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Abstract

Glycosylation is one of the most complex post translation modification in eukaryotic cells.

Almost 50% of the human proteome is glycosylated as glycosylation plays a vital role in vari-

ous biological functions such as antigen’s recognition, cell-cell communication, expression

of genes and protein folding. It is a significant challenge to identify glycosylation sites in pro-

tein sequences as experimental methods are time taking and expensive. A reliable compu-

tational method is desirable for the identification of glycosylation sites. In this study, a

comprehensive technique for the identification of N-linked glycosylation sites has been pro-

posed using machine learning. The proposed predictor was trained using an up-to-date

dataset through back propagation algorithm for multilayer neural network. The results of

ten-fold cross-validation and other performance measures such as accuracy, sensitivity,

specificity and Mathew’s correlation coefficient inferred that the accuracy of proposed tool is

far better than the existing systems such as Glyomine, GlycoEP, Ensemble SVM and GPP.

Introduction

Nascent protein after synthesis may undergo a variety of changes known as the post translation

modification. Most of the proteins are unable to perform their normal physiological functions

without undergoing such modifications. Each cell has a very accurate, sophisticated and flawless

machinery incorporating specific enzymes responsible for modification of newly synthesized

proteins. Glycosylation mainly manifests itself in the endoplasmic reticulum in eukaryotes,

when protein after synthesis from ribosomes enters into the lumen of this organelle as shown in

Fig 1. Almost 200 different kinds of post-translation modifications have been identified in vari-

ous cells. Among these modifications, glycosylation holds an important position in which a car-

bohydrate moiety gets attached to a protein molecule. The addition of sugars to a specific

amino acid of a protein results in the heterogeneity of protein, which helps it in performing a

variety of cellular functions. Glycosylation plays a crucial role in a multitude of cell functions

such as recognition of antigens, establishment of histocompatibility complex, protein turnover,
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expression of genes, controlling metabolism, protein folding, safeguarding against proteolysis

and cell-cell adhesion and communication [1].

Various monosaccharides, oligosaccharides and their derivative form bonds with different

amino acid residues within a protein as result of glycosylation. There are five classes of glyco-

sylation: N-linked, O-linked, C-linked, Phospho glycosylation and glypiation. Every kind of

glycosylation imparts a special characteristic to the modified protein as required by its role in

cellular process. N-linked glycosylation is common amongst all types as it holds 90% share in

total glycosylations [2]. The exposed asparagine residues of a protein are found to form N-

linked bond with sugars. Any asparagine (N) residue appearing within a consensus pattern of

sequence will form N-linked bond with sugars [3]. This modification is processed in endoplas-

mic reticulum (ER) lumen before exporting the modified protein to the cytoplasm or outside

of the cell. In ER lumen dolichol molecule plays a pivotal role in this process [4]. The mem-

brane-bound dolichol molecule has a long chain isoprene whose one end is attached with iso-

prenoid group and other with saturated alcohol [5].

It is difficult to identify such modifications experimentally after isolating proteins from a

eukaryotic cell, without disrupting the native structure of the protein. Such analysis can be per-

formed through mass spectrometry, which is a time consuming and costly technique. Compu-

tational determination of such modifications proves helpful for biologists saving their time

and effort. Various researchers have proposed computational methods for determining glyco-

sylation sites on the surface of protein using its primary structure.

Significant success has been achieved in the development of glycosylation predictive mod-

els, but still problems exist in such models that need to be addressed in order to develop better

models, some of such shortcomings are listed as follows. (i) The quantity of dataset used for

training limits the power and diversity of the prediction model because of inconclusive dataset

diversity. (ii) The datasets used in existing models are outdated as many of experimentally veri-

fied newly discovered glycosylation sites has not been included in existing models.(iii) The fea-

ture space used by existing methods to construct models is indecisive and not comprehensive.

Other potentially useful features are left uncovered that need to be characterized. The con-

struction of the feature vectors used by the existing model for training does not meticulously

extract the sequence and composition information that is crucial to identify an attribute of a

protein. (iv) The accuracy of the existing models needs to be improved as some models hardly

exhibit an accuracy up to 90%. Given these insufficiencies, it would be very useful to develop

more accurate models that enable the systematic prediction of glycosylation.

Fig 1. The process of glycosylation. Ribosomes attach to the cytoplasmic side of ER synthesis proteins. As

protein moves, special enzymes attach to oligosaccharides via N-linkage.

https://doi.org/10.1371/journal.pone.0181966.g001
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In this study, computational method using machine learning and a comprehensive feature

extraction technique is proposed for prediction of N-linked glycosylation sites. The dataset for

prediction of N-linked glycosylated sites is collected from the UniProt database. Features perti-

nent to post-translational modification sites are extracted. Based on the extracted features, a

neural network is trained using back propagation approach [6, 7]. Subsequently, validation of

the model is performed using several quantitative measures including receiver operating char-

acteristics, regression metric, accuracy metric, Mathew correlation coefficient, sensitivity,

specificity, cross-validation and jackknife testing.

Literature review

Researchers have made numerous contributions in developing several computational models

to predict an attribute of a protein [8]. Studies showed that attributes of a protein are reliant

not only on the composition of amino acids but also on the sequence in which amino acids

occur in the polypeptide chain [9]. The recent work in [10] reviews design of effective feature

extraction techniques based upon composition as well as the sequence of component amino

acids. Enhancing the work of other researchers, the authors in [11] developed a universal tech-

nique suitable for feature extraction from proteomic as well as genomic data. Caragea et al.

[12] proposed glycosylation predictor for N-, O- and C-linked sites. In this method, the

authors used support vector machine (SVM) having Ensemble and Single classifier. Both of

the classifiers are trained on the given dataset, performance comparison shows that Ensemble

SVM performed better than Single SVM having an accuracy of 95%. The recent work of Liu

et al enhanced the performance of ensemble classifiers by incorporating clustering and

dynamic selection strategies [13]. Hamby and Hirst [14] proposed predictive tool GPP that

was developed for the identification of glycosylation sites. Random forests algorithm based on

decision tree was used to develop this model. In this algorithm a tree consists of nodes and

paths, at each node it has to choose the path according to the defined rules. Using the random

selection of input and features several trees are generated. A voting mechanism selects a partic-

ular class against given input trees. Chauhan et al. [15] developed GlycoEP tool for N-, O- and

C- linked glycosylation site identification using different kernel functions like linear, polyno-

mial and radial basis function (RBF) with diverse learning parameters. The results showed that

RBF kernel outperforms other functions. Recently another predictive model GlycoMine was

developed by Li, Fuyi et al. [16] for glycosylation identification in human proteomes. The ran-

dom forest algorithm along with a novel feature extraction technique was used in order to

improve performance. The feature selection was based on information gain (IG) and mini-

mum redundancy maximum relevance (MRMR) principles.

Materials and methods

The process developed for prediction of N-Linked glycosylation sites is illustrated in the cur-

rent section. It comprises of four phases data collection, data filtration, feature extraction and

training as shown in Fig 2. The first phase involved collection of benchmark data from a well-

known online database of proteins namely UniProt. In the second phase, subsequences which

were most relevant to N-linked glycosylation were extracted from the raw data containing pri-

mary structure. After removing duplication, carefully selected sequences forming a representa-

tive subset of overall data was used for training purposes. In the third phase, a variety of

features were extracted, including position and composition variant features, raw, Hahn and

central moments. In the last phase, input feature matrix comprising of feature vectors and an

output matrix comprising of expected output were used to train the multilayered neural
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network through back propagation approach. The trained model is then validated on various

test datasets will be described later in validation section.

The dataset collection

The dataset for the prediction of the N-linked glycosylation is collected from one of the most

authentic databases UniProt available at http://www.uniprot.org. The UniProt database is a

comprehensive database which has been meticulously annotated on the basis of protein func-

tionality and characteristics. In order to accumulate positive samples a database is formed by

collecting the subset of protein in which some experimental evidence of N-linked glycosylation

has been observed. To serve this purpose only those proteins were listed which were annotated

with the field PTM/Processing. Additionally, within the obtained list only those proteins were

included that contained the term glycosylation in feature (FT) attribute. To further ascertain

the credibility of dataset only those proteins were collected in which this observation was

based on experimental assertion. From the obtained dataset those proteins were left out which

were not reviewed. Ultimately, this query ended up with 2964 proteins where each protein

may contain a number of glycosylation sites. The sequence of amino acid residues at the glyco-

sylation site and its vicinity bore more relevance than the entire primary structure of the pro-

tein [17]. Based upon this principle in the next step a subsequence of amino acid residues is

extracted from each glycosylation site. Subsequences were extracted from the position attribute

within the location element of only those features whose type attribute was “glycosylation site”

and the type attribute was “N-linked(GlcNAc. . .)”. The formation of a query string to

extract data from the database included all of these described features. Furthermore, in case of

negative dataset a converse query string is generated. As a result, the sequences of N-linked

glycosylation sites extracted from the raw data contained a total of 23761 instances. Out of these

sites 11601 were N-linked glycosylation positive sites while the rest of the 12160 sites were nega-

tive. Each instance of these subsequences had a length of 41 residues. Twenty neighboring

amino acid residues on both ends of Asparagine (N) residue were selected. The decision regard-

ing the number of neighboring residues was made based on probing and experimentation such

that the most optimal outcome is achieved. The collected dataset is then filtered by removing

the duplicated entries, only 11461 positive (S2 File) and 12000 negative (S1 File) instances of N-

linked glycosylation are left in the dataset. Alignment diagrams depicting the positive and nega-

tive datasets are shown in Fig 3 and Fig 4 respectively [18].

Fig 2. The proposed model workflow. The work flow of the proposed model is shown which includes four

phases: Data Collection, Data Filtration, Feature Extraction and TNN.

https://doi.org/10.1371/journal.pone.0181966.g002

Fig 3. Sequence logo for (–ve) N-linked glycosylation sites. The logo depicts residues occurring on

specific positions. All sites were aligned with non-glycosylated N-linked at position 0.

https://doi.org/10.1371/journal.pone.0181966.g003
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Feature vector construction

The biophysical characteristics of proteins are determined by the sequence in which amino

acids are incorporated in the polypeptide chain. The mere presence or absence of an amino

acid does not represent a characteristic. Composition of amino acids is not the only factor that

affects the proteins’ behavior rather relative positioning of constituent amino acid residues is

extremely significant. It has been observed through known data and experience that a minute

change in the relative positioning of amino acids may alter the characteristics of the protein

altogether [10]. These facts edict that a mathematical model which extracts features from the

primary structure of the protein should not only be based on the information pertaining to the

constituents of the proteins, but should also regard the relative positioning of the amino acids

as an important factor [19].

Site vicinity vector. It has been observed that some sites are susceptible to Post Transla-

tional Modification (PTM) while some are not. There are number of factors that contribute

towards such modifications. Most of the factors are environmental, the work of [20] shows

that susceptibility of a potential site is dependent upon its neighboring residues in the peptide

chain. Let αq depict the potential PTM site, then the neighboring residues in the polypeptide

chain are illustrated as

Ρ ¼ fa1 . . . aq� 2; aq� 1; aq; aqþ1; aqþ2; . . . ::ang ð1Þ

The Site Vicinity Vector (SVV) is derived as a sub-structure of the primary sequence which

contains the potential site along with its neighbors given as

aq� r . . . aq� 2; aq� 1; aq; aqþ1; aqþ2; . . . ::aqþr ð2Þ

Where r is a small integer value which is optimally selected through probing and experi-

mentation. The SVV, which forms a component of the inclusive feature vector, is assigned

unique numerical values substituting each residue position. Only 20 amino acids are signifi-

cant in terms of protein synthesis, in order to extract a feature vector, each amino acid is

assigned a unique integer value. As long as the values are unique, integral and are assigned

consistently, it does not matter which value is assigned to which amino acid.

Statistical moments of primary structure. Statistical moments are a quantitative mea-

sure used for describing a collection of data. Various orders of moments describe various

properties of data. Some moments may be used to evaluate the size of the data while some are

indicative of its orientation and eccentricity. Mathematicians and statisticians have formed

various moments based on certain well known polynomials and distribution functions. The

moments used in order to elucidate the proposed problem are raw; central and Hahn

moments. Raw moments are used for calculating mean, variance and asymmetry of the proba-

bility distribution, formed by the collected dataset. Raw moments are neither scale-invariant

nor location-invariant [6, 21 & 22]. The central moments also provide similar information, but

Fig 4. Sequence logo for (+ve) N-linked glycosylation sites. The logo illustrates residues occurring on

specific positions. All sites were aligned with glycosylated N-linked at position 0.

https://doi.org/10.1371/journal.pone.0181966.g004
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these moments are computed along the centroid of the data, which makes it location invariant

with respect to the centroid nonetheless it is still scale-variant [21, 22 & 23]. Hahn moments

are based on Hahn polynomials; these moments are neither scale-invariant nor location-vari-

ant. The obvious reason behind the choice of these moments is their sensitivity to sequence

ordered information which is of prime significance as discussed earlier. Consequently, use of

scale invariant moments has been avoided. The quantified values returned from each method

describe data in its own way. Furthermore, variation in the quantified value of moments for

arbitrary datasets implies variations in the characteristics of the data source [20, 24 & 25]. A

two dimensional version of these moments is used therefore the one dimensional primary

sub-sequence is firstly transformed into a two dimensional notation.

Let a protein sequence/sub-sequence P be represented as given below

P ¼ fa1; a2; a3; . . . :akg ð3Þ

Where αi is the ith amino acid residue component in a primary sub-sequence containing k

residues, also let,

n ¼ d
ffiffiffi
k
p
e ð4Þ

A matrix P’ is formed of dimension n�n to accommodate all the amino acid components of

the protein P.

P’ ¼

b11 b12 � � � b1n

b21 b22 � � � b2n

..

. ..
. . .

. ..
.

bn1 bn2 � � � bnn

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð5Þ

The 2-dimensional matrix P’ corresponds to the primary structure P. A mapping function

ω is used to transform the matrix P into P’.

oðamÞ ¼ bij ð6Þ

Where i ¼ m
n þ 1 and j = m mod n if P’ is populated in a row major manner.

The contents of the 2D matrix P’ are used for computation of moments up to degree 3; raw

moments are computed using the following relation

Mij ¼
Pn

p¼1

Pn
q¼1

piqj bpq ð7Þ

Where i + j is the order of the moments. Moments up to order 3 were computed which are

listed as M00, M01, M10, M11, M12, M21, M30 and M03.

The centroid of the data is like the center of gravity. The centroid is the point in data where

data is evenly distributed in all directions in terms of its weighted average. It is easily computed

after the computation of raw moments. It is given as a point �x; �y where

�x ¼ M10=M00 and �y ¼ M01=M00 ð8Þ

The centroid is used to compute the central moments. Central moments, are more like

moments, used in physics along the center of gravity where the centroid behaves as the center
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of gravity of data. They are computed using the following relation

Zij ¼
Pn

p¼1

Pn
q¼1
ðp � �xÞiðq � �yÞj bpq ð9Þ

The one dimensional notation P was transformed into a square matrix notation P’. This

transformation has to offer a greater dividend as Hahn moments can be computed on such an

even dimensional organization of data. Two-dimensional discrete Hahn moments are orthog-

onal moments that require a square matrix as a two dimensional input data. Another leverage

offered by Hahn moments is they are orthogonal which implies they have reversible property.

This property renders it possible to reconstruct the original data using the inverse functions of

discrete Hahn moments. This further connotes that the positional and compositional informa-

tion of a primary sequence is somehow conserved within the computed moments. The Hahn

polynomial order of n is given as

hu;v
n r;Nð Þ ¼ ðN þ V � 1ÞnðN � 1Þn �

Pn
k¼0
ð� 1Þ

k ð� nÞkð� rÞkð2N þ uþ v � n � 1Þk
ðN þ v � 1ÞkðN � 1Þk

1

k!
ð10Þ

The above expression uses the pochhammer symbol generalized as

ðaÞk ¼ a:ðaþ 1Þ � � � ðaþ k � 1Þ ð11Þ

And is simplified using the Gamma operator

ðaÞk ¼
Gðaþ kÞ

GðaÞ
ð12Þ

The raw values of Hahn moments are usually scaled using a weighting function and square

norm given as

heu;vn r;Nð Þ ¼ hu;v
n r;Nð Þ

ffiffiffiffiffiffiffiffi
pðrÞ
d2
n

s

; n ¼ 0; 1; � � � ;N � 1 ð13Þ

While

p rð Þ ¼
Gðuþ rþ vÞðv þ rþ 1Þðuþ v þ rþ 1ÞN
ðuþ v þ 2r þ 1Þn!ðN � r � 1Þ!

ð14Þ

The orthogonal normalized Hahn moments for two dimensional discrete data matrix are

computed using the following equation,

Hij ¼
PN� 1

q¼0

PN� 1

p¼0
bijh
eu;v
i ðq;NÞh

eu;v
j ðp;NÞ; m; n ¼ 0; 1; � � �N � 1 ð15Þ

Two dimensional raw, central and Hahn moments are computed for each primary

sequence up to order 3 and are later incorporated into the miscellany feature vector.

Position relative incidence matrix. Sequence order information forms the basis of any

mathematical model used to predict the behavior of proteins. The relative positioning of

amino acid residues is one of the core paradigms governing the physical attributes of the pro-

tein. It is also important to quantize how amino acids are relatively placed in the polypeptide

chain. Position Relative Incidence Matrix (PRIM) excerpts the relative positioning informa-

tion of amino acid components in the polypeptide chain. PRIM is formed as a matrix with
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dimensions of 20x20 elements as shown below:

SPRIM ¼

A1!1 A1!2 � � � A1!j � � � A1!20

A2!1 A2!2 � � � A2!j � � � A2!20

A..
.

i!1
A..

.

i!2
� � � A..

.

i!j � � � A..
.

i!20

A..
.

N!1
A..

.

N!2
� � � A..

.

N!j � � � A..
.

N!20

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð16Þ

An element Ai!j holds the sum of relative position of jth residue with respect to the first

occurrence of the ith residue. PRIM yields 400 coefficients which is a large number. To further

reduce the number of coefficients, moments are computed using PRIM as the input. This gen-

erates another set of data containing 24 elements [4].

Reverse position relative incidence matrix. The efficiency and the accuracy of any

machine learning algorithm is vastly dependent on the thoroughness and the meticulousness

by which the most relevant aspects of data have been extracted. A machine learning algorithm

has the capability to adapt itself in understanding and uncovering obscure patterns embedded

within data. The PRIM matrix uncovers or extracts information regarding the relative posi-

tioning of amino acids within the polypeptide chain. Another matrix, namely Reverse Position

Relative Incidence Matrix (RPRIM) is formed which works the same way as PRIM but on the

reverse primary sequence. Introduction of RPRIM helps uncover yet further hidden patterns

and alleviate ambiguities among proteins with seemingly resembling polypeptide sequences.

RPRIM is again a matrix with 400 elements having dimensions of 20x20. Formally, it is

given as

SRPRIM ¼

Z1!1 Z1!2 � � � Z1!j � � � Z1!20

Z2!1 Z2!2 � � � Z2!j � � � Z2!20

Z..
.

i!1
Z..

.

i!2
� � � Z..

.

i!j � � � Z..
.

i!20

Z..
.

N!1
Z..

.

N!2
� � � Z..

.

N!j � � � Z..
.

N!20

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð17Þ

Dimensionality of the large RPRIM matrix is reduced by computing it’s raw, central and

Hahn moments to transform it into a feature vector with only 24 coefficients.

Frequency matrix. A frequency matrix is formed, which is the distribution of occurrence

of each amino acid residue within the primary structure. The Frequency matrix is given as

x ¼ ft1; t2; � � � ; t20g ð18Þ

Where τi is the frequency of occurrence of ith native amino acid. The frequency matrix con-

tains information regarding the composition of the protein. It is evident that the frequency

matrix leaves out the sequence information. The sequence information has already been

extracted into PRIM.

Accumulative absolute position incidence vector (AAPIV). The frequency matrix pro-

vides the accumulative frequency occurrence of the amino acid residues in the polypeptide

chain while AAPIV provides the information regarding the composition of the protein.

Evidently, accumulative frequency matrix discards information regarding relative posi-

tioning of the amino acid residues. AAPIV is formed to extract the information regarding

the positioning of the amino acid residues in the polypeptide chain. A vector is formed

with 20 elements such that each element holds the sum of all the ordinal values at which the

corresponding residue occurs in the primary structure. Formally, it is described by means
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of the following representation of primary sequence which depicts the occurrence of a spe-

cific residue in the primary structure

ai
p1

. . . ai
p2

. . . ai
p3

. . . ::ai
pn ð19Þ

It depicts that a specific residue αi occurs at locations p1,p2,p3,. . .pn.

Let AAPIV vector be denoted as

Κ ¼ fm1; m2; m3; . . . ; m20g ð20Þ

Hence an arbitrary ith element of AAPIV is computed as

mi ¼
Pn

k¼1
pk ð21Þ

Reverse accumulative absolute position incidence vector (RAAPIV). As discussed ear-

lier, it is desirable, for a feature extraction method, to be capable of uncovering deeply obscure

patterns. A RAAPIV is formed to do just the same. RAAPIV is built by reversing the primary

structure string and then extracting AAPIV from the reversed string. Formally the RAAPIV is

illustrated as 20 element vector denoted as

L ¼ fZ1; Z2; Z3; . . . ; Z20g ð22Þ

Let the occurrences of a specific residue in the reversed sequence be depicted as

ai
l1 . . . ai

l2 . . . ai
l3 . . . ::ai

ln ð23Þ

Where l1,l2,l3,. . .ln are the ordinal locations where the residue αi occurs in the reverse

sequence. The values of an arbitrary element of Λ is given as

Zi ¼
Pn

k¼1
lk ð24Þ

Training neural network

The neural network is one of the most powerful techniques used to solve decision problems. A

Neural Network works in a way similar to human nervous system. The human brain receives

information from the environment and learns from its experience, the neural network adopts

a similar approach. It receives labelled input and based on the experience gained from each

input, it develops an opinion regarding each input during the training process. After training

process is completed the network seemingly behaves in a way that makes it capable to classify

each given input within an acceptable degree of accuracy Fig 5. During the learning process

the goal of the neural network is to reduce the error. During each iteration the network adjusts

Fig 5. Process of neural network. In neural network input values and initial weights are assigned to the

network and based on these values network start its learning.

https://doi.org/10.1371/journal.pone.0181966.g005
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its weights such that the error is minimized which essentially translates into improved learning

and increased accuracy in the prediction of relevant class for an arbitrary input.

The artificial neural network approach is very effective for developing a classifier in a super-

vised or an unsupervised manner. The prediction algorithm developed for prediction of N-

linked glycosylation sites also employs supervised learning. A multilayer back propagation

neural network quite similar to the one used in [7] has been employed to tackle this problem

as shown in Fig 6. The depths and details pulled out into the feature vector from raw data plays

a vital role. A feature vector (FV) capable of discriminating data semantically is bound to pro-

vide assiduous results. The FV constructed for the prediction of the N-linked glycosylation

sites consist of a large number of coefficients. The main discriminating attributes in the FV are

SVV, FM, AAPIV and RAAPIV along with the raw, central and Hahn moments of PRIM,

RPRIM and the two dimensional primary structure as discussed in the previous sections.

The proposed methodology for the prediction of the N-linked glycosylation in this paper

consists of several phases. In the first phase, the dataset of the N-linked glycosylation was col-

lected from the UniProt database as described previously. Initially, the data is in the form

embedded within XML text, from which sequences are extracted using a parsing script. The

second phase deals with the filtration of data in which duplicate entries has been removed to

eliminate homology bias. Features were extracted from this data to form FVs. The dataset

formed for this study consists of experimentally obtained data for negative as well as positive

N-linked glycosylation sites. Both the FVs are combined to form an input file while each input

vector is labelled as a positive or a negative sample in another expected output file. The training

of the multilayered neural network is performed using back propagation technique. In order

to reduce the error and increase the prediction accuracy gradient descent technique was used

along with an adaptive learning rate.

Gradient descent and adaptive learning

Gradient descent is one of the most commonly used training functions. The objective of the

gradient descent algorithm is to iteratively find the set of parameters that minimizes the func-

tion [26]. This minimization is performed by moving in a direction opposite to the direction

of the function gradient. The function gradient is calculated by computing the rate of change

in successive outcomes. Assuming that the objective function K(θ) is parameterized by variable

y 2 Rd then its gradient function is given asrθK(θ). The function is minimized by moving in

Fig 6. Multiple layer back propagation neural network. Artificial Neural Network having multiple layers is

used for the prediction of N-linked glycosylation sites.

https://doi.org/10.1371/journal.pone.0181966.g006
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a direction opposite to the direction of the gradient. Based on this concept the parameters are

re-calculated at each step as given in the following equation

y ¼ y � gryKðyÞ ð25Þ

Where γ is the learning rate. The learning rate is usually kept constant. The performance of

the algorithm greatly depends on the learning rate. It determines how quickly the function is

minimized. If the learning rate is too small, then too much time might be required to reach

convergence. In case, the learning rate is too large the function may oscillate and never reach

the optimal point. Hence the learning rate must be kept at an optimal value. Adaptive learning

algorithm varies the value of the learning rate, depending upon the performance of the algo-

rithm. Parameters computed for a successive iteration are discarded in case the error increased

in successive iterations. The learning rate is varied such that the function is minimized in each

iteration. Formally, let θi and θi+1 be two successively computed parameters. The weights are

recalculated, using these parameters and the corresponding outputs, and subsequently the

errors are also computed. Consequently, if the errors are greater as compared to the previous

epoch then the learning rate is decreased; weights are discarded and the newer value of θi+1 is

computed. Similarly, if it is lesser, then the learning rate is increased. As a result the learning

rate keeps on varying depending on the progress of the algorithm. Theoretically, the learning

rate can vary on each epoch, formally if (θ0, θ1, θ2, θ3,. . .) are the parameters computed for

each successive epoch, then they are computed using the following equation

ymþ1 ¼ ym � gmrKðymÞ ð26Þ

Where γm is the learning rate used for mth epoch. The adaptive learning algorithm ensures that

learning rate is moderated in a way that the function is minimized at each epoch. The selection

of learning rate always satisfies the following condition.

Kðy0Þ � Kðy1Þ � Kðy2Þ; � � � � � � ð27Þ

Experimentation and results

The proposed model endeavors to predict N-linked glycosylation sites in protein molecules

that resides in prokaryotic as well as eukaryotic cells. N-linked glycosylation plays a pivotal

role in protein folding and subsequent restructuring of protein molecule. The prediction

model is based on a position and composition variant feature extraction technique. Bench-

mark test data is contrived in a number of ways to carry out experiments which justify effec-

tiveness of the prediction model [8 & 9]. The results obtained from these experiments are

described in this section.

Self-consistency test

Self-consistency test is the most fundamental test used by various researchers to prove the

effectiveness of a predictor. Self-consistency test is carried out by gathering test case from the

training domain. The results obtained from self-consistency test are elaborated using confu-

sion matrix. Confusion matrix is an illustrious tool used to describe the accuracy of a model. It

describes the prediction result against the actual data. True positive (TP) means an item cor-

rectly identified by the model as a positive N-linked glycosylation site while false negative (FN)

means that a positive site was incorrectly marked as a negative site. False positive (FP) means

that the model incorrectly marked a negative site as a positive site, and true negative (TN)

means the model correctly identified the negative N-linked glycosylation site. An illustration
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of these parameters for the proposed predictive model obtained from self-consistency test is

presented in Fig 7. The prediction rate for identification of positive N-linked sites is 99.9%

while for negative sites it is 100%.

Similarly Receiver Operating Characteristics (ROC) graph is another illustrative tool used

to describe the results of the predictive model [27,28,29]. The ROC graph for the proposed pre-

diction model based on the self-consistency test is depicted in Fig 8(A). It is apparent that area

under the curve line in blue color in almost maximal as the curve touched the left top corner

which implies that it has a True Positive Rate (TPR) approaching 1 and it also suggests that the

accuracy of the predictive model is nearing 100%.The comparative results illustrated in the

ROC graph amongst proposed and the existing predictors are shown in Fig 8(A) and 8B, 8C,

8D and 8E respectively, it is clearly observed that the accuracy of the proposed model is much

higher than the existing ones.

Furthermore, regression metric is another useful tool to measure the accuracy of the predic-

tive model by calculating estimation of error. It is basically a statistical tool for the investigation

of the relationship between a responsive variable (X) and one or more predictive variables (Y)

[30]. For instance an arbitrary point Pi(Xi, Yi) is defined by variables Xi and Yi. Within a dataset

several such points exist, if all the points of given data lie on a straight line then it implies that

the accuracy of the model is outstanding and if the data point are scattered on XY plane then it

is indicative that poor accuracy is being exhibited by the predictor. The regression analysis of

proposed predictive model is shown in Fig 9. The Figure clearly depicts that all the data points

Fig 7. A confusion matrix of the prediction model. The values of TP, FN, FP and TN are 11461, 12, 0 and

11988 respectively. Overall accuracy also is 99.9% as shown.

https://doi.org/10.1371/journal.pone.0181966.g007
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lie on a straight line. It also shows that the regression value is 0.99 which indicates excellent

accuracy.

Sensitivity (Sn), specificity (Sp), Accuracy (Acc) and Mathew’s correlation coefficient are

the most common quantitative metrics used to gauge the performance of a predictor

[27,28,29,31,32,33,34]. The following equations demonstrate how these metrics are computed

using the results of self-consistency test

Sn ¼
P

True Positive
P

Postive Sample Space
ð28Þ

Sn ¼
TP

TPþ FN
ð29Þ

Sp ¼
P

True Negative
P

Negative Sample Space
ð30Þ

Sp ¼
TN

FPþ TN
ð31Þ

Acc ¼
P

True Negativeþ
P

True Positive
P

Total Sample Space
ð32Þ

Acc ¼
TN þ TP

TPþ TN þ FP þ FN
ð33Þ

MCC ¼
ððTN � TPÞ � ðFN � FPÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðFP þ TPÞðFP þ TNÞðFN þ TPÞðFN þ TNÞ

p ð34Þ

The benchmark dataset collected contained a comparable number of positives and negatives.

Fig 8. ROC comparison graph. The ROC graph comparison between proposed and other predictors like

Ensemble SVM, Glycomine, GlycoEP and GPP.

https://doi.org/10.1371/journal.pone.0181966.g008
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Specifically, positive samples were 11461 and negative samples were 12000. The values of accu-

racy parameters obtained as result of the self—consistency test were TP = 11461, FN = 12,

FP = 0 and TN = 11988. After putting these values in above equations the following values are

yielded, Sn = 0.9989, Sp = 1, Acc = 0.9994 and MCC = 0.9989. As all these metrics are nearing

1 therefore it is inferred that the proposed model is highly accurate.

Furthermore to prove the effectiveness of the predictor and to highlight the improvement

it offers, its predictive response for self-consistency test is compared with existing ones.

Table 1 shows that the proposed model exhibit a higher accuracy rate than any of the existing

predictors.

Fig 9. Regression metric. Regression Metric of proposed N-Linked predictor is shown. The regression value

is 0.99 which shows it has a negligible error rate.

https://doi.org/10.1371/journal.pone.0181966.g009

Table 1. Comparison of accuracy metrics.

Predictor ACC (%) MCC SN (%) SP (%) ROC

Proposed N-linked 99.9 0.99 99.8 99.9 0.99

Ensemble SVM 95.0 0.84 98.0 77.0 0.91

GPP 92.8 0.85 96.0 91.0 -

GlycoEP 84.2 0.54 98.1 77.0 0.93

GlycoMine 94.0 0.88 92.7 95.0 0.97

The comparison of accuracy metrics of proposed and existing predictors Is illustrated.

https://doi.org/10.1371/journal.pone.0181966.t001
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Validation of the model

Several methods are used to validate a prediction model [8 & 9]. Some of the most reliable

method used for the validation of a predictive model is K-fold cross validation and Jackknife

testing. In a typical validation method the dataset is divided into two sets, i.e. training data and

test data. The predictor is trained using training data. Once the model is fully trained and con-

vergence is achieved then the accuracy of the trained model is tested on untrained data (previ-

ously partitioned test data) as shown in the Fig 10. Each method of the validation has a

different approach for the selection of training and test data. Cross-validation and jackknife

testing are rigorous testing and data partitioning techniques which aim to exhaustively deter-

mine the performance of the predictor [27,28,29].

K-fold cross validation. Cross-validation is a way to develop an expectation that the pro-

posed method is perfect or more acceptable when an obvious validation set is not available.

Available data is split into k-folds where k is some constant. All the partitions are disjoint. The

system is tested for each partition while it has been trained for the rest of the data. The test is

iterated k times for each partition as shown in Fig 11. The overall average of the accuracy in

each iteration is reported as the cross-validation result.

Formally, let S be the total population of samples containing positive and negative samples

given as:

S ¼ fs1;s2;s3; . . . sng ð35Þ

Fig 10. The validation of prediction model. The validation process is illustrated. The accuracy of trained

model is verified by testing it over partitioned test data.

https://doi.org/10.1371/journal.pone.0181966.g010

Fig 11. K-fold cross validation. The process of K-fold cross validation is shown. Red circles show the test

data and green circles show the training data.

https://doi.org/10.1371/journal.pone.0181966.g011
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Where si is any arbitrary positive or negative sample. The dataset is split into k comparable

size subsets Si such that

Sk
i¼1

Si ¼ S ð36Þ

And

Tk
i¼1

Si ¼ ; ð37Þ

Also the subsets are selected randomly such that their sizes are comparable i.e.

jSij ffi jSjj ð38Þ

Where Si and Sj are any distinct arbitrary sets. In a single iteration the elements of set Si are

left out and the model is trained on rest of the data. The trained model is used to test the left

out data and an accuracy rate Ri is computed. The overall cross-validation result Ra is com-

puted by taking the mean of outcomes for all the k iterations

Ra ¼

Pk
i¼1

Ri

k
ð39Þ

In this study, 10 fold cross validation has been performed separately for positive and nega-

tive sites. Initially, 10-fold cross validation is performed on negative sites wherein the data is

divided into training data and test data. For dataset is partitioned into 10 folds, in each itera-

tion a partition is left out as test data while the neural network is trained on the remaining.

After sufficient training the network is simulated to check its accuracy on test data. This pro-

cess is repeated on all the ten datasets for positive and negative glycosylation sites. The average

of these values describe the prediction accuracy of the model which is ultimately computed as

99.998% and 99.81% for negative and positive sites respectively Table 2.

The accuracy of the predictive model is 99.9% by aggregating the positive and negative

results of 10-fold cross validation. Some of the existing glycosylation prediction models have

also used the cross validation approach to define accuracy of their proposed model [9, 11, 31,

35]. A comparison of their outcomes based on the cross validation test along with the result of

the proposed model is depicted in Table 3.

Jackknife testing. Cross validation works well if the data is diverse and unbiased.

Some researchers have used jackknife testing to validate their results [36, 37, 38].

Table 2. Cross validation result.

10-fold CV Positive Negative

K1 99.92 99.92

K2 99.75 99.92

K3 99.75 100.00

K4 99.58 99.92

K5 99.75 99.92

K6 99.83 99.83

K7 99.92 100.00

K8 100.00 99.83

K9 99.75 99.83

K10 99.83 99.83

Avg. 99.81 99.9

Total Avg. 99.9

The 10-fold cross validation of proposed predictor for both positive and negative sites are listed.

https://doi.org/10.1371/journal.pone.0181966.t002
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Jackknife testing is one of the most commonly used and mature re-sampling technique.

Other validating techniques use randomly selected or partitioned dataset for testing the

predictor. Usually there is no rule that governs the partitioning of this data [39]. The data

can be partitioned in many different ways, hence it is possible that a certain partition may

produce good results while another partition may not behave likewise. In such sub sam-

pling technique very small selection is used for testing and different selection may pro-

duce entirely different results. Therefore, such methods may never produce unique

results. The strength of jackknifing lies in its ability to produce unique results [40]. The

jackknife method computes the overall accuracy of the predictor by thoroughly leaving

out each observation from a dataset and training the model on left out data [41]. Ulti-

mately, all these calculations are averaged. The output of this validation is unique for the

provided dataset which consequently mitigates the issues raised by data independency

and sub sampling. Considering that X is the total sample space having n elements, given as

X ¼ fx1; x1; x3; . . . xng ð40Þ

Jackknife testing is an iterative method that computes the accuracy of the predictor for all

permutations of the population of size n-1 as shown in Fig 12 [32, 42, 43, 44].

Table 3. Comparison of cross validation.

Predictor Cross-Validation (%)

Proposed N-linked 99.9

Ensemble SVM 98.0

GPP 88.0

GlycoEP 93.0

GlycoMine 97.0

A comparison of 10-fold cross validation of proposed and existing predictors is illustrated.

https://doi.org/10.1371/journal.pone.0181966.t003

Fig 12. The process of Jackknife validation. The jackknife validation is shown in which yellow circles show

the test data and green circles shows the training data.

https://doi.org/10.1371/journal.pone.0181966.g012
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Let Ai be the accuracy rate computed for the ith iteration of the jackknife test. The data set

used to compute Ai leaves out the ith element in the population within the dataset Xi given as

Xi ¼ fx1; x1; x3; . . . ; xi� 1; xiþ1; xng ð41Þ

The trained neural network is simulated with the feature vector of all the samples in Xi. The

number of false positive and negatives and true positives and negatives is used to compute the

accuracy for this permutation Ai. The mean of all the values of Ai is computed as A�where.

A� ¼
1

n
Pn

i¼1
Ai ð42Þ

A� represents the overall average accuracy of the predictor and n represents the number of

observations. The dataset used in this study is too large as described earlier, therefore an esti-

mation of jackknife test is computed using a random selection of data containing 100 samples

of both positive and negative sites. In each iteration an item is left out of the training set and

the outcome of the predictor is observed for the left out item. The process iterates for all the

selected dataset, after aggregating the prediction results it yields an accuracy of 99.84% and

99.78% for negative and positive sites respectively.

The significance of the N-linked glycosylation has been emphasized in various existing

studies. Researchers have proposed various computational approaches in order to identify N-

linked glycosylation sites. The authors of each era put their best effort to enhance the predic-

tion accuracy and to identify N-linked glycosylation site within glycoprotein sequences. In this

study, we focus to achieve maximum accuracy by overcoming drawbacks in the existing meth-

odologies. Several key features make proposed approach distinguished and more accurate

from existing ones. Firstly, the benchmark dataset compiled is up-to-date and balanced dataset

as only experimentally annotations have been included. Secondly the data is non redundant

and is comprehensive and conclusive in size. Furthermore, the data is diverse in nature as it

primary sequences originate from diverse organisms. Most importantly the feature extraction

technique is scale and position variant and is capable of rigorously extracting deep obscure pat-

terns. Additionally, exhaustive 10 fold cross validation and jackknife testing is performed to

evaluate the predictive performance of the model [45, 46]. Existing methodologies described

earlier have different loopholes in their approaches. In [12] the authors tried to convert unbal-

anced dataset (unbalanced ratio of positive and negative sample) into the balanced dataset by

truncating significant data elements which resulted in an insufficient data set for mining

diverse patterns. The dataset used by the author in [16] only consists of human proteome,

hence this dataset tends to leave out essential patterns crucial for classification decision. Simi-

larly the feature selection approach used by [14] does not extract the crucial details and also

dataset is outdated. In this study, non-redundant, verified, reviewed and updated dataset of

huge size has been used and also extensive features have been extracted. The initial experi-

ments were conducted using a smaller feature vector. Through constant probing and experi-

mentation the feature set was expanded until most accurate results were achieved. The design

of feature sets aimed at uncovering deep obscure patterns, regarding position and composition

the utmost importance. Along with this, various accuracy metrics have been computed and

compared with existing model as shown in Table 1. The accuracy of the model was verified

and validated by performing rigorous 10 fold cross validation as shown Table 2 and jackknife

testing.
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Conclusion

Several protein functions are dependent on the glycosylation process, which is one of the

most complex post-translational modifications. Any anomaly in N-linked glycosylation

may result in problems in proper functioning of cell, sometimes leading to cell death. The

understanding and the knowledge of N-linked glycosylation sites can help in numerous

ways. The distinct function of such modified proteins, mainly depends upon structural fea-

tures along with the type and details of attached carbohydrate moieties. There are many

impediments, on mining such information during biochemical analysis, including small

sample size, efficiency of detection, separation and analysis of vast structural heterogeneity

of carbohydrates. In this study, a machine learning model using the back propagation meth-

odology is developed for the identification of N-linked glycosylation sites. The feature vec-

tor is formed by combining different approaches, including position and composition

variant features, raw moments, Hahn moments and central moments. The results yielded

by the trained model are then validated using cross-validation, jackknife testing and self-

consistency testing. It shows that the proposed model outperforms existing models such as

Hamby random forest, GlycoMine and GlycoEP. Furthermore, the accuracy of the model is

illustrated using different benchmark accuracy metrics such as Matthew Correlation Coeffi-

cient, sensitivity, specificity and accuracy. It is demonstrated with overwhelming experi-

mental results that the proposed computational method provides an accurate cost and time

effective approach as compared to existing in silico and in vitro methods.
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