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Abstract: Proliferative Diabetic Retinopathy (PDR) is a severe retinal disease that threatens diabetic
patients. It is characterized by neovascularization in the retina and the optic disk. PDR clinical
features contain highly intense retinal neovascularization and fibrous spreads, leading to visual
distortion if not controlled. Different image processing techniques have been proposed to detect
and diagnose neovascularization from fundus images. Recently, deep learning methods are getting
popular in neovascularization detection due to artificial intelligence advancement in biomedical
image processing. This paper presents a semantic segmentation convolutional neural network
architecture for neovascularization detection. First, image pre-processing steps were applied to
enhance the fundus images. Then, the images were divided into small patches, forming a training
set, a validation set, and a testing set. A semantic segmentation convolutional neural network was
designed and trained to detect the neovascularization regions on the images. Finally, the network was
tested using the testing set for performance evaluation. The proposed model is entirely automated in
detecting and localizing neovascularization lesions, which is not possible with previously published
methods. Evaluation results showed that the model could achieve accuracy, sensitivity, specificity,
precision, Jaccard similarity, and Dice similarity of 0.9948, 0.8772, 0.9976, 0.8696, 0.7643, and 0.8466,
respectively. We demonstrated that this model could outperform other convolutional neural network
models in neovascularization detection.

Keywords: diabetic retinopathy; neovascularization detection; convolutional neural network; deep
learning; computer-aided diagnosis

1. Introduction

Diabetes causes several long-term systemic complications that have far-reaching
consequences for the patients [1]. Individuals are typically diagnosed with diabetes during
their most prosperous years [2]. Diabetes is becoming an epidemic on a global scale. This
growth is typically faster in developed countries [3]. The etiology of this increase has
been linked to behavioral changes, increased sugar consumption, sedentary lifestyle, and
decreased physical activity [4,5]. According to the World Health Organization, diabetes
mellitus affected approximately 422 million people in 2014. Around 5% of diabetic patients
develop a significant visual acuity deficit of 5/200 or worse [6]. This condition is known as
Diabetic Retinopathy (DR). It has become the leading cause of blindness in adults [7].

DR is caused by damage in blood vessels of the retina. It can be classified into
two subtypes: Non-proliferative Diabetic Retinopathy (NPDR) and Proliferative Diabetic
Retinopathy (PDR) [8]. NPDR is distinguished by microvascular leakage of the retinal
blood vessels, which results in microaneurysms, exudates, and hemorrhages [9]. PDR is a
progression of NPDR that involves neovascularization [10]. NPDR and PDR both carry the
risk of significant vision loss [9]. However, PDR is more severe because it has the potential
to develop microvascular occlusion of retinal vessels. In response, the retina develops new,
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delicate blood vessels. This process is called neovascularization. Vitreous bleeding can
occur if these fragile new blood vessels rupture [11]. This vitreous bleeding is a dangerous
condition, as the blood in the vitreous will organize and form fibrous tissue. Contraction of
fibrous tissue will cause traction to the retinal layer and damage the retinal cells [12]. As a
consequence, severe visual impairment may occur.

The retina is a unique site for fundus imaging and microvascular disease diagno-
sis [13]. Recent advances in retinal imaging have made the development of computer-aided
methods for automatic retinal disease detection possible [14]. This approach has recently
attracted numerous researchers to develop retinal screening systems using imaging tech-
niques due to its low cost and scalability [15,16]. Nevertheless, it is still difficult to detect
neovascularization in PDR due to its tiny size and random growth pattern. Thus, it is not
easy to construct an automatic diagnosis system for PDR detection because automated
disease diagnosis is ineffective in the presence of complicated health conditions [17]. Re-
cent techniques of PDR detection are commonly based on analyzing the retinal fundus
images. It typically begins with image enhancement and optic disk removal, followed
by the extraction of the disease’s clinical features using image processing or machine
learning techniques.

Manual diagnostics take an excessive amount of time to complete [18]. Automated di-
agnosis can significantly reduce the amount of time, money, and commitment required [19].
Therefore, automated screening technologies have gained popularity in DR detection over
the last few years [20]. Image recognition, interpretation, machine learning approaches,
and deep learning algorithms have become popular techniques in automatic screening
systems [21]. The screening systems aim to segment anatomical structures such as fovea,
microaneurysms, swelling, exudates, veins, and neovascularization lesions [22]. Moreover,
separating the optic disk from the abnormal lesions has also become a critical task in the
screening systems [23].

In medical practice, several diagnostic and disease-recognition methods were used.
These include fundus fluorescein angiography, direct ophthalmoscopes, indirect ophthal-
moscopes, stereoscopic fundus photography, and monochromatic optical color photogra-
phy [24,25]. Using these techniques, ophthalmologists can identify PDR with a sensitivity
of approximately 50% [26]. However, as the number of PDR patients increases, more effort
is needed to diagnose the disease. Computer-aided diagnostic systems have, therefore,
been implemented to alleviate the burden on physicians. Nevertheless, these systems are
not convincingly accurate to prevent defective detection [27,28]. Therefore, this study aims
to improve neovascularization detection using a deep learning technique.

In recent years, deep learning has gained popularity in many application areas. For
example, it has been used in the application of the Internet of Things (IoT) for malware
detection [29] and super-resolution image reconstruction [30]. Deep learning is also widely
used for medical purposes include COVID-19 screening [31,32], breast cancer detection [33],
and bacterial shape classification [34]. In this study, deep learning is used because it can
learn the features of neovascularization automatically. In contrast to conventional machine
learning algorithms, manual feature extraction is required prior to training a classifier. The
disadvantage is that, as the object becomes more complicated, the extraction of the features
becomes more difficult. Thus, by utilizing deep learning, the complex features of the object
can be automatically deduced, allowing for more accurate detection.

The main contribution to this paper is the proposal of a novel semantic segmen-
tation convolutional neural network architecture for neovascularization detection from
fundus images. The proposed network can automatically identify and segment the neo-
vascularization pixels in the image, which is not achievable in the previously described
neovascularization detection methods.

This paper is divided into five sections. Section 2 presents the related works for
neovascularization detection. Section 3 describes the proposed method and the perfor-
mance evaluation. The evaluation results and discussion are presented in Section 4. Finally,
conclusions are given in Section 5.
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2. Related Works

PDR detection aims to detect abnormal blood vessels in retinal images caused by
neovascularization. Numerous approaches for detecting neovascularization have been
proposed in the literature. The methods can be divided into two categories: traditional and
deep learning.

2.1. Traditional Methods

Hassan et al. [35] used conventional image processing techniques to detect neovascu-
larization. The input fundus images are pre-processed using green channel extraction and
contrast enhancement to highlight the blood vessel structures in the fundus images. Then,
neutral-density filtering and morphological closing are used to extract the blood vessels.
The image is then binarized using thresholding. The extracted vessels are further refined
using morphological spurs, skeletonization, and thinning. Finally, neovascularization is
detected by sliding a 100 × 100 pixels window through the image with extracted vessels. If
a window region contains more than four blood vessels with vessel density greater than
7%, then the region is classified to contain neovascularization.

Several image features were used by Saranya et al. [36] and Ramasubramanian
et al. [37] for neovascularization detection. These features include shape, brightness,
position, and contrast. After they extracted the features from the fundus images, they
used different classifiers for neovascularization detection. Saranya et al. [36] used a K-
Nearest Neighbor (KNN) classifier, whereas a Support Vector Machine (SVM) is used by
Ramasubramanian et al. [37]. Agurto et al. [38] created several multiscale representations
of magnitude, frequency, and phase using multiscale Amplitude Modulation–Frequency
Modulation (AM-FM) decompositions for neovascularization detection. The image rep-
resentations are subsequently divided into regions of interest. Statistical features are
calculated from each region of interest, and K-means clustering is then used to detect
neovascularization. In another paper by Agurto [39], the AM-FM features are used to-
gether with a partial least squares (PLS) classifier for neovascularization detection. The
characteristics of several neovascularization features were evaluated by Vatanparast and
Harati [40]. These features include Gray-Level Co-Occurrence Matrix (GLCM), Gabor
filters, AM-FM, Local Binary Patterns (LBP), and invariant LBP rotation. They showed that,
among the features, the AM-FM approach is the most reliable.

Goatman et al. [41] proposed a method to detect neovascularization on the optic disk
(NVD). First, they extracted the blood vessel segments using watershed lines and ridge
strength measurement. Fifteen features, including shape, position, orientation, brightness,
contrast, and line density, are then calculated from each segment, and an SVM is used to
categorize them as normal or abnormal. Frame et al. [42] used GLCM for neovascularization
textures’ analysis. Six statistics values from the GLCM are used in their proposed method.
Jelinek et al. [43] performed a study of 27 fluorescein angiogram images to analyze vascular
pattern characteristics to detect PDR. They segmented the image using Gabor wavelet
transform and extract the area, perimeter, and five morphological features based on the
derivatives-of-Gaussian wavelet-derived data to determine the presence of PDR. Nayak
et al. [44] proposed a simple artificial neural network for detecting PDR using area and
perimeter features extracted from the blood vessels. A dataset with 36 images was used,
and they reported an accuracy of 90.91 percent.

2.2. Deep Learning Methods

Neovascularization is hard to detect because it has a spontaneous growth pattern. In
addition, the blood vessels that make up the lesion could be as small as one pixel wide.
Therefore, several researchers have proposed to use deep learning for neovascularization
detection. Deep learning, such as the convolutional neural network, has gained popu-
larity recently and has been shown to achieve good performance in object recognition
from images.
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Roy and Biswas [45] suggested several novel convolutional neural networks for retinal
vessel segmentation and optic disk detection. The segmented vessels are then examined
to detect neovascularization using artery–vein classification. The optic disk detection is
performed to identify neovascularization in the disk (NVD). Although their system is
effective at detecting neovascularization, it is not entirely automated. Additional effort is
needed to localize neovascularization.

Setiawan et al. [46] have implemented several pre-trained convolutional neural net-
works in the detection of neovascularization. These networks consisted of AlexNet, VGG16,
VGG19, ResNet50, and GoogLeNet. They extracted the features from the networks and
used them to train an SVM classifier to classify whether an image patch contains neovascu-
larization. However, their approach can only determine the presence of neovascularization
in an image. It is unable to pinpoint the exact location of the neovascularization lesion.

In this paper, a novel semantic segmentation convolutional neural network architec-
ture for neovascularization detection is proposed. The network can automatically detect
and localize neovascularization lesions, which is not possible in the previously published
works. We demonstrated that the proposed network could outperform other convolutional
neural networks in neovascularization detection.

3. Methodology

Figure 1 shows the flow of the methodology in this study. It consists of three stages:
image pre-processing and data preparation, network creation and training, and image
segmentation and performance evaluation.
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The image pre-processing and data preparation stage enhance the raw fundus images
and crop the images into patches that are suitable to be processed by the network. In the
second stage, a new semantic segmentation neural network based on the convolutional
neural network is developed for neovascularization detection. The network is then trained
using the prepared images, and its parameters are fine-tuned to achieve the best possible re-
sult. In the third stage, the developed network is used for neovascularization segmentation,
and its performance is evaluated.

The fundus images used in this study are obtained from the Department of Ophthal-
mology, Health Campus, Universiti Sains Malaysia. There is a total of 20 color images, each
with a resolution of 2000 × 3008 pixels. The raw images are first cropped to remove some
background pixels that do not contain the retina. The cropped images have a resolution of
2000 × 2368. After green channel extraction and contrast enhancement, an ophthalmologist
identified and labeled the neovascularization regions on the images. Based on the labels,
a set of ground truth images are created by labeling each pixel as either neovasculariza-
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tion or non-neovascularization. An open-source software called Sefexa [47] is used in the
labeling process and the ground truth generation. Figure 2 shows a fundus image with
neovascularization and the process of creating a ground truth.
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(c) labeled image by an ophthalmologist after green channel extraction and contrast enhancement;
(d) ground truth image.

3.1. Image Pre-Processing and Data Preparation

Image pre-processing is required to make the neovascularization features visible in a
fundus image. The more evident the neovascularization characteristics in the images, the
better the network can learn to identify the lesions. Initially, the green channel is extracted
from the RGB fundus images. This channel is selected because the blood vessels, including
those associated with neovascularization, appear clearer in this channel than the red or blue
channels [48], as shown in Figure 3. The blood vessel’s visibility is then improved by using
Contrast Limited Adaptive Histogram Equalization (CLAHE) [49]. CLAHE adjusts the
image contrast so that the foreground (blood vessels) became clearer than the background.

Each pre-processed fundus image is then divided into 10 smaller patches. The size of
each patch is 400 × 1184 pixels. There is a total of 200 patches created from the 20 fundus
images. Image normalization [50] is then applied to each patch to improve the visibility of
the neovascularization vessels by normalizing the range of pixel intensity values within a
patch. The resulting image patches are used for network training, validation, and testing.
Fifty percent of the 200 image patches are chosen at random for training, 25 percent for
validation, and the remaining 25 percent for testing. Figure 4 illustrates an example of a
training image and output at each image pre-processing step.
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Each ground truth image is also subjected to the same cropping and divided into
10 smaller patches. During training, the network learns to identify each pixel as Neo or
NotNeo based on its ground truth. The process of cropping ground truth is depicted in
Figure 5.

Data augmentation is applied to the images in the training set to increase the number
of training images. The augmentation process includes flipping the images horizontally
and vertically. This increases the number of training images from 100 to 300.
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3.2. Network Design and Training

A semantic segmentation convolutional neural network architecture is designed for
learning the features of NotNeo and Neo pixels. This network is constructed using 42 layers.
The layers include the convolution layer, max-pooling layer, batch normalization layer, and
rectified linear unit layer. The structure of the network architecture is depicted in Figure 6.
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A typical convolutional neural network used for neovascularization detection in other
papers had only a single output [46]. A fully connected layer is used to classify images using
the outputs of the convolution and pooling layers. However, this could only determine
whether neovascularization is present in an image. It is unable to localize the lesion. To
overcome this, semantic segmentation [51] is implemented in the proposed network. A
pixel classification layer is used rather than a fully connected layer to achieve many outputs.
The number of outputs is equal to the number of pixels in the image. Each pixel in the
image is classified into one of two classes: Neo or NotNeo. As a result, neovascularization
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detection becomes more precise, with each pixel being scrutinized to detect and precisely
locate the tiny vessels.

Due to the small size of the neovascularization vessels, smaller filters in the convo-
lution layers may be preferred. However, the fundus images used in this study have a
high resolution (2000 × 2368 pixels). Hence, instead of using the optimal 3 × 3 filter size, a
7 × 7 filter size is used. More pixels are considered when the feature map is constructed
after the pixels pass through the first convolution layer. A 3 × 3 filter size is used for the
subsequent convolution layers because the image has been downsampled, which reduces
the image resolution. A 1 × 1 filter size is used when the image is downsampled to a
low resolution, leaving few pixels available for convolution. Unlike U-Net [52], the first
convolution layer used a 3 × 3 filter size due to the small size of the training images used
in their test (512 × 512 pixels).

The purpose of downsampling and upsampling is to reduce the amount of memory
used while training. This expedites the training process and requires less memory while
training. Following a convolution layer, batch normalization and the rectified linear
unit layer are added. Batch normalization has the potential to accelerate the training
process [53]. Therefore, placing it after the convolution layer can reduce training time. The
batch normalization layer transforms each input in the current mini-batch by subtracting
its mean and dividing it by its standard deviation. When the trained network makes
predictions on a new image, the batch normalization layer uses the trained mean and
variance to normalize the input. However, it requires many mini-batch sizes for training
to effectively approximate the population mean and variance from the mini-batch. Our
training images are 2000 × 2368 pixels in size, and the mini-batch size used is seven. As
a result, the number of mini-batch sizes is sufficiently large enough to ensure that batch
normalization runs efficiently. The rectified linear unit (ReLU) is used as the activation
function [54]. ReLU is commonly used in a convolutional neural network and has been
shown to provide better results than other nonlinear activation functions [55].

A depth concatenation layer that combined the feature maps produced by the first
convolution layer with the feature maps produced by a transposed convolution layer
is used in the first upsampling. This method will increase the number of feature maps
available for learning after the first upsampling, allowing the network to learn more
neovascularization features without additional training images. Thus, this approach can
improve the neural network’s performance. As with U-Net, the first upsampling uses
information from the previous downsampling to increase the resolution of feature maps
used for learning. However, our proposed approach differs from the U-Net approach in
that it employs depth concatenation to increase more feature maps. In contrast, the U-Net
approach increases the resolution of the feature maps. The advantage of our approach,
which utilizes the depth concatenation layer, is that we maintained the size of the feature
maps rather than increasing their resolution, which conserves memory during training.

An “addition layer” is a layer that integrates inputs from multiple neural network
layers element by element. This is accomplished by the pixel-by-pixel addition of two
feature maps to create a new output feature map. This approach is advantageous because it
preserves information from the input image to the network’s final few layers, ensuring that
no information from the original input is lost during training [56]. The concept originated
with ResNet [56], which is called a residual block. Addition layers are used in the proposed
network architecture to preserve the information from the input image, allowing the
original input image data to be carried throughout the network architecture.

Moreover, the residual block is modified so that the model simultaneously performed
addition and downsampling. This is done by adding a 1 × 1 filter size convolution layer
in the skip connection, as shown in Figure 7. Downsampling is accomplished by setting
stride equal to 2 in the 3 × 3 and 1 × 1 convolution layers. The purpose of adding
another convolution layer in the skipped connection is to perform downsampling in the
skipped connection first before being added. This is because addition cannot be carried out
if downsampling is only performed on the 3 × 3 convolution layer without performing
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another downsampling in the skipped connection due to the different resolutions of the two
feature maps. The small filter size of 1 × 1 is used in the skipped connection’s convolution
layer to prevent excessive filtering on the feature maps, ensuring that information is
preserved while downsampling could occur concurrently.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 19 
 

 

out if downsampling is only performed on the 3 × 3 convolution layer without performing 
another downsampling in the skipped connection due to the different resolutions of the 
two feature maps. The small filter size of 1 × 1 is used in the skipped connection’s convo-
lution layer to prevent excessive filtering on the feature maps, ensuring that information 
is preserved while downsampling could occur concurrently. 

 
(a) (b) 

Figure 7. Application of addition layer to preserve information. (a) original residual block from 
ResNet; (b) modified residual block with downsampling. 

The purpose of downsampling is to gradually reduce the image size in order to save 
on computational costs. Otherwise, training the network will consume a significant 
amount of memory. Therefore, downsampling is required to conserve memory during 
training. Upsampling is then used to restore the image to its original size, allowing each 
pixel in the original input image to be classified as neovascularization or non-neovascu-
larization. Without downsampling, the resolution of feature maps will remain constant 
throughout the network architecture. Thus, the input size will be conserved until the end 
of the network layers. As a result of the increased parameter load, the network requires 
more memory to train. Therefore, downsampling is necessary to reduce the training pa-
rameters. 

In the network training, the mini-batch size, epoch, momentum, and initial learning 
rate are set to 7, 10, 0.9, and 5 × 10−4, respectively. These values are obtained empirically 
from parameter tuning. The training is conducted using the training set and the validation 
set. Stochastic gradient descent with momentum as the optimizer was used to train the 
model. This optimizer determined the global minimum of the cross-entropy loss function 
with respect to weights as quickly as possible. The weight with the smallest loss represents 
the ideal weight for detecting neovascularization features in the dataset. During training, 
the weight was updated by measuring the loss after each mini-batch size. After reaching 
the global minima of the loss function, the training was terminated, and the optimal 

Figure 7. Application of addition layer to preserve information. (a) original residual block from
ResNet; (b) modified residual block with downsampling.

The purpose of downsampling is to gradually reduce the image size in order to save
on computational costs. Otherwise, training the network will consume a significant amount
of memory. Therefore, downsampling is required to conserve memory during training.
Upsampling is then used to restore the image to its original size, allowing each pixel in
the original input image to be classified as neovascularization or non-neovascularization.
Without downsampling, the resolution of feature maps will remain constant throughout the
network architecture. Thus, the input size will be conserved until the end of the network
layers. As a result of the increased parameter load, the network requires more memory to
train. Therefore, downsampling is necessary to reduce the training parameters.

In the network training, the mini-batch size, epoch, momentum, and initial learning
rate are set to 7, 10, 0.9, and 5 × 10−4, respectively. These values are obtained empirically
from parameter tuning. The training is conducted using the training set and the validation
set. Stochastic gradient descent with momentum as the optimizer was used to train the
model. This optimizer determined the global minimum of the cross-entropy loss function
with respect to weights as quickly as possible. The weight with the smallest loss represents
the ideal weight for detecting neovascularization features in the dataset. During training,
the weight was updated by measuring the loss after each mini-batch size. After reaching
the global minima of the loss function, the training was terminated, and the optimal weight
was determined. To prevent overfitting during the training, hold-out cross-validation was
used to partition the dataset into a training set and a validation set.
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The network will calculate the loss in the validation set after each mini-batch size
during training. Once the loss on the validation set exceeds or equals the previously
smallest loss, the network will automatically stop training. The number of times it can be
greater than or equal to the previously smallest loss is referred to as validation patience. In
the experiment, the validation patience was set to four. This value was obtained empirically.
This prevents overfitting and allows the network to learn the optimal weight to identify
neovascularization features rather than memorize each detailed feature in each image
patch.

3.3. Image Segmentation and Performance Evaluation

After training is completed, the network is evaluated using the testing set. The
network performs image segmentation by classifying each pixel in the test image as Neo or
NotNeo. For performance evaluation, these classified pixels are compared to the ground
truth images. To evaluate the network’s performance, accuracy, sensitivity, specificity, and
precision are calculated.

Accuracy represents the correctly classified instances over the total number of in-
stances. The equation of accuracy is shown below:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

True positive (TP) represents the pixels that are correctly classified as Neo. True
negative (TN) refers to the pixels that are correctly classified as NotNeo. False positive (FP)
represents the pixels that are incorrectly classified as Neo. False negative (FN) indicates the
pixels that are incorrectly classified as NotNeo.

Aside from that, sensitivity is also useful in measuring an algorithm’s performance.
Sensitivity represents the tendency of correctly classified instances. The equation of sensi-
tivity is defined as below:

Sensitivity =
TP

TP + FN
(2)

Another vital performance metric is specificity. It measures the tendency of correctly
classified negative instances. The equation of specificity is shown below:

Speci f icity =
TN

TN + FP
(3)

Precision is measured as the ratio of correctly detected positive samples to the total
number of positive detection (either correctly or incorrectly detected). Precision is a metric
that calculates how accurate the model is at classifying a sample as positive. The equation
of precision is as shown below:

Precision =
TP

TP + FP
(4)

Dice similarity is a statistical measure to compute the similarity of two samples. The
value ranges from 0 to 1, with 1 being the best result. It is commonly used to measure the
performance of segmentation results. The equation of Dice similarity coefficient is given
below:

Dice =
2 × TP

2 × TP + FP + FN
(5)

Jaccard similarity coefficient is another statistical measure to determine the similarity
and diversity of sample sets. It is also used to evaluate the segmentation performance. The
formula of the Jaccard similarity coefficient is defined as [57]:

Jaccard =
TP

TP + FP + FN
(6)
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3.4. Performance Comparison

The performance of the proposed method is compared to other published works that
also used convolutional neural networks for neovascularization detection to highlight the
improvements made. However, the dataset used in this study is different from those used
in the previous works. Therefore, to ensure a fair comparison, the methods described in
other papers are implemented, and their performance in neovascularization detection is
evaluated using the same dataset.

Setiawan et al. [46] used pre-trained convolutional neural networks for neovascular-
ization detection. Their proposed method is implemented and evaluated using the fundus
images in this study. The tested networks are GoogLeNet [58], ResNet18 [56], ResNet50 [56],
and AlexNet [59].

GoogLeNet, ResNet18, and ResNet50 require the same input size of 224 × 224 pixels in the
first layer. However, the first layer of AlexNet needs an input size of 227 × 227 pixels. Hence,
two sets of datasets are prepared with the required sizes using the twenty 2000 × 2368 pixels
color fundus images. This is done by cropping the images into 1600 patches with a size of
224 × 224 pixels. In addition, 50% of the patches are allotted for the training set, 25% for
the validation set, while the remaining 25% are used for the testing set. The 1600 patches
were then resized to 227 × 227 pixels to form another dataset for AlexNet.

The training set and validation set images are fed into the pre-trained convolutional
neural networks. Then, features are extracted from a fully connected layer (4096 from
AlexNet, and 1000 from GoogLeNet, ResNet18, and ResNet50). The features are then used
to train the SVM classifier. A total of four classifiers are trained, one for each pre-trained
network’s features. Next, the testing set is subjected to the same procedure for feature
extraction. Finally, the performances of the classifiers are evaluated using the features
extracted from the testing set.

The performance of the proposed method is also compared to a method by Hassan
et al. [35], who used conventional image processing techniques for neovascularization
detection. Their method is implemented and tested using the images used in this study.
The obtained results are then compared to the results of the proposed method.

4. Results and Discussion

The proposed semantic segmentation network is implemented and trained in the
Matlab R2019b platform. The proposed network is designed using the Deep Network
Designer in Matlab’s Apps. Training of the network will require a long time to achieve
good results. However, using the Stochastic Gradient Descent with Momentum (SGDM)
optimizer, the global minima of the loss function, which represents the optimum weight
for recognizing neovascularization pixels, can be discovered faster. The loss function used
in the training process is the cross-entropy loss function. This function measured the total
number of errors made in the training or validation set. The loss value indicates how
well a model performed after each optimization iteration. The accuracy metric is used to
calculate the algorithm’s output interpretably. After the model parameters are determined,
the accuracy of the model is expressed as a percentage. It is a metric that indicates how
close the model’s prediction is to the actual results.

After the training is complete, the testing set is used to evaluate the performance of
the network. The testing set contains images that the network has never seen before. The
pixels from these images are fed into the proposed network. Each pixel is then categorized
into one of the two categories: Neo or NotNeo. After the classification is complete, the
number of true positives, true negatives, false positives, and false negatives are calculated
by comparing each categorized pixel to its ground truth. These parameters are then
used to determine the accuracy, sensitivity, specificity, precision, Jaccard coefficient, and
Dice coefficient.

The proposed method segments the regions with neovascularization in the images, and
the results from the above calculation measure the segmentation performance. However,
other neovascularization detection methods to be compared in this study are based on
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image patch classification. The methods from Setiawan et al. [46] and Hassan et al. [35] can
only detect whether neovascularization is present in an image patch. In order to have a
fair comparison, the performance of the proposed method was also evaluated based on
image patch classification. This is done by dividing the segmented output images from the
testing set into patches of 200 × 296 pixels. Patches that contain neo pixels are considered
positive images, while the rest are negative images. The same division is performed on
the ground truth images. The performance metrics (accuracy, sensitivity, specificity, and
precision) based on image patch classification are then calculated, and these values are used
to compare with the results from Setiawan et al.’s [46] and Hassan et al.’s [35] methods.

Figure 8 shows an example of an image patch and the output image generated by the
proposed network. Figure 8a is the input image patch. The segmented neovascularization
regions by the proposed network are shown in Figure 8b. These regions are compared
to the ground truth image (Figure 8c). The final output image, as shown in Figure 8d, is
obtained by overlaying the segmented regions and ground truth on the input image.
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and ground truth on the input image.

Figure 9 shows four output images from the network. It can be observed that most
of the segmented regions covered the ground truth in the images. This indicates that the
proposed network is capable of detecting the vast majority of the Neo pixels. However,
there are a few false positives near the edges of the ground truth, as labeled in Figure 9a–c).
There are also some false negatives in several test images. They mostly occurred in images
with small and narrow ground truth areas, as shown in Figure 9d. Figure 10 shows the
results of several testing set image patches that have been combined to form the complete
fundus images.
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Table 1 presents the evaluation results based on the performance metrics. The images
used in the evaluation are from the testing set. The average results for image segmentation
and image patch classification are given in the last two rows in the table.
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Table 1. Performance of the proposed method (results from the testing set).

Image Number Accuracy Sensitivity Specificity Precision Jaccard Dice

1 0.9926 0.7330 0.9966 0.7626 0.5968 0.7475
2 0.9928 0.5841 0.9995 0.9536 0.5680 0.7245
3 1.0000 - 1.0000 - - -
4 1.0000 - 1.0000 - - -
5 1.0000 - 1.0000 - - -
6 0.9930 0.4845 0.9999 0.9837 0.4806 0.6492
7 1.0000 - 1.0000 - - -
8 1.0000 - 1.0000 - - -
9 1.0000 - 1.0000 - - -
10 1.0000 - 1.0000 - - -
11 1.0000 - 1.0000 - - -
12 0.9960 0.9811 0.9961 0.7188 0.7090 0.8297
13 1.0000 - 1.0000 - - -
14 1.0000 - 1.0000 - - -
15 1.0000 - 1.0000 - - -
16 1.0000 - 1.0000 - - -
17 0.9828 0.6749 0.9992 0.9781 0.6649 0.7987
18 1.0000 - 1.0000 - - -
19 0.9879 0.7187 0.9996 0.9859 0.7114 0.8313
20 1.0000 - 1.0000 - - -
21 0.9841 0.9960 0.9828 0.8623 0.8593 0.9243
22 0.9964 0.9795 0.9972 0.9415 0.9233 0.9601
23 0.9961 0.9822 0.9964 0.8132 0.8014 0.8897
24 0.9920 0.8949 0.9982 0.9700 0.8708 0.9309
25 0.9968 0.9799 0.9973 0.9071 0.8905 0.9421
26 1.0000 - 1.0000 - - -
27 1.0000 - 1.0000 - - -
28 1.0000 - 1.0000 - - -
29 1.0000 - 1.0000 - - -
30 0.9995 - 0.9995 0.0000 0.0000 0.0000
31 1.0000 - 1.0000 - - -
32 0.9958 0.9618 0.9972 0.9356 0.9021 0.9485
33 1.0000 - 1.0000 - - -
34 0.9969 0.9957 0.9969 0.8915 0.8881 0.9407
35 1.0000 - 1.0000 - - -
36 1.0000 - 1.0000 - - -
37 0.9891 0.8630 0.9946 0.8747 0.7681 0.8688
38 0.9906 0.8363 0.9988 0.9744 0.8184 0.9001
39 0.9983 0.9501 0.9992 0.9606 0.9145 0.9553
40 0.9923 0.9972 0.9922 0.8004 0.7986 0.8880
41 0.9855 0.9869 0.9854 0.8585 0.8488 0.9182
42 0.9840 0.9360 0.9874 0.8422 0.7963 0.8866
43 0.9945 0.9844 0.9952 0.9311 0.9175 0.9570
44 0.9959 0.9409 0.9973 0.8925 0.8452 0.9161
45 0.9439 0.7209 0.9906 0.9417 0.6901 0.8166
46 1.0000 - 1.0000 - - -
47 0.9760 0.8655 0.9898 0.9137 0.8001 0.8889
48 0.9958 0.9187 0.9987 0.9643 0.8885 0.9410
49 0.9927 0.9633 0.9955 0.9523 0.9190 0.9578
50 1.0000 - 1.0000 - - -

Average (for image segmentation results) 0.9948 0.8772 0.9976 0.8696 0.7643 0.8466

Average (for image patch classification results) 0.9700 0.9462 0.9772 0.9263 - -

For neovascularization segmentation, the obtained average accuracy is 0.9948. Sensi-
tivity is equal to 0.8772 on average. This means that 87.72% of the Neo pixels are correctly
identified as Neo. Specificity is 0.9976 on average. This indicates that 99.76% of the NotNeo
pixels are correctly classified. The precision of 0.8696 demonstrates that 86.96% of the
classified Neo pixels actually contain neovascularization. The segmentation results yielded
an average Jaccard coefficient and Dice coefficient of 0.7643 and 0.8466, respectively. These
results show that the proposed semantic segmentation network can achieve high accuracy,
sensitivity, specificity, precision, and Dice coefficient.

The average accuracy, sensitivity, specificity, and precision obtained for image patch
classification are 0.9700, 0.9462, 0.9772, and 0.9263, respectively. This shows that, among
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the 400 image patches, 97% are correctly classified as Neo and NotNeo, 94.62% of the
Neo patches are correctly classified, 97.72% of the NotNeo patches are correctly classified,
and 92.63% of the classified Neo patches actually contain neovascularization. Certain test
image patches were misclassified because the neovascularization features are not consistent
across images. When the network learned the neovascularization features, it determined
the optimal features that would produce the optimum result. Thus, any image patch
containing neovascularization features that appear significantly different from the optimal
learned features will be misclassified as non-neovascularization.

Another reason for the misclassification of certain image patches is that the neovascu-
larization characteristics are overly complex. If the object is easy to identify, we can easily
distinguish its features. However, due to the complexity of the tiny vessels in the retina,
each neovascularization lesion appears quite differently in each image patch. As a result, it
is challenging to avoid misclassification unless the neovascularization characteristics are
consistent and straightforward, allowing for easy identification even with the naked eye.

To demonstrate the improvements made in neovascularization detection using the
proposed method, its performance is compared with a recently published work by Setiawan
et al. [46] that also used convolutional neural networks for neovascularization detection. To
ensure fair performance comparison, the method described in the paper is implemented in
this study (as explained in Section 3.4). Several pre-trained convolutional neural networks
as proposed in the paper (GoogleNet, ResNet50, AlexNet, and ResNet18) are evaluated
using our training and testing images. Another neovascularization detection method based
on traditional image processing techniques by Hassan et al. [35] is also evaluated in this
study to compare its performance with the proposed method. The results for each of the
methods are presented in Table 2. These results are compared to the results of image patch
classification from the proposed method.

The proposed network achieved the best results for accuracy, specificity, and precision
among the evaluated methods. However, its sensitivity is slightly inferior (lower by 0.054
compared to the highest result). This demonstrates that the proposed model is effective at
detecting neovascularization.

In addition, the proposed deep learning model also has the advantage of segmenting
the neovascularization pixels out of a fundus image, which is not possible with other
methods. Other methods can only detect whether there is neovascularization in an image
patch. It is unable to determine which pixels are associated with neovascularization. As
a result, detecting neovascularization will be more precise using the proposed model by
paying close attention to each pixel. Thus, using the proposed semantic segmentation
convolutional neural network, neovascularization detection, and localization can both be
accomplished automatically without additional effort.

Table 2. Performance comparison of the proposed method with other neovascularization detection methods. The best
values are indicated in bold.

Method Accuracy Sensitivity Specificity Precision

Setiawan et al. [46] (GoogLeNet with SVM) 0.6650 0.9850 0.3450 0.6006
Setiawan et al. [46] (ResNet50 with SVM) 0.9200 0.9950 0.8450 0.8652
Setiawan et al. [46] (AlexNet with SVM) 0.8325 1.0000 0.6650 0.7491

Setiawan et al. [46] (ResNet18 with SVM) 0.7525 1.0000 0.5050 0.6689
Hassan et al. [35] 0.6502 0.7150 0.5766 0.6573
Proposed method 0.9700 0.9462 0.9772 0.9263

5. Conclusions

This paper has presented a semantic segmentation convolutional neural network
architecture for detecting neovascularization. Since neovascularization vessels are tiny,
semantic segmentation is suggested. As a result of paying close attention to each pixel,
neovascularization detection and localization via semantic segmentation will be more pre-
cise. Moreover, the proposed method is completely automated in detecting and localizing
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neovascularization lesions, which is not possible with a conventional convolutional neural
network as proposed in other papers. The performance comparison results show that the
proposed network outperformed other methods of neovascularization detection in terms
of accuracy, specificity, and precision.

Author Contributions: Conceptualization, M.C.S.T., S.S.T. and H.I.; methodology, M.C.S.T. and
S.S.T.; software, M.C.S.T.; validation, M.C.S.T. and S.S.T.; resources, S.S.T., H.I. and Z.E.; data curation,
M.C.S.T., S.S.T. and Z.E.; writing—original draft preparation, M.C.S.T. and S.S.T.; writing—review
and editing, M.C.S.T., S.S.T., H.I. and Z.E.; visualization, M.C.S.T. and S.S.T.; supervision, S.S.T. and
H.I.; funding acquisition, S.S.T. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was financially supported by the Ministry of Higher Education Malaysia through
the FRGS Grant: 203.PELECT.6071443 (Universiti Sains Malaysia).

Institutional Review Board Statement: The study was conducted according to the guidelines of
the Declaration of Helsinki, and approved by the Ethics Committee of Universiti Sains Malaysia,
Malaysia (protocol code USM/JEPeM/20020118 and date of approval 1 July 2020).

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rogers, D.G. The effect of intensive treatment of diabetes on the development and progression of long-term complications in

insulin-dependent diabetes mellitus. Clin. Pediatr. 1994, 33, 378. [CrossRef]
2. Lascar, N.; Brown, J.; Pattison, H.; Barnett, A.H.; Bailey, C.J.; Bellary, S. Type 2 diabetes in adolescents and young adults. Lancet

Diabetes Endocrinol. 2018, 6, 69–80. [CrossRef]
3. Ramachandran, A. Specific problems of the diabetic foot in developing countries. Diabetes Metab. Res. Rev. 2004, 20, S19–S22.

[CrossRef] [PubMed]
4. Wing, R.R.; Goldstein, M.G.; Acton, K.J.; Birch, L.L.; Jakicic, J.M.; Sallis, J.F.; Smith-West, D.; Jeffery, R.W.; Surwit, R.S. Behavioral

science research in diabetes: Lifestyle changes related to obesity, eating behavior, and physical activity. Diabetes Care 2001, 24,
117–123. [CrossRef] [PubMed]

5. Foreyt, J.; Poston, W.C. The challenge of diet, exercise and lifestyle modification in the management of the obese diabetic patient.
Int. J. Obes. 1999, 23, S5–S11. [CrossRef] [PubMed]

6. Singh, R.; Ramasamy, K.; Abraham, C.; Gupta, V.; Gupta, A. Diabetic retinopathy: An update. Indian J. Ophthalmol. 2008, 56,
178–188. [CrossRef] [PubMed]

7. Bourne, R.R.A.; Taylor, H.R.; Flaxman, S.R.; Keeffe, J.; Leasher, J.; Naidoo, K.; Pesudovs, K.; White, R.A.; Wong, T.Y.; Resnikoff, S.;
et al. Number of people blind or visually impaired by glaucoma worldwide and in world regions 1990–2010: A meta-analysis.
PLoS ONE 2016, 11, 1643–1649. [CrossRef] [PubMed]

8. Jeng, C.J.; Hsieh, Y.T.; Yang, C.M.; Yang, C.H.; Lin, C.L.; Wang, I.J. Diabetic retinopathy in patients with dyslipidemia: Develop-
ment and progression. Ophthalmol. Retin. 2018, 2, 38–45. [CrossRef]

9. Davidson, J.A.; Ciulla, T.A.; McGill, J.B.; Kles, K.A.; Anderson, P.W. How the diabetic eye loses vision. Endocrine 2007, 32, 107–116.
[CrossRef] [PubMed]

10. Phillips, C.I. Proliferative diabetic retinopathy. Br. J. Ophthalmol. 1973, 57, 873–874. [CrossRef]
11. Wise, G.N. Retinal neovascularization. Trans. Am. Ophthalmol. Soc. 1956, 54, 729–826. [PubMed]
12. Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 2011, 30, 343–358. [CrossRef]
13. Liew, G.; Wang, J.J.; Mitchell, P.; Wong, T.Y. Retinal vascular imaging: A new tool in microvascular disease research. Circ.

Cardiovasc. Imaging 2008, 1, 156–161. [CrossRef] [PubMed]
14. Mookiah, M.R.K.; Acharya, U.R.; Chua, C.K.; Lim, C.M.; Ng, E.Y.K.K.; Laude, A. Computer-aided diagnosis of diabetic

retinopathy: A review. Comput. Biol. Med. 2013, 43, 2136–2155. [CrossRef]
15. Van Ginneken, B.; Schaefer-Prokop, C.M.; Prokop, M. Computer-aided diagnosis: How to move from the laboratory to the clinic.

Radiology 2011, 261, 719–732. [CrossRef] [PubMed]
16. Lim, G.; Bellemo, V.; Xie, Y.; Lee, X.Q.; Yip, M.Y.T.; Ting, D.S.W. Different fundus imaging modalities and technical factors in AI

screening for diabetic retinopathy: A review. Eye Vis. 2020, 7, 21. [CrossRef]
17. Abramoff, M.D.; Niemeijer, M.; Russell, S.R. Automated detection of diabetic retinopathy: Barriers to translation into clinical

practice. Expert Rev. Med. Devices 2010, 7, 287–296. [CrossRef]
18. Balogh, E.P.; Miller, B.T.; Ball, J.R. (Eds.) Improving Diagnosis in Health Care; National Academies Press: Washington, DC, USA,

2015.

http://doi.org/10.1097/00132586-199406000-00052
http://doi.org/10.1016/S2213-8587(17)30186-9
http://doi.org/10.1002/dmrr.440
http://www.ncbi.nlm.nih.gov/pubmed/15150808
http://doi.org/10.2337/diacare.24.1.117
http://www.ncbi.nlm.nih.gov/pubmed/11194216
http://doi.org/10.1038/sj.ijo.0800955
http://www.ncbi.nlm.nih.gov/pubmed/10455465
http://doi.org/10.4103/0301-4738.40355
http://www.ncbi.nlm.nih.gov/pubmed/18417817
http://doi.org/10.1371/journal.pone.0162229
http://www.ncbi.nlm.nih.gov/pubmed/27764086
http://doi.org/10.1016/j.oret.2017.05.010
http://doi.org/10.1007/s12020-007-0040-9
http://www.ncbi.nlm.nih.gov/pubmed/17992608
http://doi.org/10.1136/bjo.57.11.873
http://www.ncbi.nlm.nih.gov/pubmed/13433795
http://doi.org/10.1016/j.preteyeres.2011.05.002
http://doi.org/10.1161/CIRCIMAGING.108.784876
http://www.ncbi.nlm.nih.gov/pubmed/19808533
http://doi.org/10.1016/j.compbiomed.2013.10.007
http://doi.org/10.1148/radiol.11091710
http://www.ncbi.nlm.nih.gov/pubmed/22095995
http://doi.org/10.1186/s40662-020-00182-7
http://doi.org/10.1586/erd.09.76


Sensors 2021, 21, 5327 17 of 18

19. Bhaskaranand, M.; Ramachandra, C.; Bhat, S.; Cuadros, J.; Nittala, M.G.; Sadda, S.R.; Solanki, K. The value of automated diabetic
retinopathy screening with the EyeArt system: A study of more than 100,000 consecutive encounters from people with diabetes.
Diabetes Technol. Ther. 2019, 21, 635–643. [CrossRef]

20. St John, A.; Price, C.P. Existing and emerging technologies for point-of-care testing. Clin. Biochem. Rev. 2014, 35, 155–167.
21. Tong, Y.; Lu, W.; Yu, Y.; Shen, Y. Application of machine learning in ophthalmic imaging modalities. Eye Vis. 2020, 7, 22. [CrossRef]
22. Xiao, Z.; Zhang, X.; Geng, L.; Zhang, F.; Wu, J.; Tong, J.; Ogunbona, P.O.; Shan, C. Automatic non-proliferative diabetic retinopathy

screening system based on color fundus image. Biomed. Eng. Online 2017, 16, 122. [CrossRef]
23. Yanase, J.; Triantaphyllou, E. A systematic survey of computer-aided diagnosis in medicine: Past and present developments.

Expert Syst. Appl. 2019, 138, 112821. [CrossRef]
24. Freeman, W.R.; Bartsch, D.U.; Mueller, A.J.; Banker, A.S.; Weinreb, R.N. Simultaneous indocyanine green and fluorescein

angiography using a confocal scanning laser ophthalmoscope. Arch. Ophthalmol. 1998, 116, 455–463. [CrossRef] [PubMed]
25. Bennett, T.J.; Barry, C.J. Ophthalmic imaging today: An ophthalmic photographer’s viewpoint—A review. Clin. Exp. Ophthalmol.

2009, 37, 2–13. [CrossRef]
26. Siu, S.C.; Ko, T.C.; Wong, K.W.; Chan, W.N. Effectiveness of non-mydriatic retinal photography and direct ophthalmoscopy in

detecting diabetic retinopathy. Hong Kong Med. J. 1998, 4, 367–370.
27. Abràmoff, M.D.; Niemeijer, M.; Suttorp-Schulten, M.S.A.; Viergever, M.A.; Russell, S.R.; Van Ginneken, B. Evaluation of a system

for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes.
Diabetes Care 2008, 31, 193–198. [CrossRef] [PubMed]

28. Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin.
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