evolution (Additional file 1: Fig S5).
While Cassiopeia-ILP and Cassiopeia-Greedy are suit-

able strategies depending on the dataset, we can combine
these two methods into a hybrid approach (Cassiopeia-
Hybrid) that covers a far broader scale of dataset sizes
(Fig. 1c). In this use case, Cassiopeia-Hybrid balances the
simplicity and scalability of the multi-state greedy algo-
rithm with the exactness and generality of the Steiner
tree approach. The method begins by splitting the cells
into several major clades using Cassiopeia-Greedy and
then separately reconstructing phylogenies for each clade
with Cassiopeia-ILP. This parallel approach on reasonably
sized sub-problems (∼ 300 cells in each clade) ensures
practical run-times on large numbers of cells (Addi-
tional file 1: Fig S1). After solving all sub-problems with
the Steiner tree approach, we merge all clades together to
form a complete phylogeny (Fig. 1c).

A simulation engine enables a comprehensive benchmark
of lineage reconstruction algorithms
To provide a comprehensive benchmark for phylogeny
reconstruction, we developed a framework for simulat-
ing lineage tracing experiments across a range of exper-
imental parameters. In particular, the simulated lineages
can vary in the number of characters (e.g., Cas9 target
sites), the number of states (e.g., possible Cas9-induced
indels), the probability distribution over these states, the
mutation rate per character, the number of cell gener-
ations, and the amount of missing data. We started by
estimating plausible “default” values for each simulation

parameter using experimental data (discussed below and
indicated in Fig. 2). In each simulation run, we varied
one of the parameters while keeping the rest fixed to
their default value. The probability of mutating to each
state was found by interpolating the empirical distribu-
tion of indel outcomes (Additional file 1: Fig S6, see the
“Methods” section). Each parameter combination was
tested using a maximum of 50 replicates or until conver-
gence, each time sampling a set of 400 cells from the total
2D cells (where D is the depth of the simulated tree).
We compare the performance of our Cassiopeia

algorithms (Cassiopeia-ILP, Cassiopeia-Greedy, and
Cassiopeia-Hybrid) as well as an alternative maximum
parsimony algorithm, Camin-Sokal (previously used in
lineage tracing applications [5, 6]), and the distance-based
algorithm neighbor joining. We assess performance using
a combinatoric metric, “triplets correct” (Additional file 1:
Fig S7, see the “Methods” section), which compares the
proportion of cell triplets that are ordered correctly in the
tree. Importantly, this statistic is a weighted average of the
triplets, stratified by the depth of the triplet (measured by
the distance from the root to the latest common ancestor
(LCA); see the “Methods” section). As opposed to other
tree comparison metrics, such as Robinson-Foulds [34],
we reason that combinatoric metrics [35] more explicitly
address the needs of fundamental downstream analyses,
namely determining evolutionary relationships between
cells (though the triplets correct statistic largely agrees
with distance-based metrics; see Additional file 1: Fig
S7b).
Overall, our simulations demonstrate the strong per-

formance and efficiency of Cassiopeia. Specifically, we
see that the Cassiopeia suite of algorithms consistently
finds more accurate trees as compared to both Camin-
Sokal and neighbor joining (Fig. 2a–e, Additional file 1:
Fig S8a-e). Furthermore, not only are trees produced with
Cassiopeia more accurate than existing methods, but also
more parsimonious across all parameter ranges—serving
as an indication that the trees reach a more optimal objec-
tive solution (Additional file 1: Fig S9). Importantly, we
observe that Cassiopeia-Hybrid and Cassiopeia-Greedy
are more effective than neighbor joining in moderately
large sample regimes (Additional file 1: Fig S10). Notably,
Cassiopeia-Greedy and Cassiopeia-Hybrid both scale to
especially large regimes (of up to 50,000 cells, a scale
that includes the approximate upper limit of most cur-
rent single-cell sequencing experiments) without sub-
stantial compromise in accuracy (Additional file 1: Fig
S11). In contrast, Camin-Sokal and Cassiopeia-ILP could
not scale to such input sizes (Additional file 1: Fig S1).
Finally, we observe that under a bootstrapping analysis,
Cassiopeia’s modules are robust to lineage tracing data
(Additional file 1: Fig S12a,b) as compared to neighbor
joining for reference (Additional file 1: Fig S12c, though
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Fig. 2 Cassiopeia algorithms outperform other phylogenetic reconstruction methods on simulated lineages. Accuracy is compared between five
algorithms (Cassiopeia-Greedy, Cassiopeia-ILP, and Cassiopeia-Hybrid algorithms as well as neighbor joining and Camin-Sokal) on 400 cells.
Phylogeny reconstruction accuracy is assessed with the triplets correct statistic across several experimental regimes: a the number of characters, b
the mutation rate (i.e., Cas9 cutting rate), c the depth of the tree (or length of the experiment), d the number of states per character (i.e., number of
possible indel outcomes), and e the dropout rate. Dashed lines represent the default value for each stress test. Between 10 and 50 replicate trees
were reconstructed, depending on the stability of triplets correct statistic and overall runtime. Standard error over replicates is represented by the
shaded area

neighbor joining’s stability may be improved with more
sophisticated distance functions and feature selection).
These simulations additionally grant insight into crit-

ical design parameters for lineage recording technology.
Firstly, we observe that the “information capacity” (i.e.,
number of characters and possible indels, or states) of a
recorder confers an increase in accuracy for Cassiopeia’s
modules but not necessarily Camin-Sokal and neighbor
joining (though they do perform moderately well in low
information capacity simulations; Fig. 2a, d). This is likely
because the greater size of the search space negatively
affects the performance of these two algorithms (in other
contexts referred to as the “curse of dimensionality” [36]).
In addition to the information capacity, we find that indel
distributions that tend towards a uniform distribution
(and thus higher entropy) allow for more accurate recon-
structions especially when the number of states is small
or the number of samples is large (Additional file 1:
Fig S13). Unsurprisingly, the proportion of missing data
causes a precipitous decrease in performance (Fig. 2e).

Furthermore, in longer experiments where the observed
cell population is sampled from a larger pool of cells,
we find that the problem tends to become more difficult
(Fig. 2c).
Furthermore, these results grant further insight into

how Cassiopeia-Greedy is affected in regimes where par-
allel evolution is likely: such as in low information capac-
ity regimes (e.g., where the number of possible indels
is less than 10, Fig. 2d) or with high mutation rates
(Fig. 2b). In both of these regimes, the proportion of
parallel evolution mutations of all mutations increases
(Additional file 1: Fig S14). While Cassiopeia-ILP out-
performs Cassiopeia-Greedy in these simulations, high-
lighting its utility to solve small, yet complex, datasets,
we further explored Cassiopeia-Greedy’s effectiveness in
these regimes. To strengthen our previous theoretical
results suggesting that indels observed in more cells are
more likely to occur fewer times and earlier in the phy-
logeny (Additional file 1: Fig S3), we explored how par-
allel evolution affects Cassiopeia-Greedy empirically with
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simulation. Specifically, we simulated trees with varying
numbers of parallel evolution events at various depths
and find overall that while performance decreases with
the number of these events, the closer these events occur
to the leaves, the smaller the effect (Additional file 1: Fig
S5). Furthermore, we find that under the “default” simula-
tion parameters (as determined by the experimental data;
Additional file 1: Fig S6 and 3), Cassiopeia-Greedy consis-
tently makes accurate choices of the first indel event by
which cells are divided into clades (Additional file 1: Fig
S4b). Of course in regimes where possible, Cassiopeia-ILP
outperforms Cassiopeia-Greedy when there are few states

(i.e., fewer than 10; Fig. 2d) or high mutation rates (i.e.,
greater than 10%; Fig. 2b).
Practically, the issue of parallel evolution can be

addressed to some extent by incorporating state priors
(i.e., probabilities of Cas9-induced indel formation). Ide-
ally, Cassiopeia-Greedy would use these priors to select
mutations that are of low probability, but observed at high
frequency. Theoretically, this would be advantageous as
low-probability indels are expected to occur fewer times
in the tree (1); thus, if they appear at high frequency at
the leaves, it is especially likely that these occurred ear-
lier in the phylogeny. Furthermore, our precision analysis

Fig. 3 An in vitro reference experiment. a A reference lineage tracing dataset was generated using the technology proposed in Chan et al. [10] to
human cells cultured in vitro for ∼ 15 generations. A total of 34,557 cells were analyzed after filtering and error correction. Only the initial split (into
two plates) is shown. Analysis of the subsequent split (into four plates) is provided in Additional file 1: Fig S22. b–f Summary of relevant lineage
tracing parameters for each clonal population in the experiment: b the number of characters per clone, c the number of states per target site, d the
estimated mutation rate per target site, e the median dropout per target site, and f the proportion of uniquely marked cells. Gray shading denotes
parameter regimes tested in simulations, and red-dashed lines denote the default values for each synthetic benchmarks
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indicates that Cassiopeia-Greedy’s decisions are espe-
cially precise if it chooses an indel with a low prior
(Additional file 1: Fig S4). To incorporate these priors in
practice, we selected a link function (i.e., one translating
observed frequency and prior probability to priority) that
maximized performance for Cassiopeia-Greedy (Addi-
tional file 1: Fig S15; see the “Methods” section). After
finding an effective approach for integrating prior prob-
abilities, we performed the same benchmarks and found
that in cases of likely parallel evolution the priors con-
fer an increase in accuracy (e.g., with high mutation rates;
Additional file 1: Fig S16), especially in larger regimes
(Additional file 1: Fig S11).
Here, we have introduced a flexible simulator that is

capable of fitting real data and thus can be used for
future benchmarking of algorithms. Using this simulator
and a wide range of parameters, we have demonstrated
that Cassiopeia performs substantially better than tra-
ditional methods. Furthermore, these simulations grant
insight into how Cassiopeia’s performance is modulated
by various experimental parameters, suggesting design
principles that can be optimized to bolster reconstruc-
tion accuracy. Specifically, these simulations suggest that
these technologies would benefit most from increases in
information capacity, via more target sites or more diverse
indel outcomes, and mutation rates tuned appropriately
as to ensure low rates of parallel evolution. We anticipate
that this resource will continue to be of use in explor-
ing design principles of recorders and the effectiveness of
novel algorithms.

An in vitro reference experiment allows evaluation of
approaches on empirical data
Existing experimental lineage tracing datasets lack a
defined ground truth to test against, thus making it
difficult to assess phylogenetic accuracy in practice.
To address this, we performed an in vitro experiment
tracking the clonal expansion of human cells (A549
lung adenocarcinoma cell line) engineered with a pre-
viously described lineage tracing technology [10]. Here,
we tracked the growth of 11 clones (each with non-
overlapping target site sets for deconvolving clonal pop-
ulations) over the course of 21 days (approx. 15 gen-
erations on average), randomly splitting the pool of
cells into two plates every 7 days (Fig. 3a; see the
“Methods” section). At the end of the experiment, we sam-
pled approximately 10,000 cells from each of the four final
plates. This randomized plate splitting strategy establishes
a course-grained ground truth of how cells are related to
each other. Here, cells within the same plate can be arbi-
trarily distant in their lineage; however, there is only a
lower bound on lineage dissimilarity between cells in dif-
ferent plates (since they are by definition at least separated
by the number of mutations that have occurred since the

last split). Thus, overall, on average, we expect cells within
the same plate to be closer to each other in the phylogeny
than cells from different plates. However, due to the con-
siderations discussed above, we also expect to see some
cells more closely related across plates thanwithin (Fig. 3a,
right), and indels relating these cells across plates are likely
to have occurred before the split.
Our lineage recorder is based on a constitutively

expressed target sequence consisting of three evenly
spaced cut sites (each cut site corresponding to a char-
acter) and a unique integration barcode (“intBC”) which
we use to distinguish between target sites and thus more
accurately relate character states across cells (Fig. 1b).
The target sites are randomly integrated into the genomes
of founder cells at high copy number (on average 10
targets per cell or a total of 30 independently evolving
characters; Fig. 3b, S18c). We built upon the processing
pipeline in our previous work [10] to obtain confident
indel information from scRNA-seq reads ( Fig. 1b, Addi-
tional file 1: Fig S17 & Fig S18 , see the “Methods” section
for pre-processing procedures and guidelines, especially
the “Guidelines for final quality control” section). In addi-
tion, we have added modules for the detection of cell
doublets using the sets of intBCs in each clone and
the indels detected within cells and have determined an
effective detection strategy using simulations (see the
“Methods” section, Additional file 1: Fig S19). Impor-
tantly, though not directly applicable here, this doublet
detection can be supplemented by other approaches when
transcriptional data [37, 38] or multiplexing barcodes
[39] are available. Additionally, we rely on a data-driven
approach for estimating the likelihoods of each indel (see
the “Methods” section; Additional file 1: Fig S20) because
other approaches for indel-likelihood prediction [40–42]
may be biased by cell type or cell state.
After quality control, error correction, and filtering, we

proceeded with analyzing a total of 34,557 cells across 11
clones. This diverse set of clonal populations represent
various levels of indel diversity (i.e., number of possi-
ble states, Fig. 3c), size of intBC sets (i.e., number of
characters, Fig. 3b and Additional file 1: Fig S18c), char-
acter mutation rates (Fig. 3d, see the “Methods” section),
and proportion of missing data (Fig. 3e, see the
“Methods” section). Most importantly, this dataset repre-
sents a significant improvement in lineage tracing exper-
iments: it is the longest and most complex dataset to
date in which the large majority of cells, over the entire
cell population, have unique mutation states (71% after
all quality control and filtering; percentages of unique
cells per clone is presented in Fig. 3f ), indicating a rich
character state complexity for tree building.
We next reconstructed trees for each clone (exclud-

ing two which were removed through quality-control
filters; see “Methods” section) with our suite of
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algorithms, as well as neighbor joining and Camin-Sokal
(when computationally feasible). For both Cassiopeia-
Greedy and Cassiopeia-Hybrid methods, we also com-
pared tree reconstruction accuracy with or without prior
probabilities. The tree for Clone 3, consisting of 7289
cells, along with its character matrix and first split anno-
tations (i.e., whether cells were initially split into plate 0
or plate 1, denoted as the plate ID), is presented in Fig. 4.
Interestingly, we find that certain indels indeed span the
different plates, thus suggesting that Cassiopeia-Greedy
chooses as early splits indels which likely occurred prior
to the first separation of plates (though this could also
be due to parallel events that occurred independently
at each plate). Moreover, the character matrix and the
nested dissection of the tree illustrate the abundant lin-
eage information encoded in this clone (96% of the 7289
observed cells have unique mutation states) which allows
Cassiopeia to infer a relatively deep tree (Fig. 4d). Despite
this complexity, Cassiopeia infers a tree that largely agrees
with the observed mutations: cells close to one another in
the tree tend to have similar mutations (Fig. 4e).
By keeping track of which plate each cell came from,

we are able to evaluate how well the distances in a com-
putationally reconstructed tree reflect the distances in
the experimental tree. Thus, we test the reconstruction
ability of an algorithm using two metrics for measuring
the association between plate ID and substructure: “meta
purity” and “mean majority vote” (see the “Methods”
section). Both are predicated on the assumption that,
just as in the real experiment, as one descends the recon-
structed tree, one would expect to find cells more closely
related to one another. In this sense, we utilize these two
metrics for testing homogeneous cell labels below a certain
internal node in a tree, which we refer to as a “clade.”
We use these statistics to evaluate reconstruction accu-

racy for Clone 3 with respect to the first split labels (i.e.,
plate 0 or 1, Fig. 5). In doing so, we find that Cassiopeia-
Greedy and Cassiopeia-Hybrid consistently outperform
neighbor joining. We find overall consistent results for
the remainder of clones reconstructed (Additional file 1:
Fig S21, and additionally when considering the subse-
quent split into four plates—Additional file 1: Fig S21),
although Cassiopeia’s modules have the greatest advan-
tage in larger reconstructions. Specifically, Camin-Sokal
and neighbor joining perform similarly to Cassiopeia’s
modules on clones with few cells (e.g., Clone 11) or with
low cell diversity (e.g., Clone 5, where target sites are
“exhausted,” possibly due to too-fast cutting, (Fig. 3f, Addi-
tional file 1: Fig S23). Both cases indicate that in smaller
and less complex clones traditional algorithmsmay be suf-
ficient for reconstruction. Additionally, many of the issues
described previously—parallel evolution, missing data, and
informationcontent—contribute to inferential errors in this
empirical dataset (for example, Additional file 1: Fig S24).

Overall, we anticipate that this in vitro dataset will serve
as a valuable empirical benchmark for future algorithm
development. Specifically, we have demonstrated how this
dataset can be used to evaluate the accuracy of inferred
phylogenies and illustrate that Cassiopeia consistently
outperforms neighbor joining for the purposes of recon-
structing trees from single-cell lineage tracing technolo-
gies.Moreover, we demonstrate Cassiopeia’s scalability for
reconstructing trees that are beyond the abilities of other
maximum parsimony-based methods like Camin-Sokal as
they currently have been implemented.

Generalizing Cassiopeia to alternative and future
technologies
While previous single-cell lineage tracing applications
have proposed methods for phylogenetic reconstruction,
they have been custom-tailored to the experimental sys-
tem, requiring one to filter out common indels [7] or pro-
vide indel likelihoods [10]. We thus investigated how well
Cassiopeia generalizes to other technologies with recon-
structions of data generated with the GESTALT tech-
nology applied to zebrafish development [5, 6] (Fig. 6a,
Additional file 1: Fig S25). Comparing Cassiopeia’s algo-
rithms to neighbor joining and Camin-Sokal (as applied in
these previous studies [5, 6]), we find that Cassiopeia-ILP
consistently finds the most parsimonious solution. Fur-
thermore, the mean majority vote statistic also indicates
that there is strong tissue-type enrichment as a function
of tree depth, agreeing with Camin-Sokal’s reconstruction
whichwas used in the original study [6] (Fig. 6b). Together,
these results clearly demonstrates Cassiopeia’s effective-
ness for existing alternative lineage tracing technologies.
After establishing Cassiopeia’s generalizability, we

turned to investigating plausible next-generation lineage
tracers. Recently, base-editing systems (Fig. 6c) have been
proposed to precisely edit A > G [43], C > T [44,
45], or possibly C > N (N being any base as in [46]).
The promise of base-editing lineage recorders is three-
fold: first, a base editor would increase the number of
editable sites (as compared to the ones that rely on Cas9-
induced double-strand breaks [5, 7, 10]) although at the
expense of the number of states (at best 4, correspond-
ing to A, C, T, and G). Second, a base-editing system
would theoretically result in less dropout, since target site
resection via Cas9-induced double-strand breaks is far
less likely [44]. Third, it is hypothesized that base editors
would be less cytotoxic as it does not depend on induc-
ing double-strand breaks on DNA (although this relies
on effective strategies for limiting off-target base edit-
ing of DNA and RNA [47]). To evaluate the application
of base editors for lineage tracing, we tested the perfor-
mance of Cassiopeia in high-character, low-state regimes
as would be the case in base editing (Fig. 6c, see the “Meth-
ods” section). Using simulations with parameters deduced
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Fig. 4 Cassiopeia can reconstruct high-resolution phylogenetic trees from empirical lineage tracing data. The full phylogenetic tree for Clone 3 (a),
consisting of 7289 cells, was reconstructed using Cassiopeia-Hybrid (with priors) and is displayed. The phylogram represents cell-cell relationships,
and each cell is colored by sample ID at the first split (plate 0 or 1). The character matrix is displayed with each unique character state (or “indel”)
represented by distinct colors (light gray represents uncut sites; white represents missing values). Of these 7289 cells, 96% were uniquely tagged by
their character states. b, c Nested, expanded views of the phylogram and character matrices. As expected, Cassiopeia correctly relates cells with
similar character states, and closely related cells are found within the same culture plate. d A histogram of the tree depth of each leaf from the root
(mean = 8.22, max = 15). e Concordance between normalized allelic distance and normalized phylogenetic distance (see the “Methods” section;
Pearson’s correlation = 0.53)

by a recent base editor application [46], we demonstrate
that there appears to be an advantage of havingmore char-
acters than states (Fig. 6c). Of note, we did not observe

any substantial deviation in these simulations from our
initial scalability benchmarks in Additional file 1: Fig
S1. This suggests that base editors may be a promising



Jones et al. Genome Biology           (2020) 21:92 Page 10 of 27

Fig. 5 Cassiopeia builds highly accurate trees from large empirical datasets. The consistency between tree reconstructions is evaluated with respect
to the first split. The mean majority vote (a) and the meta purity test (b) were used for Cassiopeia-Hybrid and Cassiopeia-Greedy (both with or
without priors) and neighbor joining. The statistics are plotted as a function of the number of clades at the depth of the test (i.e., the number of
clades created by a horizontal cut at a given depth). All Cassiopeia approaches consistently outperform neighbor joining by both metrics

future direction for lineage tracing from a theoretical
perspective.
Another potentially promising design consideration

concerns the range of character mutation rates and their
variability across different target sites—a parameter that
can be precisely engineered [48]. In this design, one would
expect the variability to help distinguish between early
and late branching points and consequently achieve better
resolution of the underlying phylogeny [9, 49, 50].We sim-
ulated “Phased Recorders” (Additional file 1: Fig S26) with
varying levels of target-site cutting variability and observe
that this design allows for better inference when the dis-
tributions of mutation probabilities are more dispersed
(Additional file 1: Fig S26b). This becomes particularly
useful when one can integrate accurate indel priors into
Cassiopeia.
Overall, these results serve to illustrate how Cassiopeia

and the simulation framework can be used to explore
experimental designs. While there inevitably will be chal-
lenges in new implementations, these analyses demon-
strate theoretically how design parameters can be opti-
mized for downstream tree inference. In this way, the
combination of our algorithms and simulations enables
others to explore not only new algorithmic approaches
to phylogenetic reconstruction but also new experimental
approaches for recording lineage information.

Conclusions
In this study, we have presented three resources support-
ing future single-cell lineage tracing technology develop-
ment and applications. Firstly, we described Cassiopeia, a
scalable and accurate maximum parsimony framework for
inferring high-resolution phylogenies in single-cell lineage
tracing experiments. Next, we introduced a simulation
approach for benchmarking reconstruction methods and

investigating novel experimental designs. Finally, we gen-
erated the largest and most diverse empirical lineage trac-
ing experiment to date, which we present as a reference for
the systematic evaluation of phylogeny inference on real
lineage tracing data. With the combination of these three
resources, we have demonstrated the improved scalability
and accuracy of Cassiopeia over traditional approaches for
single-cell lineage tracing data and have explored design
principles for more accurate tracing. To ensure broad use,
we have made a complete software package, including the
algorithms, the simulation framework, and a processing
pipeline for raw data, all publicly available at www.github.
com/YosefLab/Cassiopeia.
The results highlighted in this manuscript demonstrate

the variability in reconstruction accuracy for each of
Cassiopeia’s modules depending on the parameters. As
introduced here, we suggest using Cassiopeia-ILP for
small regimes (fewer than 200 cells) especially where
there is low information capacity, Cassiopeia-Greedy
for extremely large regimes (10,000 cells and larger),
and Cassiopeia-Hybrid for intermediate regimes. Ideally,
Cassiopeia-Hybrid could be run in all situations and
transition appropriately between Cassiopeia-Greedy and
Cassiopeia-ILP depending on the complexity of the data.
While here we use the number of cells as the criterion
for transitioning, we anticipate there is a more consistent
statistic (e.g., the entropy of a group of cells) for con-
trolling the Cassiopeia-Hybrid transition that will make
Cassiopeia more intuitive and effective with handling real
data.
Though we illustrate that Cassiopeia provides the com-

putational foundation necessary for future large-scale lin-
eage tracing experiments, there are several opportunities
for future improvement. First, the inclusion of prior prob-
abilities increases Cassiopeia’s performance only when

www.github.com/YosefLab/Cassiopeia
www.github.com/YosefLab/Cassiopeia
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Fig. 6 Generalizing Cassiopeia and future design principles of CRISPR-enabled lineage tracers. a Cassiopeia generalizes to alternative lineage tracing
methods, as illustrated with the analysis of data from GESTALT technology [5, 6]). In a comparison of parsimony across Camin-Sokal, neighbor
joining, and Cassiopeia’s methods, the Steiner tree approach consistently finds more parsimonious (i.e., more optimal) solutions. Z-scores for each
dataset are annotated over each tile. b Biological integrity of trees for each zebrafish from Raj et al. [6], inferred with Cassiopeia-ILP, was assessed
using the mean membership statistic (the ”Methods” section) with respect to tissue-type annotations from the original study. c Exploring
information capacity of recorders with base editors. A theoretical base editor was simulated for 400 cells and reconstructions with Cassiopeia-Hybrid,
with and without priors. We compared the accuracy of the reconstructions to the simulated tree using the triplets correct statistic. We describe the
performance of Cassiopeia-Hybrid as the number of characters was increased (and consequently number of states was decreased)

parallel evolution is likely (e.g., with a high per-character
mutation rate or in low character state regimes). While
maximum parsimony methods are attractive due to their
non-parametric nature, future studies may build on our
work here by developing more powerful approaches for
integrating prior mutation rates into maximum likelihood
[20, 21] or Bayesian inference [51] frameworks, perhaps
relying on recent literature that seeks to predict indel for-
mation probabilities [40–42]. Future work in this space
may also focus on using maximum parsimony solutions

to further refine solutions in an effort to resolve branch
length as with GAPML [52] or with paired transcrip-
tomic observations [53]. Second, there exists a promis-
ing opportunity in developing new approaches for better
handling of missing data. Determining a model which
explicitly distinguishes between stochastic and heritable
missing data may increase tree accuracy. Alternatively,
adapting supertree methods (such as the Triple MaxCut
algorithm [54]) for lineage tracing data may be an interest-
ing direction as they have been effective for dealing with
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missing data (but only when this missing data is randomly
distributed [55]). Aside from computational approaches
for dealing with missing data, it is still unclear how
much missing data is due to silencing, Cas9-resections, or
stochastic dropout and experiments to elucidate the con-
tributions of each will be helpful to the future design of
lineage tracers. Third, while we provide theoretical and
empirical evidence for our greedy heuristic, we note that
there are opportunities for developing other heuristics—
for example, by considering mutations in many characters
rather than a single mutation as we do or using a distance-
based heuristic.
The ultimate goal of using single-cell lineage tracers

to create precise and quantitative cell fate maps will
require sampling tens of thousands of cells (or more),
possibly tracing over several months, and effectively
inferring the resulting phylogenies. While recent studies
[56] have highlighted the challenges in creating accurate
CRISPR-recorders, our results suggest that with adequate
technological components and computational approaches
complex biological phenomena can be dissected with
single-cell lineage tracing methods. Specifically, we show
that Cassiopeia and the benchmarking resources pre-
sented here meet many of these challenges. Not only
does Cassiopeia provide a scalable and accurate inference
approach, but also our benchmarking resources enable the
systematic exploration ofmore accurate algorithms as well
as more robust single-cell lineage tracing technologies.
Taken together, this work forms the foundation for future
efforts in building detailed cell fate maps in a variety of
biological applications.

Methods
In vitro lineage tracing experiment
Plasmid design and cloning
The Cas9-mCherry lentivector, pHR-UCOE-SFFV-Cas9-
mCherry (to be added to Addgene), was designed for
stable, constitutive expression of enzymatically active
Cas9, driven by the viral SFFV promoter, insulated
with a minimal universal chromatin opening element
(minUCOE), and tagged with C-terminal, self-cleaving
P2A-mCherry. pHR-UCOE-SFFV-Cas9-mCherry is
derived from pMH0001 (Addgene Cat#85969, active
Cas9) with the BFP tag exchanged with mCherry. The
P2A-mCherry tag was PCR amplified from pHR-SFFV-
KRAB-dCas9-P2A-mCherry (Addgene Cat #60954;
forward: GAGCAACGGCAGCAGCGGATCCGGAG-
CTACTAACTTCAG; reverse: ATATCAAGCTTGCATG
CCTGCAGGTCGACTTACTACTTGTACAGCTCGTC-
CATGC) and inserted using Gibson Assembly (NEB) into
SbfI/BamHI-digested pMH0001 (active Cas9). Resulting
plasmid was used for lentiviral production as described
below.

The Target Site lentivector, PCT48 (to be added to
Addgene), was derived from the reverse lentivector PCT5
(to be added to Addgene) containing GFP driven by the
EF1a promoter. The sequence of the 10X amplicon with
most common polyA location is the following:
AATCCAGCTAGCTGTGCAGCNNNNNNNNNNNNN
NATTCAACTGCAGTAATGCTACCTCGTACTCACG
CTTTCCAAGTGCTTGGCGTCGCATCTCGGTCCTT
TGTACGCCGAAAAATGGCCTGACAACTAAGCTAC
GGCACGCTGCCATGTTGGGTCATAACGATATCTC
TGGTTCATCCGTGACCGAACATGTCATGGAGTAG
CAGGAGCTATTAATTCGCGGAGGACAATGCGGTT
CGTAGTCACTGTCTTCCGCAATCGTCCATCGCTC
CTGCAGGTGGCCTAGAGGGCCCGTTTAAACCCGC
TGATCAGCCTCGACTGTGCCTTCTAGTTGCCAGC
CATCTGTTGTTTGCCCCTCCCCCGTGCCTTCCTT
GACCCTGGAAGGTGCCACTCCCACTGTCCTTTCC
TAATAAAAAAAAAAAAAAAAAAAAAAA

where N denotes our 14-bp random integration bar-
code. PCT5 was digested with SfiI and EcoRI within the
3′UTR of GFP. The Target Site sequence was ordered
as a DNA fragment (gBlock, IDT DNA) containing
three Cas9 cut sites and a high diversity, 14-bp ran-
domer (integration barcode, or intBC). The fragment
was PCR amplified with primers containing Gibson
assembly arms compatible with SfiI/EcoRI-digested
PCT5 (forward: GATGAGCTCTACAAATAAT-
TAATTAAGAATTCGTCACGAATCCAGC-
TAGCTGT;reverse:GGTTTAAACGGGCCCTCTAGG
C CACCTGCAGGAGCGATGG). The amplified Target
Site fragment was inserted into the digested PCT5 back-
bone using Gibson Assembly. The assembled lentivector
library was transformed into MegaX competent bacte-
rial cells (Thermo Fisher) and grown in 1L of LB with
carbenicillin at 100 μg/mL. Lentivector plasmid was
recovered and purified by GigaPrep (Qiagen) and used for
high-diversity lentiviral production as described below.
The triple-sgRNA-BFP-PuroR lentivector, PCT61 (to be

added to Addgene), is derived from pBA392 (to be added
to Addgene) as previously described [57, 58] containing
three sgRNA cassettes driven by distinct U6 promoters
and constitutive BFP and puromycin-resistance markers
for selection. Importantly, the three PCT61 sgRNAs are
complementary to the three cut sites in the PCT48 Tar-
get Site. To slow the cutting kinetics of the sgRNAs to best
match the timescale involved in the in vitro lineage trac-
ing experiments [10], the sgRNAs contain precise single-
basepair mismatches that decrease their avidity for the
cognate cut sites [59]. The triple-sgRNA lentivector was
cloned using four-way Gibson assembly as described in
[58]. Resulting plasmid was used for lentiviral production
as described below.
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Cell culture, DNA transfections, viral preparation, and cell
line engineering
A549 cells (human lung adenocarcinoma line, ATCC
CCL-185) and HEK293T were maintained in Dulbecco’s
modified Eagle medium (DMEM, Gibco) supplemented
with 10% FBS (VWR Life Science Seradigm), 2 mM
glutamine, 100 units/mL penicillin, and 100 μg/mL
streptomycin. Lentivirus was produced by transfecting
HEK293T cells with standard packaging vectors and
TransIT-LTI transfection reagent (Mirus) as described in
([57]). Target Site (PCT48) lentiviral preparations were
concentrated tenfold using Lenti-X Concentrator (Takara
Bio). Viral preparations were frozen prior to infection.
Triple-sgRNA lentiviral preparations were titered and
diluted to a concentration to yield approximately 50%
infection rate.

To construct the lineage tracing-competent cell line,
A549 cells were transduced by serial lentiviral infection
with the three lineage tracing components: (1) Cas9, (2)
Target Site, and (3) triple-sgRNAs. First, A549 cells were
transduced by Cas9 (mCherry) lentivirus and mCherry+
cells were selected to purity by fluorescence-activated
cell sorting on the BD FACS Aria II. Second, A549-Cas9
cells were transduced by concentrated Target Site (GFP)
lentivirus and GFP+ cells were selected by FACS; after
sorting, Target Site infection and sorting were repeated
two more times for a total of three serial lentiviral trans-
fections, sorting for cells with progressively higher GFP
signal after each infection. This strategy of serial transfec-
tion with concentrated lentivirus yielded cells with high
copy numbers of the Target Site, which were confirmed
by quantitative PCR. Third, A549 cells with Cas9 and
Target Site were transduced by titered triple-sgRNA
(BFP-PuroR) lentivirus and selected as described below.

In vitro lineage tracing experiment, single-cell RNA-seq
library preparation, and sequencing
One day following triple-sgRNA infection, cells were
trypsinized to a single-cell suspension and counted using
an Accuri cytometer (BD Biosciences). Approximately
25 cells were plated in a single well of a 96-well plate.
Seven days post-infection, cells were trypsinized and split
evenly into two wells of a 96-well plate. Cells stably trans-
duced by triple-sgRNA lentivirus were selected by adding
puromycin at 1.5 μg/mL on days 9 and 11 post-infection;
puromycin-killed cells were removed by washing the plate
with a fresh medium. After 14 days, cells were trypsinized
and split evenly for a second time into four wells of a 6-well
plate. Finally, after 21 days in total, cells from the four wells
were trypsinized to a single-cell suspension and collected.
Cells were washed with PBS with 0.04% w/v bovine

serum albumin (BSA, New England Biolabs), filtered
through 40 μm FlowMi filter tips filter tips (Bel-Art), and

counted according to the 10xGenomics protocol. Approx-
imately 14,000 cells per sample were loaded (expected
yield: approximately 10,000 cells per sample) into the 10x
Genomics Chromium Single Cell 3′ Library and Gel Bead
Kit v2, and cDNA was reverse-transcribed, amplified,
and purified according to the manufacturer’s protocol.
Resulting cDNA libraries were quantified by BioAnalyzer,
yielding the expected size distribution described in the
manufacturer’s protocol.
To prepare the Target Site amplicon sequencing library,

resulting amplified cDNA libraries were further amplified
with custom, Target Site-specific primers containing
P5/P7 Illumina adapters and sample indices (for-
ward:CAAGCAGAAGACGGCATACGAGATXXXXXXX
XGTCTCGTGGGCTCGGAGATGTGTATAAGAGACA
GAATCCAGCTAGCTGTGCAGC;reverse:CAAGCAGA
AGACGGCATACGAGATXXXXXXXXGTCTCGTGGG
CTCGGAGATGTGTATAAGAGACAGGCATGGACGA
GCTGTACAAGT; “X” denotes sample indices). PCR
amplification was performed using Kapa HiFi HotStart
ReadyMix, as in [57], according to the following pro-
gram: melting at 95 °C for 3 min, then 14 cycles at 98 °C
for 15 s and 70 °C for 20 s. Approximately 12 fmol of
template cDNA were used per reaction; amplification
was performed in quadruplicate to avoid PCR-induced
library biases, such as jack-potting. PCR products were
re-pooled and purified by SPRI bead selection at 0.9x
ratio and quantified by BioAnalyzer.
Target Site amplicon libraries were sequenced on the

Illumina NovaSeq S2 platform. Due to the low sequence
complexity for the Target Site library, a phiX genomic
DNA library was spiked in at approximately 50% for
increased sequence diversity. The 10x cell barcode and
unique molecular identifier (UMI) sequences were read
first (R1: 26 cycles) and the Target Site sequence was read
second (R2: 300 cycles); sample identities were read as
indices (I1 and I2: 8 cycles, each). Over 550M sequenc-
ing clusters passed filter and were processed as described
below. All raw and processed data are available through
GEO Series accession GSE146712 [60].

Processing pipeline
Read processing
Each target site was sequenced using the Illumina Nova-
seq platform, producing 300-bp long-read sequences.
The Fastq’s obtained were quantitated using 10x’s cell-
ranger suite, which simultaneously corrects cell barcodes
by comparing against a whitelist of 10x’s approved cell
barcodes.

For each cell, a consensus sequence for each unique
molecule identifier (UMI) was produced by collapsing
similar sequences, defined by those sequences differing
by at most 1 Levenshtein distance. A directed graph is
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constructed, where sequences with identical UMIs are
connected to one another if the sequences themselves
differ by at most one Levenshtein distance. Then, UMIs
in this network are collapsed onto UMIs that have greater
than or equal number of reads. This produces a collection
of sequences indexed by the cell barcode and UMI infor-
mation (i.e., there is a unique sequence associated with
each UMI).
Before aligning all sequences to the reference, prelim-

inary quality control is performed. Specifically, in cases
where UMIs in a given cell still have not been assigned a
consensus sequence, the sequence with the greatest num-
ber of reads is chosen. UMIs with fewer than 2 reads are
filtered out, and cells with fewer than 10 UMIs are fil-
tered out as well. Finally, a filtered file in Fastq format is
returned.

Allele calling
Alignment is performed with Emboss’s Water local align-
ment algorithm. Optimal parameters were found by per-
forming a grid search of gap open and gap extend param-
eters on a set of 1000 simulated sequences, comparing a
global and local alignment strategy. We found a gap open
penalty of 20.0 and a gap extension penalty of 1.0 pro-
duced optimal alignments. The “indels” (insertions and
deletions resulting from the Cas9-induced double-strand
break) at each cut site in the sequences are obtained
by parsing the cigar string from the alignments. To
resolve possible redundancies in indels resulting from
Cas9 cutting, the 5′ and 3′ flanking 5-nucleotide context is
reported for each indel.

UMI error correction
To correct errors in the UMI sequence either introduced
during sequencing, PCR preparation, or data processing,
we leverage the allele information. UMIs are corrected
within groups of identical cell barcode-integration bar-
code pairs (i.e., we assume that only UMIs encoding for
the same intBC in a given cell can be corrected). We rea-
son that ideally, for a given integration barcodes, a cell will
only report one sequence, or allele. Within these “equiva-
lence classes,” UMIs that differ by at most 1 Levenshtein
distance (although this number can be user-defined) are
corrected towards the UMI with a greater number of
reads.

Cell-based filtering
With the UMI corrected and indels calculated, the new
“molecule table” is subjected to further quality control.
Specifically, UMIs are filtered based on the number of
reads (dynamically set to be the 99th percentile of the
reads divided by 10), integration barcodes (denoting a par-
ticular integration site) can be error corrected based on a
minimumhamming distance and identical indels (referred
to as alleles), and in the case where multiple alleles are

associated with a given integration barcode a single allele
is chosen based on the number of UMIs associated with it.

Calling independent clones
Collections of cells that are part of the same clonal popu-
lation are identified by the set of integration barcodes each
cell contains. Because all cells in the same clone are clonal,
we reasoned that cells in the same clone should all share
the same set of integration barcodes that the progenitor
cell contained. Because of both technical artifacts (e.g.,
sequencing errors, PCR amplification errors) and bio-
logical artifacts (e.g., bursty expression, silenced regions)
however, rather than looking for sets of non-overlapping
sets, we perform an iterative clustering procedure. We
begin by selecting the intBC that is shared amongst the
most cells and assign any cell that contains this barcode
to a cluster and remove these cells from the pool of unas-
signed cells. We perform this iteratively until at most k
percent (in our case defined as .5% of cells are unassigned,
which we assign to a “junk” clone.
Using the set of integration barcodes for each clone, we

are able to identify doublets that consist of cells from dif-
ferent clones. Finally, after identifying doublets, to further
filter out low-quality integration barcodes, for each clone
integration barcodes that are not shared by at least 10% of
cells in a given clone are filtered out, producing the final
allele table.

Guidelines for final quality control
The thresholds discussed above are heuristic choices
determined based on our hands-on experience with this
type of target-site library processing. However, these
thresholds will undoubtedly change depending on the
sequencer used, the sequencing depth of the library, and
the biological use case. For these reasons, we suggest
that it is more effective to ensure that the final quality
control numbers indicate that the library was processed
sufficiently.
We present distributions for the metrics we find to be

the most useful in Additional file 1: Fig S17: the UMIs per
cellBC as a measure for how well sampled a cell is in (a),
the reads per UMI as ameasure for how confident one is of
the UMI sequence in (b), UMIs per intBC as a measure for
how confident one is of the called allele and intBC in (c),
and a comparison of the number of UMIs versus the num-
ber of reads in (d), as a way of quickly assessing if there are
any outlier UMIs.
Because this library was sequenced quite deeply, we do

not expect typical applications to afford this degree of cer-
tainty. Instead, we suggest that cells should have at least
10 target-site UMIs, the reads/UMI distribution should
have a mean at around 100–200 reads, and each intBC
should have at least 5–10 UMIs associated with it. Cas-
siopeia’s processing pipeline creates figures for each of
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these statistics after filtering and close attention should
be paid to these figures during the processing of the
target-site sequencing data.

Filtering of clones for reconstruction
We filtered out clones upon two criteria: firstly, we
removed clone 1 as we deduced that it had two defec-
tive guides; secondly, we removed lineages that reported
fewer than 10% unique cells (thus removing clone 7). The
remainder of clones were reconstructed.

Estimation of per-character mutation rates
To estimate mutation rates per clone, we assume that
every target site was mutated at the same rate and inde-
pendently of one another across 15 generations. Assuming
some mutation rate, p, per character, we know that the
probability of not observing a mutation in d generations
is (1 − p)d in a given character and that the probabil-
ity of observing at least 1 mutation in that character is
1 − (1 − p)d. Then, giving this probability 1 − (1 − p)d =
m can be used as a probability of observing a mutated
character in a cell and model the number of times a char-
acter appears mutated in a cell as a binomial distribution
where the expectation is simply nm where n is the num-
ber of characters. Said simply, given this model, one would
expect to see nm characters mutated in a cell. In this case,
the empirical expectation is the mean number of times
a given character appeared mutated in a cell (averaged
across all cells), which we denote as K and propose that

K = nm = n ∗ (1 − (1 − p)d)

and thus p, the mutation rate, is

p = 1 − (1 − K/n)d

Bulk cutting experiment to determine prior probabilities of
indel formation
Two and 4 days following triple-sgRNA (PCT61)
infection, infected cells were selected by adding
puromycin at 1.5 μg/mL; puromycin-killed cells were
removed by washing the plate with fresh medium.
Cells were split every other day, and 500k cells were
collected on days 7, 14, and 28. Frozen cell pellets
were lysed, and the genomic DNA was extracted and
purified by ethanol precipitation. The PCT48 Target
Site locus was PCR amplified from genomic DNA
samples (forward: TCGTCGGCAGCGTCAGATGTG-
TATAAGAGACAGAATCCAGCTAGCTGTGCAGC;
reverse:GTCTCGTGGGCTCGGAGATGTGTATAAGA
GACAGTCGAGGCTGATCAGCG) and further ampli-
fied to incorporate Illumina adapters and sample
indices(forward:AATGATACGGCGACCACCGAGATC
TACACXXXXXXXXTCGTCGGCAGCGTCAG;reverse:
CAAGCAGAAGACGGCATACGAGATXXXXXXXXGT
CTCGTGGGCTCGGAG; “X” denotes sample indices).

The subsequent amplicon libraries were sequenced on an
Illumina MiSeq (paired end, 300 cycles each). Sequencing
data was analyzed as described below.

Determining prior probabilities of indel formation
To determine the prior probabilities of edits, we leverage
the fact that we have access to a large set of target sites (or
intBCs) with a similar sequence (apart from the random
barcode at the 5′ end); namely, a total of 117 intBC across
the 11 clones. To compute the prior probability for a given
indel, we compute the empirical frequency of observing
this mutation out of all unique edits observed. Specifically,
we compute the prior probability of a given indel s, qs as
the following:

qs = f (s)
|I|

where f (s) is the number of intBCs that had s in at least
one cell and |I| is the number of intBCs that are present in
the dataset.
As further support for this method, we used the bulk

experiment consisting of many separately engineered
A549 cells, as described in the previous section. The
advantage of the bulk experiment is that we have access
to substantially more intBCs (> 10k), thus providing a
more robust estimation of qs. We therefore employed the
same approach to estimate indel formation rates from the
bulk data and find that the resulting rates correlate well
with the indel rates estimated from the single-cell lineage
tracing experiment (Additional file 1: Fig S20).

Doublet detection
Methods to detect doublets
We hypothesized that doublets could come in two forms
and that we could use various components of the intBC
data structure to identify them. Namely, doublets could
be of cells from the identical clone, here dubbed “intra-
doublets,” or doublets could be of cells from separate
clones, here dubbed “inter-doublets.” In the case of “intra-
doublets,” we can utilize the fact that these cells will have
a large overlap in their set of intBCs but will report “con-
flicting” alleles for each of these intBCs. Thus, to identify
these doublets, we calculate the percentage of UMIs that
are conflicting in each cell. Explicitly, for each cell, we iter-
ate over all intBCs and sum up the number of UMIs that
correspond to an allele that conflicts with the more abun-
dant allele for a given intBC; we then use the percentage of
these UMIs to identify doublets. We perform this after all
UMI and intBC correction in hopes of calling legitimate
conflicts.
To deal with “inter-doublets,” we developed a classi-

fier that leverages the fact that cells from different clones
should have non-overlapping intBC sets. While this is
the ideal scenario, often times intBCs are shared between
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clones for one of two reasons: (1) the clustering assign-
ments are noisy or (2) the transfections of intBCs resulted
in two cells receiving the same intBC, even though cells
are supposed to be progenitors of separate clones. Our
strategy is thus as follows: for each cell ci ∈ C calculate
a “membership statistic,” mi,k for each clone lk ∈ L. The
membership statistic is defined as so:

mi,k =
∑

j∈Ik δ(i, j)p(j, k)
∑

j∈Ik (p(j, k))

where Ik is the set of intBCs for the clone lk and p(j, k) is
the prevalence rate of the intBC j in lk . We use δ(i, j) as
an indicator function for whether or not we observed the
intBC j in the cell ci. Intuitively, this membership statistic
is a weighted similarity for how well the cell fits into each
clone, where we are weighting by how much we are able
to trust the intBC that is observed in the cell. To put all
on the same scale, we normalize by total membership per
cell, resulting in our final statistic, m′

i,k = mi,k
∑k

k′=0 mi,k′
. We

then filter out doublets whosem′ for their classified clone
falls below a certain threshold.

Simulation of doublets
We simulated two datasets to test our methods for identi-
fying doublets and to find the optimal criterion on which
to filter out doublets. To test this strategy, we took a sin-
gle clone from our final Allele Table (the table relating all
cells and their UMIs to clones) and formed 200 doublets
by combining the UMIs from two cells. We generated 20
of these datasets and noted which cells were artificially
introduced doublets.
Contrary to the strategy for simulating doublets from

the same clone, we created artificial “inter” doublets from
the final Allele Table by combining doublets from two dif-
ferent clones. Similarly, we generated 20 synthetic datasets
each with 200 of these artificial doublets.

Identification of decision rule
To identify the optimal decision rule for calling both types
of doublets, we tested decision rules ranging from 0 to 1.0
at 0.05 intervals and calculated the precision and recall
at each of these rules. Taking these results altogether, we
provide an optimal decision rule where the F-measure (or
the weighted harmonic mean of the precision and recall)
of these tests is maximal.

Algorithmic approaches for phylogenetic reconstruction
One way to approach the phylogenetic inference problem
is to view each target site as a “character” that can take on
many different possible “states” (each state corresponding
to an indel pattern induced by a CRISPR/Cas9 edit at the
target site). Formally, these observations can be summa-
rized in a “character matrix,”M ∈ Rn,m, which relates the n

cells by a set of charactersχ = {χ 1, ...,χm} where each
character χ i can take on some ki possible states. Here,
each sample, or cell, can be described as a concatenation
of all of their states over characters in a “character string.”
From this character matrix, the goal is to infer a tree
(or phylogeny), where leaf nodes represent the observed
cells, internal nodes represent ancestral cells, and edges
represent a mutation event.
We first propose an adaption of a slow, but accurate,

Steiner tree algorithm via integer lineage programming
(ILP) to the lineage tracing phylogeny problem. Then, we
propose a fast, heuristic-based greedy algorithm which
simultaneously draws motivation from classical perfect
phylogeny algorithms, and the fact that mutations can
only occur unidirectionaly from the unmutated, or s0
state. Lastly, we combine these two methods and present
a hybrid method, which presents better results than our
greedy approach, yet remains feasible to run over tens of
thousands of cells.

Adaptation to Steiner tree problem
Steiner trees are a general problem for solving for the min-
imum weight tree connecting a set of target nodes. For
example, if given a graphG = (V ,E) over some V vertices
and E edges, finding the Steiner tree over all v ∈ V would
amount to solving for the minimum spanning tree (MST)
ofG. While there exist polynomial time algorithms for the
minimum spanning tree, the general Steiner tree problem,
where the set of targets T ⊆ V is designated, is NP-hard.
Previously, Steiner trees have been suggested to solve for

the maximum parsimony solution to the phylogeny prob-
lem. Here, the graph would consist of all possible cells
(both observed and unobserved) and each edge would
consist of a possible evolutionary event connecting two
states (e.g., a mutation). Generally, given a set of length-l
binary “character-strings” (recall that these are the con-
catenation of all character states for a given sample), we
can solve for the maximum parsimony solution by finding
the optimal Steiner tree over the 2l hypercube (i.e., graph).
As a result, by converting our multi-state characters to
binary characters via one hot encoding, theoretically, we
should be able to compute the most parsimonious tree
which best explains the observed data. However, in prac-
tice, this method turns out to be infeasible, as we deal
with hypercubes of sizeO(2mn), wherem is the number of
characters and n is the number of states. In the following,
we will propose a method for estimating the underlying
search space, providing us with a feasible solvable instance
and a formulation of an integer linear programming (ILP)
problem to solve for the optimal Steiner tree.

Approximation of potential graph We first begin by
constructing a directed acyclic graph (DAG) G, where
nodes represent cells. We then take the source nodes, or
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nodes with in-degree 0, of G, and for each pair of source
nodes, consider the latest common ancestor (LCA) they
could have had. This LCA has an unmutated state for
character χ i if they disagree across two source nodes,
and the same state as the two source nodes if they agree
in value. If the edit distance between these two cells is
below a certain threshold d, we add the LCA to G, along
with directed edges to the two source nodes, weighted
by the edit distance between the parent and the source.
We repeat this process until only one node remains as a
source: the root.
One may think that this step explodes with O(n2) com-

plexity at each stage, where n is the number of source
nodes in each prior stage, as we consider all pairs of
source nodes. However, we note that the number of
mutations per latest common ancestor is always less
than both children, and therefore, we eventually con-
verge to the root. Therefore, when dealing with sev-
eral hundred cells, the potential graph is feasible to
calculate.
Furthermore, to add scalability to the approximation of

the Potential Graph, we allow the user to provide a “max-
imum neighborhood size” which will be used to dynam-
ically solve for the optimal LCA distance threshold d to
use. One may think of this as the maximum memory or
time allowed for optimizing a particular problem. Since
the size of the Potential Graph can grow quite large in
regard to the number of nodes, we iteratively create poten-
tial graphs for various threshold d and at each step ensure
that the number of nodes in the network does not exceed
the maximum neighborhood size provided. If at any point
the number of nodes does exceed this maximum size, we
return the potential graph inferred for an LCA threshold
of d − 1.

Formulation of integer linear programming prob-
lem Given our initial cells, S , the underlying potential
graph drawn from such cells, G, and the final source
node, or root, r from G, we are interested in solving
for T = SteinerTree(r, S,G). We apply an integer lin-
ear programming (ILP) formulation of Steiner tree, for-
mulated in terms of network flows, with each demand
being met by a flow from source to target. Below, we
present the integer linear programming formulation for
Steiner tree. We use Gurobi [61], a standard ILP solver
package

minimize
∑

(u,v)∈E
dbuv · w(u, v)

subject to
∑

(u,v)∈E
duv −

∑

(v,w)∈E
dvw = 0 ∀v /∈S ∪ {r}

∑

(r,w)∈E
drw = −|S|

∑

(u,s)∈E
dus = 1 ∀s ∈ S

dbuv ≥ duv
|S| ∀(u, v) ∈ E

duv ∈ {0, .., |S|} ∀(u, v) ∈ E

dbuv ∈ {0, .., 1} ∀(u, v) ∈ E

Each variable duv denotes the flow through edge (u, v),
if it exists; each variable dbuv denotes whether (u, v) is
ultimately in the chosen solution sub-graph. The first
constraint enforces flow conservation, and hence that
the demands are satisfied, at all nodes and all con-
ditions. The second constraint requires |S| units of
flow come out from the root. The third constraint
requires that each target absorb exactly one unit of
flow. The fourth constraint ensures that if an edge
is used at any condition, it is chosen as part of the
solution.
Below, we explicitly define the algorithm in pseudocode.

1: function ILP-SOLVER(cells = S)
2: Potential Graph G ← BUILD-POTENTIAL-

GRAPH(S)
3: if G == None then
4: return GREEDY-SOLVER(S)
5: r ← root of G
6: T ← STEINER-TREE(r,G, S) � Steiner Tree ILP

Solver
7: return T

8: function BUILD-POTENTIAL-GRAPH(cells = S, max
lca length = k, max neighborhood size = N)

9: T0 = None
10: for all d ∈[ 1, k] do
11: T ← DiGraph()
12: for all s ∈ S do
13: T ← T ∪ {s}
14: sources ← all source nodes in T
15: while len(sources) > 1 do
16: for all v1, v2 ∈ sources do
17: lca ← latest common ancestor of v1, v2
18: if dist(lca, v1) + dist(lca, v2) ≤ d then
19: T ← T ∪ {(lca, v1), (lca, v2)}
20: sources ← all source nodes in T
21: if len(sources) ≥ N then
22: return Td−1
23: Td ← T
24: return T
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Stability analysis of themaximumneighborhood size
parameter
To evaluate the stability of the user-defined maximum
neighborhood size parameter, we assessed the accuracy
of the reconstructions for parameters varying from 800
to 14,000. We used trees simulated under default condi-
tions (400 samples, 40 characters, 40 states per character,
11 generations, 2.5% mutation rate per character, and a
mean dropout rate of 17%). The accuracy of trees were
compared to the tree generated with a parameter of 14,000
using the triplets correct statistic. We used 10 replicates
to provide a sense for how stable a given accuracy is.
In addition to providing measures of accuracy, we also

provide the optimal LCA threshold d found for a given
maximum neighborhood size during the inference of
these potential graphs. Using these analysis, we found that
a maximum neighborhood size of 10,000 nodes seemed to
be an ideal tradeoff between scalability and accuracy (as it
is in the regime where accuracy saturates) for our default
simulations. This corresponded to a mean LCA threshold,
d, of approximately 5.

Heuristic-based greedymethod
On perfect phylogeny and single-cell lineage tracing
In the simplest case of phylogenetics, each character is
binary (i.e., ki = 2,∀i ∈ m) and can mutate at most
once. This case is known as “perfect phylogeny” and there
exist algorithms (e.g., a greedy algorithm by Dan Gus-
field [30]) for identifying if a perfect phylogeny exists over
such cells, and if so find one efficiently in time O(mn),
wherem is the number of characters and n are the number
of cells. However, several limitations exist with methods
such as Gusfield’s algorithm. One potential problem in
using existing greedy perfect phylogeny algorithms for
lineage tracing is that they require the characters to be
binary. Indeed, if the characters are allowed to take any
arbitrary number of states, the perfect phylogeny prob-
lem becomes NP-hard. However, while the number of
states (CRISPR/Cas9-induced indels at a certain target
site) in lineage tracing data can be large, these data ben-
efit from an additional restriction that makes it more
amenable for analysis with a greedy algorithm. Below, we
show that because the founder cell (root of the phylogeny)
is unedited (i.e., includes only uncut target sites) and that
the mutational process is irreversible, we are able to the-
oretically reduce the multi-state instance (as observed in
lineage tracing) to a binary one so that it can be resolved
using a greedy algorithm.
A second remaining problem in using these perfect phy-

logeny approaches is that we cannot necessarily expect
every mutation to occur exactly once. In theory, it may
happen that the same indel pattern is induced in exactly
the same target site on two separate occasions throughout
a lineage tracing experiment, especially if a large number

of cell cycles takes place. A final complicating factor is
that these existing greedy algorithms often assume that all
character states are known, whereas lineage tracing data
is generated by single-cell sequencing, which often suffers
from limited sensitivity and an abundance of “dropout”
(stochastic missing data) events.
The greedy algorithm We suggest a simple heuristic for
a greedy method to solve the maximum parsimony phy-
logeny problem, motivated by the classical solution to the
perfect phylogeny problem and irreversibility of mutation.
Namely, we consider the following method for building
the phylogeny: Given a set of cells, build a tree top-down
by splitting the cells into two subsets over the most fre-
quent mutation. Repeat this process recursively on both
subsets until only one sample remains.
Formally, we choose to split the dataset into two subsets,

Oi,j and Oi,j, such that Oi,j contains cells carrying muta-
tion sj in χ i, and Oi,j contains cells without sj in χ i. We
choose i, j based on the following criteria:

i, j = argmax
i,j

ni,j

where ni,j is the number of cells that carry mutation sj in
character χ i. We continue this process recursively until
only one sample exists in each subset. We note that this
method operates over cells with non-binary states, solving
the first of problems addressed earlier.
A major caveat exists with methods such as the greedy

method proposed by Gusfield, as well as the one pro-
posed by us thus far: namely, they assume all character
states are known (i.e., no dropout). However, in our prac-
tice, we often encounter dropout as a consequence of
Cas9 cutting or stochastic, technical dropout due to the
droplet-based scRNA-seq platform. To address this prob-
lem in our greedy approach, during the split stage, these
cells are not initially assigned to either of the two sub-
sets, Oi,j or Oi,j. Instead, for each individual sample which
contains a dropped out value for chosen split character
χ i, we calculate the average percentage of mutated states
shared with all other cells in Oi,j and Oi,j respectively, and
assign the sample to the subset with greater average value.
Appending the dropout resolution stage with the initial

split stage, we present our greedy algorithm below in its
entirety.
Overall, this method is very efficient and scales well into

tens of thousands of cells. Below, we show via proof that
this algorithm can find perfect phylogeny if one exists.

Cassiopeia-Greedy algorithm can solve multi-state
perfect phylogeny Here we show that while not
required, Cassiopeia can solve the multi-state perfect
phylogeny problem optimally. Importantly, however, Cas-
siopeia’s effectiveness makes no assumption about perfect
phylogeny existing in the dataset but rather leverages
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this concept to provide a heuristic for scaling into larger
datasets.
To show how Cassiopeia’s greedy method can solve

perfect phylogeny optimally, we begin by introducing a
few clarifying definitions prior to the main theorem. We
define M as the original n cells by n character k-state
matrix (i.e., entries ∈ {s0, . . . , sk−1}). We say M has a zero
root perfect phylogeny if there exists a tree T over its ele-
ments and character extensions such that the state of the
root is all zeros and every character state is mutated into at
most once. In addition, we assume that all non-leaf nodes
of T have at least two children (i.e., if they only have one
child, collapse two nodes into one node). Finally, we offer
a definition for character compatibility:

Definition 1 (Character Compatibility). For a pair of
binary characters, (χ 1,χ 2), where the sets (O1,O2) con-
tain the sets of cells mutated forχ 1 andχ 2, respectively,
we say that they are compatible if one of the following is
true:

• O1 ⊆ O2
• O2 ⊆ O1
• O1 ∩ O2 = ∅

This definition extends to multi-state characters as well,
assuming they can be binarized.

1: function GREEDY-SOLVER(cells = S, prior probabili-
ties = p)

2: if len(S) = 1 then
3: return S
4: root ← latest common ancestor across all S
5: i, sj ← maximally occurring character mutation

pair in S weighted by priors p
6: Oi,j ← all cells in S with mutation sj inχ i
7: Oi,j ← all cells in S without mutation sj inχ i and

without dropout forχ i
8: Di ← all cells in S with dropout forχ i � Note

Oi,j ∪ Oi,j ∪ Di = S
9: for all s ∈ Di do

10: if s shares moremutated states on average with
cells in Oi,j over Oi,j then

11: Oi,j ← Oi,j ∪ {s}
12: else
13: Oi,j ← Oi,j ∪ {s}
14: TL, TR ← GREEDY-SOLVER(Oi,j, p), GREEDY-

SOLVER(Oi,j, p)
15: rL, rR ← root of TL, TR respectively
16: T ← TL ∪ TR ∪ {root}
17: T ← T ∪ {(root, rL), (root, rR)}
18: return T

Before proving the main theorem, we first prove the
following lemma:

Lemma 1 If M has a perfect phylogeny, then the most
frequent character, mutation pair appears on an edge from
the root to a direct child node.

Proof WLOG let χ i : s0 → sj denote the maximally
occurring character, mutation pair within M. Suppose by
contradiction that this mutation does not appear on an
edge directly from root to a child, but rather on some
edge (u, v) that is part of a sub-tree whose root r∗, is a
direct child of the root. As r∗ has at least two children,
this implies that the mutation captured from the root to
r∗ must be shared by strictly more cells thanχ i : s0 → sj,
thereby reaching a contradiction on χ i : s0 → sj being
the maximally occurring mutation.

Theorem 1 The greedy algorithm accurately constructs
a perfect phylogeny over M if one exists.

Proof We approach via proof by induction. As a base
case, a single is trivially a perfect phylogeny over itself.
Now suppose by induction that for up to n − 1 cells, if

there exists a perfect phylogeny T over such cells, then the
greedy algorithm correctly returns the perfect phylogeny.
Consider the case of n cells. By the above lemma, we know
we can separate these n cells into two subsets based on
the most frequent character, mutation pair χ i : s0 → sj,
Oi,j andOi,j, whereOi,j contains cells with mutation sj over
χ i, andOi,j =M−Oi,j. By induction, the greedy algorithm
correctly returns two perfect phylogenies over Oi,j and
Oi,j, which we can merge at the root, giving us a perfect
phylogeny over n cells.

Accounting for prior probability of mutations
In most situations, the probability of mutation to each
distinct state may not be uniform (i.e., character χ 1
mutating from the unmutated state s0 to state s4 may be
twice as likely asmutating to state s6). Therefore, we incor-
porate this information into choosing which character and
mutation to split over based on the following criteria:

i, j = argmin
i,j

pi(s0, sj)f (ni,j)

where pi(s0, sj) is the probability that character χ i
mutates from the unmutated state s0 to sj and f (ni,j) is
some transformation of the number of cells that report
mutation j in character i that is supposed to reflect the
future penalty (number of independent mutations of char-
acter i to state j) we will have to include in the tree if we do
not pick i, j as our next split. After a comparison of 5 dif-
ferent transformations (Additional file 1: Fig S15), we find
that f (ni,j) = ni,j gives the best performance, leaving us
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with the following criteria for splittings:

i, j = argmin
i,j

pi(s0, sj)ni,j

A hybridmethod for solving single-cell lineage tracing
phylogenies
Due to the runtime constraints of the Steiner tree
method, it is infeasible for such method to scale to tens
of thousand of cells. Therefore, we build a simple hybrid
method which takes advantage of the heuristic proposed
in the greedy algorithm and the theoretical optimality of
the Steiner tree method.

Recall that in the greedy method, we continued to choose
splits recursively until only one sample was left per sub-
set. In this method, rather than follow the same process,
we choose a cutoff for each subset (e.g., 200 cells). Once
a subset has reached a size lower than the said cutoff,
we feed each individual subset into the Potential Graph
Builder and Steiner tree solver, which compute an optimal
phylogeny for the subset of cells. After an optimal sub-tree
is found, we merge it back into the greedy tree. Therefore,
we build a graph whose initial mutations are chosen from
the greedy method and whose latter mutations are chosen
more precisely via the Steiner tree approach.
Below, we present a pseudocode algorithm for the

hybrid method. We note the slight difference in greedy
from before. Namely, greedy additionally accepts a cutoff
parameter and, in addition to returning a network built up
to that cutoff, returns all subsets that are still needed to be
solved.

1: function CASSIOPEIA-HYBRID(cells = S, greedy cut-
off = g)

2: T ,S ← GREEDY-SOLVER(S, g)
3: for all S′ ∈ S do
4: T ← T ∪ ILP-SOLVER(S′)
5: return T

This approach scales well when each instance of Steiner
tree is ran on an individual thread, and thus often takes
only a few hours to run on several thousand cells.

Theoretical analysis of parallel evolution
Estimating first and secondmoments of doublemutations
Expected number of double mutations Under the
framework of our simulation, we assume that each at each
generation, every cell divides, and then each character of
each cell undergoes random mutation independently. Let
p be the probability that a particular character mutates
and q be the probability the character took on a particular

mutated state given that it mutated. Let T be the true phy-
logenetic tree over the samples. According to our model,
T must be a full binary tree, and the samples are leaves of
T. Let X be the total number of times a particular muta-
tion occurred in the T. Let Xu,v be an indicator variable for
edge (u, v) such that:

Xu,v =
{
1 if a mutation occurs on edge (u, v)
0 otherwise

Let h be the height of the T, which is equalled to the
number of generations. If v is at depth d in T, then the
probability that a mutation occurs at (u, v) is pq(1−p)d−1.
Since there are 2d nodes at depth d, we have:

E(X) =
∑

(u,v)∈T
E(Xu,v)

=
h∑

d=1
2dpq(1 − p)d−1

= 2pq((2 − 2p)h − 1)
1 − 2p

(1)

Let n = 2h be the number of cells in our sample. If p > 0.5,
E(X) ≤ 2pq/(2p−1), if p = 0.5, E(X) = 2pqh = O(log n),
and if p < 0.5, E(X) = O(n

1
log2 2−2p ). Moreover, for fixed

h, E(X) has a single peak for p ∈[ 0, 1], meaning that it
increases with p for sufficiently small values of p, and
always increases with q. Intuitively, this is because E(X)

is small if (1) p is small enough that the character never
mutates much throughout the experiment or (2) p is large
enough that most mutations occur near the top of the tree,
resulting in the extinction of unmutated cells early in the
experiment. While E(X) peaks for values of p in between,
it is always directly proportional to q because X is sim-
ply equalled to q time the number of times the character
mutated.

Variance of doublemutations We can compute the vari-
ance as:

Var(X) = E(X2) − E(X)2

= 2
∑

(u,v) �=(u′,v′)
E(Xu,vXu′,v′) + E(X) − E(X)2

To compute E(Xu,vXu′,v′), we note that for a given pair of
edges (u, v) and (u′, v′), such that LCA(u,u′) is at depth
d, u is at depth d + l, and u′ is at depth l + k, the proba-
bility that a mutation occurred on both edges is p2q2(1 −
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p)d+l+k . Thus, we have:

∑

(u,v)�=(u′ ,v′)
E(Xu,vXu′ ,v′ ) =

h−1∑

d=0
2d

h−d−1∑

k=0

h−d−1∑

l=0
2l+kp2q2(1 − p)d+l+k

= p2q2
h−1∑

d=0
(2 − 2p)d(

h−d−1∑

k=0
(2 − 2p)k)2

= p2q2

(2p − 1)2
h−1∑

d=0
(2p − 2)d((2p − 2)(h−d) − 1)2

≤ p2q2

(2p − 1)2
h−1∑

d=0
(2p − 2)2h−d

= (2p − 2)h+1 p2q2

(2p − 1)2
h−1∑

d=0
(2p − 2)d

≤ p2q2(2p − 2)2h+1

(2p − 1)3

Thus, we can bound the variance as follows:

Var(X) ≤ 2p2q2(2p − 2)2h+1

(2p − 1)3
+ 2pq

(
1 − (2 − 2p)h

)

2p − 1

− 4p2q2(1 − (2 − 2p)h)2

(2p − 1)2
(2)

This means that in the case that p > 0.5:

Var(X) ≤ 2p2q2

(2p − 1)3
+ 2pq

2p − 1
− 4p2q2

(2p − 1)2

In the case that p = 0.5:

Var(X) = O(h3) = O(log3(n))

In the case that p < 0.5:

Var(X) = O(n
2

log2 2−2p )

Least squares linear estimate and negative correlation
between frequency and the number of doublemutations
To justify the greedy, we must show that if a mutation
occurs frequently, then it is likely to have occurred less
times throughout the experiment. Let Y be the frequency
of a particular mutation in the samples. We estimate X
given Y using the least squares linear estimate (LLSE) as
follows:

L(X|Y ) = E(X) + CoV (X,Y )

Var(Y )
(Y − E(Y )) (3)

Since CoV (X,Y ) = E(XY ) − E(X)E(Y ), we need only
to compute E(XY ), which we do by expressing X and Y in
terms of the same indicators:

Y = 1
2h

∑

(u,v)∈T
2depth(v)Xu,v

As a sanity check, it can easily be verified that E(Y ) =
q(1− (1− p)h) by computing E(Y ) using these indicators:

E(Y ) = 2−h
h∑

d=1
2d(1 − p)d−1pq ∗ 2h−d

= pq
h∑

d=1
(1 − p)d−1

= q(1 − (1 − p)h)

Thus, we can compute E(XY ) similar to howwe computed
E(X2) for variance.

E(XY ) = 2−hE((
∑

(u,v)∈T
Xu,v)(

∑

(u,v)∈T
2depth(v)Xu,v))

= 2−h
(
2

∑

(u,v) �=(u′ ,v′)
2depth(v)E(Xu,vXu′ ,v′ ) +

∑

(u,v)∈T
2depth(v)E(X2

u,v)
)

= 2 ∗ 2−h
h−1∑

d=0
2d

h−1∑

k=0

h−1∑

l=0
2l+kp2q2(1 − p)d+l+k ∗ 2h−d−l−1 + E(Y )

= p2q2
h−1∑

d=0

h−d−1∑

k=1

h−d−1∑

l=0
(1 − p)d(2 − 2p)k(1 − p)l + E(Y )

= pq2

1 − 2p

h−1∑

d=0
(2 − 2p)h−d − 1)(1 − (1 − p)h−d)(1 − p)d + E(Y )

= pq2

1 − 2p

(
2(2 − 2p)h(1 − 2−h) − (2 − 2p)(1 − p)h((2 − 2p)h − 1)

1 − 2p

− 1 − (1 − p)h

p
+ h(1 − p)h

)
+ E(Y )

(4)

Assuming that is p < 1 − 1/
√
2 ≈ 0.29 (based on

our estimation of Cas9-cutting rates, this seems to be a
biologically relevant probability), we have:

lim
h→∞

CoV (X,Y ) =
(
2 − 2 − 2p

1 − 2p

)pq2(2(1 − p)2)h

1 − 2p
= −∞

since 2 < (2 − 2p)/(1 − 2p) when p < 0.5.

Var(Y ) can be computed using the same indicators:

Var(Y ) = 2
∑

i,j
E(YiYj) +

∑

i
E(Y 2

i ) − E(Y )2

∑

i,j
E(YiYj) = 2−2h

h−1∑

d=0
2d(1 − p)d(

h−d−1∑

k=0
2k(1 − p)kpq ∗ 2h−d−k−1)2

= q2

4

h−1∑

d=0
(
1 − p
2

)d(
1 − (1 − p)h−d

p
)2

= q2

4

h−1∑

d=0
(
1 − p
2

)d − 2(1 − p)h

2d
+ (1 − p)2h

(2 − 2p)d

= q2

4

( 2(1 − (
1−p
2 )h)

1 + p
− 4(1 − p)h(1 − 2−h)+

(2 − 2p)(1 − p)2h(1 − ( 1
2−2p )h)

1 − 2p

)

(5)
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∑

i
E(Y 2

i ) = 2−2h
h∑

d=1
2d(1 − p)d−1pq ∗ 22(h−d)

= pq
2

h−1∑

d=0
(
(1 − p)

2
)d

= pq(1 − (
1−p
2 )h)

1 + p

Note that if p < 0.5, every term in Var(Y ) converges to
a constant as h → ∞. Thus, if (1 − p)2 > 0.5, then
as the depth increases, X and Y become exponentially
more negatively correlated. This means that for biolog-
ically relevant values of p, the frequency of a mutation
in the samples is negatively correlated with the number
of times the mutation occurred, thus justifying the ratio-
nale of splitting the sample on more frequently occurring
mutations.

Simulation for tracking the evolution of a particularmutation
To more efficiently simulate the number of occurrences
of a particular mutation, we define {N1,N2, ...Nh} as a
Markov chain, where Nt is the number of unmutated
cells at generation t, and N1 = 1. Let At ∼ Bin(2Nt , p)
be the number of cells that mutates at generation t and
Bt ∼ Bin(At , a) be the number of mutated cell that
took on the particular state in question. The Markov
chain evolves as Nt+1 = 2Nt − At . Note that we
assume, in this model, that mutation can only occur
after cell division. Thus, we have X = ∑h

t=1 Bt and
Y = ∑h

t=1 2t−hBt .

Assessing the precision of greedy splits
To assess the precision of greedy splits, we first simulated
100 true phylogenies of 400 cells (without dropout) for
all pairs of parameters in num_states = {2, 10, 40} and
pcut = {0.025, 0.1, 0.4}. For each network, we assessed the
precision of the greedy split as follows:

1 We used the criteria i, j = argmaxi,j ni,j to select the
characterχ i and state j to split on (as
Cassiopeia-Greedy would do). This group of cells
that have a mutation j in characterχ i is called G.

2 For defining the a set of n subsets corresponding to
cells that inherited the (character, state) pair (i, j)
independently using the true phylogenies, and call
this set S = (s1, s2, ..., sn) (this corresponds to there
being n parallel evolution events for the (character,
state) pair (i, j).

3 We presume that the largest group of cells in S is the
“true positive” set (let this be defined as
s′ = argmaxs |si|). We then define the precision P as
the proportion of true positives in the set G—i.e.,
P = |s′|

|G| .

Statistics for IVLT analysis
Meta purity statistic
To calculate the agreement between clades (i.e., the leaves
below a certain internal node of the tree) and some meta
value, such as the experimental plate from which a sample
came from, we can employ a chi-squared test. Specifi-
cally, we can compute the following statistic: considering
some M clades at an arbitrary depth d, we find the count
of meta values associated with each leaf in each clade,
resulting in a vector of valuesmi comprised of these meta-
counts for each clade i. We can form a contingency table
summarizing these results, T, where each internal value
is exactly mi,j—the counts of the meta item j in clade i. A
chi-squared test statistic can be computed from this table.
To compare across different trees solved with different

methods, we report the chi-squared test statistic as a func-
tion of the number of clades, or degrees of freedom of the
test.

Meanmajority vote statistic
The mean majority vote statistic seeks to quantify how
coherent each clade is with respect to its majority vote
sample at a give depth. For a given clade with leaves Li
where |Li| = n, where every leaf li,j corresponds to cell j
in clade i has some meta labelmj, the majority vote of the
clade is v = argmaxm′∈M

∑
j∈n δ(j,m′). Here,M is the full

set of possible meta values and δ(mj,m′) is an indicator
function evaluating to 1 iff mj = m′. The membership of
this clade is then simply

∑
j∈n δ(mj ,v)

n . Then, the meanmem-
bership is the mean of these membership statistics for all
clades at a certain depth (i.e., if the tree was cut at a depth
of d, the clades considered here are all the internal nodes
at depth d from the root). By definition, this value ranges
from 1

|M| to 1.0.
As above, to compare across different trees solved with

various methods, we report this mean membership statis-
tic as a function of the number of clades.

Triplets correct statistic
To compare the similarity of simulated trees to recon-
structed trees, we take an approach which compares the
sub-trees formed between triplets of the terminal states
across the two trees. To do this, we sample ∼ 10, 000
triplets from our simulated tree and compare the relative
orderings of each triplet to the reconstructed tree. We say
a triplet is “correct” if the orderings of the three termi-
nal states are conserved across both trees. This approach
is different from other tree comparison statistics, such
as Robinson-Foulds [34], which measures the number of
edges that are similar between two trees.
To mitigate the effect of disproportionately sampling

triplets relatively close to the root of the tree, we calculate
the percentage of triplets correct across each depth within
the tree independently (depth measured by the distance
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from the root to the latest common ancestor (LCA) of
the triplet). We then take the average of the percentage
triplets correct across all depths. To further reduce the
bias towards the few triplets that are sampled at levels
of the tree with very few cells (i.e., few possible triplets),
we modify this statistic to only take into account depths
where there at least 20 cells. We report these statistics
without this depth threshold in Additional file 1: Fig S8.

Allelic and phylogenetic distances
For the analysis in Fig. 4, we define two metrics to cap-
ture cell-to-cell similarity: a normalized allelic distance
and normalized phylogenetic distance. The normalized
allelic distance is calculated as follows: for all target sites
χm ∈ {χ 1, ...,χM} in a pair of cells ci and cj:

1 if state inχm is the same in ci and cj, continue
2 else if state inχm is 0 or missing in either ci or cj

increment the allelic distance by 1
3 else increment the allelic distance by 2

Finally, the allelic distance for a pair of cells is nor-
malized by 2 ∗ M, where M is the number of target
sites.
The phylogenetic distance is defined as simply the num-

ber of mutations separating the two cells ci and cj as
implied by the tree (i.e., the number of mutations along
the branches for the shortest path separating ci and cj).
The normalized phylogenetic distances is this distance,
divided by the diameter (defined as the maximum phylo-
genetic distance between all pairs of cells) of the tree.

Bootstrapping analysis
Bootstrapping was done using a custom function for sam-
plingM target sites (i.e., characters) from an N ×M char-
acter matrix with replacement and reconstructing trees
from these bootstrapped samples. After performing tree
inference, we collapsed “singles” using the collapse.singles
function in the R package “ape.” For the purposes of our
robustness analysis, we sampled B = 100 trees from N =
10 simulated trees and used the Transfer Bootstrap Expec-
tation (TBE) [62] statistic for assessing branch support for
each clade as implemented in Booster (available at https://
github.com/evolbioinfo/booster/).

Application of Camin-Sokal
We applied Camin-Sokal using the “mix” program in
PHYLIP [63] as done for reconstructions for McKenna et
al. [5] and Raj et al. [6]. To use “mix,” we first factorized
the characters into binary ones (thus ending up with

∑
i si

binary characters total, where si is the number of states
that character i presented). Then, we one-hot encoded the
states into this binary representation where every posi-
tion in the binary string represented a unique state at that
character. We thus encoded every cell as having a 1 in the

position of each binary factorization corresponding to the
state observed at that character. If the cell was missing a
value for character i, the binary factorization of the char-
acter was a series of “?” values (which represent missing
values in PHYLIP “mix”) of length si. Before performing
tree inference, we weighted every character based on the
frequency of non-zero (and non-missing values) observed
in the character matrix. After PHYLIP “mix” found a
series of candidate trees, we applied PHYLIP “consense”
to calculate a consensus tree to then use downstream.

Application of neighbor joining
We used Biopython’s neighbor-joining procedure to per-
form all neighbor joining in this manuscript. We begun
similarly to the Camin-Sokal workflow, first factorizing all
of the characters into a binary representation. Then, we
applied the neighbor-joining procedure using the “iden-
tity” option as our similarity map.

Application of Cassiopeia
Reconstruction of simulated data
We used Cassiopeia-ILP with a maximum neighborhood
size of 10,000 and time to converge of 12,600s. Cassiopeia-
Hybrid used a greedy cutoff of 200, a maximum neigh-
borhood size of 6000 and 5000 s to converge. Cassiopeia-
Greedy required no additional hyperparameters. Simula-
tions with priors applied the exact prior probabilities used
to generate the simulated trees.
Reconstruction of in vitro clones
For both Cassiopeia-Hybrid with and without priors, we
used a cutoff of 200 cells and each instance of Cassiopeia-
ILP was allowed 12,600 s to converge on a maximum
neighborhood size of 10,000. Cassiopeia-ILP was applied
with a maximum neighborhood size of 10,000 and a time
to converge of 12,600 s.

Simulation of target-site sequences for alignment
benchmarking
To determine an optimal alignment strategy and param-
eters for our target-site sequence processing pipeline, we
simulated sequences and performed a grid search using
Emboss’sWater algorithm (a local alignment strategy).We
simulated 5000 sequences. For each sequence, we begun
with the reference sequence and subjected it to multiple
rounds of mutagenesis determined by a Poisson distribu-
tion with λ = 3, and a maximum of 5 cuts. During each
“cutting” event, we determined the outcomes as follows:

1 Determine the number of Cas9 proteins localizing to
the target site in this iteration, where
ncas9 ∼ min(3,Pois(λ = 0.4)).

2 Determine the site(s) to be cut by choosing available
sites randomly, where the probability of being chosen
is p = 1

nuncut and nuncut is the number of sites uncut
on that sequence.

https://github.com/evolbioinfo/booster/
https://github.com/evolbioinfo/booster/
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3 If ncas9 = 1, we determined the type of the indel by
drawing from a Bernoulli distribution with a
probability of success of 0.75 (in our case, a “success”
meant a deletion and a “failure” meant an insertion).
We then determined by drawing from a negative
binomial distribution as so:
s ∼ min(30,max(1, NB(0.5, 0.1))). In the case of an
insertion, we added random nucleotides of size s to
the cut site, else we removed s nucleotides.

4 In the case of ncas9 ≥ 2, we performed a resection
event where all nucleotides between the two cut sites
selected were removed.

5 After a cut event, we appended the result of the Cas9
interaction to a corresponding CIGAR string

Our Water simulations were exactly 300 bp, possibly
extending past the Poly-A signal, as would be the case
reading off a Nova-seq sequencer.
Upon simulating our ground truth dataset, we per-

formed our grid search by constructing alignments with
Water with a combination of gap open and gap extension
penalties.We varied the gap open penalties between 5 and
50 and gap extension penalties between 0.02 and 2.02.
To score resulting alignments, we compared the result-

ing CIGAR string to our ground truth CIGAR string for
each simulated sequence. To do so, we first split each cigar
string into “chunks,” corresponding to the individual dele-
tions or insertions called. For example, for some CIGAR
string 40M2I3D10M, the chunks would be 40M, 2I, 3D,
and 10M. Then, beginning with a max score of 1, we first
deducted the difference between the number of chunks
in the ground truth and the alignment. Then, in the case
where the number of chunks were equal between ground
truth and alignment, we deducted the percent nucleotides
that differed between CIGARs. For example, if the ground
truth was 100M and the alignment gave 95M, the penalty
would be 0.05.
To find the optimal set of parameters, we selected a

parameter pair that not only scored very well, but also
located in the parameter space where small perturbations
in gap open and gap extension had little effect.
Simulation of lineages for algorithm benchmarking
We simulated lineages using the following parameters:

1 The number of characters to consider, C
2 The number of states per character, S
3 The dropout per characters, dc ∀c ∈ C
4 The depth of the tree (i.e., the number of binary cell

division), D
5 The probability that a site can be mutated, p. This is

a general probability of cutting
6 The rate at which to subsample the data at the end of

the experiment, M

To simulate the tree, we begin by first generating the
probability of each character mutating to a state, here rep-

resented as pc(0, s),∀s ∈ S. In order to do this, we fit
a spline function to the inferred prior probabilities from
the lineage tracing experiment (refer to the section enti-
tled “Determining prior probabilities of indel formation”
for information on how we infer prior probabilities). We
then draw S values from this interpolated distribution.We
then normalize these mutation rates to sum to p, therefore
allowing in general a p probability of mutating a character
and 1−p probability of remaining uncut. In the case of the
“state distribution” simulations (Additional file 1: Fig S13),
we say that pc is distributed as:

pc = θ ∗ Unif (0, 1) + (1 − θ) ∗ F ′(x)

where F ′(x) is the interpolated empirical distribution and
θ is the mixture component.
Then, we simulate D cell divisions, where each cell divi-

sion consists of allowing a mutation to take place at each
character with probability p. In the case a mutation takes
place, we choose a state to mutate to according to their
respective probabilities. Importantly, once a character has
beenmutated in a cell, that character cannotmutate again.
At the end of the experiment, we sample M percent of

the cells resulting in 2D ∗ M cells in the final lineage.
We find that this method for simulating lineages (in par-

ticular the method for generating a set of priors on how
likely a given state is to form) is able to closely recapitulate
observed lineages (Additional file 1: Fig S6).

Metrics for comparing simulations to empirical data
We used three metrics of complexity to compare simu-
lated clones to real clones:

• Minimum compatibility distance: For every pair of
character, we define the minimum compatibility
distance as the minimum number of cells to be
removed to obtain compatibility (Def. 1).

• Number of observable states per cell : The number of
non-zero or non-missing values for each cell, across
all characters (i.e., the amount of data that can be
used for a reconstruction, per cell).

• Number of observable states per character: The
number of non-zero or non-missing values across for
each character, across all cells.

Parallel evolution simulations for greedy benchmarking
As shown above, our greedy approach should accurately
reconstruct a lineage if a perfect phylogeny exists. In order
to better quantify how much our greedy algorithm’s per-
formance is affected by parallel mutations, we decided
to simulate “near perfect phylogenies,” whereby we first
began by simulating a perfect phylogeny, and afterwards
introduced double mutated characters.
Specifically, we begin by simulating perfect phylogenies

with 40−k characters.We then fix a depth, d, and sample a
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node from said depth. We choose two grandchildren ran-
domly from this node (one from each child) and introduce
the same mutation on each of the edges from each child
to grandchild, thereby violating the perfect phylogeny. We
repeat this process k times. This thus creates an analysis,
as presented in Additional file 1: Fig S5, whereby accuracy
can be evaluated as a function of both depth of parallel
evolution, d, and the number of events that occurred, k.

Simulation of “base editor” technologies
We used the simulation framework described above to
simulate base editor technologies. To explore the trade off
between the number of states and the number of charac-
ters, we simulated trees with 40, 50, 80, and 100 characters
while maintaining the product of characters and states
equal at 400 (thus, we had trees of 10, 8, 5, and 4 states per
character, respectively). The dropout per character was set
to 10%, the mutation rate per character was set to 1.04%
(a previously observed mutation rate [46]), and 400 cells
were sampled from a tree of depth 10. For each charac-
ter/state regime, we generated 10 trees for assessing the
consistency of results. We use a negative binomial model
(∼ NB(5, 0.5)) as the editing outcome distribution (i.e.,
state distribution).

Simulation of “phased recorder” technologies
To simulate the phased recorder, we used 5 different
experiments varying mutation rates across 50 characters
and 10 states per character. In each experiment, we chose
a mutation rate for each character from one of 10 regimes,
each differing in their relationship to the base mutation
rate p0. To systematically implement this, mutation rate
forχ i is described as such:

mi = p0 ∗ (1 + ej ∗ � i
5
�)

where p0 = 0.025 and ej is an experiment scalar in e =
{0, 0.05, 0.1, 0.25, 0.5}. This means that for characters 1−5,
mi = p0; for characters 6 − 10, mi = ejp0; for characters
11 − 15, mi = 2ejp0; etc. To summarize each experi-
ment, we provide the ratio between the maximum and
minimum mutation rates, which is by definition 1 + 10rj
(because we had 50 characters). We compare two models
of indel formation rates—the first being a negative bino-
mial model (∼ NB(5, 0.5)) and the second being the spline
distribution fit from empirical data.
We simulated 10 trees per regime and reconstructed

trees with Cassiopeia with and without priors.

Reconstructions of GESTALT datasets
We downloaded data corresponding to the original
GESTALT study [5] and the more recent scGESTALT
study from https://datadryad.org/resource/doi:10.5061/
dryad.478t9 and GSE105010, respectively. We created

character matrices for input into Cassiopeia by creating
pivot tables relating each cell the observed indel observed
at each one of the 10 tandem sites on the GESTALT
recorder. We then reconstructed trees from these char-
acter matrices using one of five algorithms: Camin-Sokal
(used in the original studies), neighbor joining, Cas-
siopeia’s greedy method, Cassiopeia’s Steiner tree method,
and Cassiopeia’s hybrid method.
For each reconstruction, we record the parsimony of the

tree, corresponding to the number of mutations that are
inferred along the reconstructed tree. We display these
findings in Fig. 6a, where we have Z-normalized the par-
simonies across the methods for each dataset to enable
easier visualization of relative performances.

Visualization of trees
To visualize trees, we use the iTOL interface [64]. Colors
in the heatmap denote a unique mutation, gray denotes an
uncut site, and white denotes dropout.
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