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Abstract: Traditional bridge monitoring has found it difficult to meet the current diversified needs,
and frequent replacement of sensor batteries is neither economical nor environmentally friendly.
This paper presents a wireless acceleration sensor with low power consumption and high sensitivity
through integrated circuit design, data acquisition and wireless communication design, package
design, etc. The accuracy of the sensor in data collection was verified through calibration and
performance comparison tests. The ability of triangular piezoelectric cantilever beam (PCB) was
tested through design and physical manufacture. Finally, the self-powered performance of the sensor
was tested by connecting the sensor and the triangular PCB through a circuit, which verifies the
feasibility of using the PCB to collect bridge vibration energy and convert it into electrical energy to
supply power for sensor, and also explore the green energy collection and application.

Keywords: PCB; triangular; sensor; self-powered

1. Introduction

With the rapid development of microelectronics, the sensors used in bridge health
monitoring are trending towards low power consumption, low cost, small size and wireless
communication [1]. At present, some scholars still use wiring to supply power when moni-
toring bridges, but the cost is quite expensive, and it consumes manpower and financial
resources. The power supply using chemical batteries also needs to be replaced regularly.
The power consumption of sensors in the health monitoring system has become a more
concerning issue for bridge managers [2]. Especially for the current rapid development
of wireless networks and embedded systems, battery-powered defects are more obvious.
The global primary energy supply is based on the predictable depletion of petrochemical
energy. There is an urgent need to accelerate the development of renewable energy to
provide power for these low-energy electronic products, which has become an urgent
problem to be solved [3,4].

Vehicles running on the bridge will produce vibration, and the driving load can
will cause stress, strain and displacement to the bridge structure. The bridge will obtain
vibration energy from the driving load and gravity, which will save a lot of energy if this
vibration energy can be utilized [5,6].

Piezoelectric technology is a kind of energy conversion technology [7,8]. Pulkit Sharma
has studied the sintered Ga-modified PZT ceramics and analyzed impedance and modulus
characteristics indicated on non-Debye relaxation and significant contributions of grains
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on electrical properties [9]. Manisha Sahu has studied energy harvesting performance in a
triboelectric nanogenerator using ferroelectric polarization for self-powered IR signaling
and body activity monitoring, the performance of the device is to design a multi-stack
hybrid generator (MS-HG) that could generate an electrical output of 300 V and a power
density of 157 mW m−2 upon mechanical excitation [10].

PCB is a kind of power generation structure used in a vibration environment, which
vibrates along with the environment, and it can produce the highest power output when
resonance is reached [11–13]. Liu Yinan studied the structure of the piezoelectric can-
tilever beam, and a rectangular piezoelectric cantilever beam structure was designed and
optimized by combining the theoretical calculation and the simulation [14]. The natural
frequency of the piezoelectric cantilever beam was 8.83 Hz and the voltage extreme value
reached 37 V through experiments. In order to improve the energy conversion perfor-
mance of a piezoelectric cantilever beam energy harvester (PCEH), Xiong Y put forward
a novel PCEH according to the typical PCEH [15]. The results show that the first-order
eigenfrequency of the novel PCEH is 43.7 Hz and the optimal output power is 10.69 mW.
Uddin designed and simulated a PCB for energy harvesting using mechanical ambient
vibration. The PCB consisted of a copper substrate, two piezoelectric layers, and a base. In
the mechanical properties analysis, a maximum output power of 14.85 µW and voltage
of 595.5 mV was obtained from the harvester at 12.6 kΩ under the acceleration of 1 g
(g = 9.81 m/s2) at a resonant frequency of 345.75 Hz. This energy harvester can be used for
numerous purposes in the field of sensors and wireless sensor networks.

If the PCB is placed on the bridge, then it can absorb the vibration energy of the bridge
and convert it into electrical energy to supply power to the sensor or indicator light [16].
However, the bridge vibration frequency is low, and the piezoelectric cantilever beam
used for bridge vibration energy collection must have a very low resonance frequency and
high performance output. This paper has studied the principle of wireless sensors, and a
wireless acceleration sensor was developed based on the needs of bridge health monitoring,
which can be conveniently placed anywhere on the bridge. Then, the structure of the PCB
is studied and optimized to improve the piezoelectric output performance according to the
characteristics of the bridge vibration. Finally, a piezoelectric transducer device suitable
for bridge vibration energy collection and wireless sensor power supply is developed,
which realizes the self-powered performance of bridge sensor nodes. The voltage of the
triangular PCB developed in this paper reaches the first peak value of 51.6 V at 3.2 Hz, and
the voltage reaches the second peak value of 77.2 V at 12.1 Hz; its resonance frequency is
lower than that of the cantilever beam developed by previous scholars, and the output
performance is higher, which is more suitable for application in the bridge’s low frequency
vibration environment.

2. Wireless Acceleration Sensor

Sensors are the node for data connection in bridge health monitoring [17]. A wireless
acceleration sensor was developed through research on wireless communication technology
in this paper, the development of circuit boards, design and manufacture of enclosures,
etc. The sensor has a certain computing capability, which can extract characteristic indexes
such as peak acceleration and vibration frequency, and reduce communication energy
consumption; furthermore, it can improve data transmission stability and efficiency, which
is suitable for bridge vibration monitoring [18].

2.1. The Composition of Acceleration Sensor
2.1.1. Circuit Diagram

The overall structure of the wireless acceleration sensor is composed of a PCB circuit
board, lithium battery, and 3D-printed nylon package, as shown in Figure 1. The PCB
board is mainly composed of circuits modules, resistors, and capacitors to ensure mutual
communication between the modules. The modules are an MEMS acceleration sensor chip
ADXL354, AD7689 analog-to-digital conversion chip, STML32L151C8x6 processor, LoRa-
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SX1278 wireless communication module and LDO-SOT23-5 voltage regulator. The data
collected by the acceleration chip are converted into a digital signal by the AD7689 chip,
and then processed by the STML32L151C8X6 processor. Finally, the data are wirelessly
transmitted to the gateway through the LoRa-SX1278 module [19,20] and can also be
transmitted to the computer through the serial port.
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Figure 1. The composition of wireless acceleration sensor.

The wireless acceleration sensor uses a 3D nylon printed package design on the
package, which has the advantages of more robustness, toughness, and impact resistance,
and it is waterproof. The circuit diagram of the acceleration sensor in this paper is mainly
composed of the following parts.

The circuit diagram of ADXL354 is shown in Figure 2. It uses multiple 0.1 µF ceramic
capacitors to fully decouple the accelerometer to eliminate power noise. There are high-
frequency noises generated by vehicles, instruments, collisions, etc., when the sensor
collects data on the bridge; therefore, the output terminals of the X, Y, and Z axes are
connected with a 0.1 µF filter capacitor respectively to filter out the high signal generated
by noise [21], so as to collect the raw data of bridge vibration.
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The circuit diagram of AD7689 is shown in Figure 3, and the data communication of
AD7689 is controlled by CPU through an SPI (Serial Peripheral Interface) bus. The VDD is
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the working voltage inside the device, which is connected to an external power supply with
a 0.1 µF decoupling capacitor in parallel. REF and REFIN are connected with 10 µF and
0.1 µF decoupling capacitors, respectively, which ensures that the AD7689 has a relatively
stable power supply voltage and has an anti-interference effect.
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Figure 3. The circuit diagram of AD7689.

STM32L151 is an ARM-based 32-bit microcontroller, as shown in Figure 4, which is
an ultra-low power chip with 0.3 µA standby mode (three wake-up pins), and its core is
ARM Codex-M3 CPU. The supply voltage is 2.0 V to 3.6 V. STM32L151 embeds a built-in
boost converter. VDD is an external power supply for I/O and internal regulators. The
minimum voltage applied to VDDA is 1.8 V when the ADC module is used. At this time,
VDDA and VSSA must be connected to VDD and VSS, respectively [22].
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LDO-SOT23-5 is a voltage regulator chip which reduces the battery voltage output
to 3.3 V through the acquisition circuit and continuously supplies power to the CPU. The
resistor R1 (4.7 kΩ) can play the role of current limiting to protect the circuit, as shown in
Figure 5.
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A battery voltage acquisition circuit is shown in Figure 6. The sensor collects the
voltage of the lithium battery through this circuit, and then reduces the battery voltage to
3.3 V through the LDO-SOT23-5 circuit to supply power to the CPU. The circuit diagram
of a serial port and power interface is shown in Figure 7. The serial port can output
collected data to the computer or supply power to the lithium battery by connecting an
external power.
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2.1.2. Production and Package of Circuit Board

In this paper, the circuit board and package were made according to the composition
structure of the wireless acceleration sensor and the circuit diagram. The PCB circuit board
is shown in Figure 8.
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Figure 8. Circuit board of acceleration sensor.

The red boxes in Figure 8 are an ADXL354 accelerometer chip, STM32L151C8X6
processing, AD7989 analog-to-digital conversion module, LDO voltage regulator chip, and
LoRa wireless communication module. These components enable bridge vibration data to
be collected in real time and transmitted wirelessly. The holes in the four corners under the
circuit board are screw holes, whose purpose is to fix the circuit board to the package box
and prevent the circuit board from effecting the data collection due to unstable movement.

The package box of the wireless acceleration sensor in this paper is shown in Figure 9;
(a) is the top cover of the package box. There are two outrigging ears on both sides of
the top cover, whose purpose is to facilitate the installation of the sensor on the bridge.
(b) is the base of the package box, the brown color in Figure 9 is the installation position
of the sensor PCB board which is fixed by screws, and the blue part is the installation
position of the lithium battery. The green round hole is the aviation socket. The internal
lithium battery can be charged through the aviation socket, so that the sensor can be used
continuously. The sensor can also be connected to the serial port USB to transmit data to
the computer through the aviation socket.
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The package box by 3D printing was accomplished to facilitate installation of the
cantilever sensor, and the material of box is nylon. The circuit board and battery were



Sensors 2021, 21, 8319 7 of 17

installed into the package box, as shown in Figure 10. The red arrow shows the aviation
socket, which has three main functions: (1) it can be connected to the power supply to
supply power for the sensor; (2) the sensor circuit board will power on and start working
after being inserted into the aviation plug; (3) the data can be transmitted to the computer
through the serial port.
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Figure 11 shows the internal diagram of the acceleration sensor after glue filling. The
circuit board and the lithium battery were fixed inside the nylon box to prevent the damage
of the circuit board due to the vibration of the lithium battery. The aviation sockets of the
wireless acceleration sensor developed in this paper has four pins, which are the GND
ground pin, the serial output pin, the power pin and the switch pin. The aviation socket
was equipped with an aviation plug which has four identical pins. The power pin and
switch pin of the aviation plug were welded in this paper, and the aviation plug was filled
with glue, as shown in Figures 12 and 13. The wireless acceleration sensor can be connected
to the power supply to collect data by inserting the aviation plug into the aviation socket,
and the aviation plug after filling can also play a role in waterproofing. The finished
product of the wireless acceleration sensor is shown in Figure 14.
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2.2. Calibration of Acceleration Sensor

Four wireless acceleration sensors have been produced in this paper which should be
calibrated first. Set the three directions of the acceleration sensor as X, Y, and Z, respectively.
Place the developed sensor No. 1 horizontally, with the Z direction facing upward. Its value
was 34,325, and at this time, its gravity acceleration was 1 g. Place the sensor vertically,
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with Z direction facing horizontally. Its value was 23,898 with under 0 g of gravitational
acceleration. Place the sensor horizontally in the opposite direction, with the Z direction
facing downwards. Its value was 13,610. The schematic diagram is shown in Figure 15.
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Fitting the analog value to its corresponding acceleration value, the results of sensor
No. 1 and No. 2 are shown in Figures 16 and 17.

It can be seen from the above diagram that the calculation coefficient of sensor No. 1
was 0.09621 and the intercept was 2283. The calculation coefficient of sensor No. 2 was
0.0962 and the intercept was 2284. Embed the sensitivity and intercept algorithm into the
sensor; then, when the sensor is working, the converted value of the analog value will
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be multiplied by the calculation coefficient and the intercept is subtracted to obtain the
acceleration value.
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3. Vibration Energy Harvesting Device

Piezoelectric materials can generate electricity when subjected to external forces. In
practice, this is realized by utilizing a piezoelectric transducer. PCB is a type of piezoelectric
transducer structure, which has the characteristics of high flexibility, easy packaging, and
low natural frequency [23]. It is suitable for transportation infrastructure and other low
frequency environments. If a PCB is placed on a bridge, it will vibrate along with the
bridge. The vibrational mechanical energy of the bridge caused by passing vehicles can
be collected and converted into electric energy, which can supply power to the wireless
sensing system.

In this paper, the author has carried out a comparative study of three different pre-
viously identified PCBs, namely rectangular, trapezoidal and triangular PCBs. The three
PCBs have the same volume of thickness of the piezoelectric plate, thickness of the substrate
and weight of the mass block. It has been proven that triangular is better than rectangular
PCB and trapezoidal PCB [24]; not only is the vibration frequency lower than rectangular
and trapezoidal cantilever beam, but also the voltage output is higher than the rectangular
and trapezoidal cantilever beam, which is more suitable for the low-frequency vibration
energy collection of the bridge. The generated voltage of three types of PCBs by simulation
is shown in Figure 18.
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Figure 18. Simulation data of rectangular, trapezoidal, and triangular piezoelectrics [24].

The sample of the triangular PCB was made according to the size parameters [24]: the
length of the substrate is 320 mm, the width is 40 mm, and the thickness is 0.35 mm. The
thickness of the piezoelectric plate is 0.25 mm and the weight of the mass block is 12 g. The
sample is shown in Figure 19.

A power amplifier and a hev-20 high energy exciter were used to test the power
generation capacity of a triangular PCB. Adjust the power amplifier to increase the fre-
quency slowly to make the cantilever start to vibrate until it reaches resonance, as shown
in Figure 20. The capacitor voltage value tested by the oscilloscope and the corresponding
frequency tested by the power amplifier were recorded, and the relationship curve between
voltage and frequency was plotted, as shown in Figure 21.
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It can be seen from Figure 21 that the first- and second-order vibration frequencies of
the triangular PCB were within the low frequency range (0–15 Hz). The sample reaches
the first-order resonance at 3.2 Hz and a voltage value of 51.6 V. The sample reaches the
second-order resonance at 12.1 Hz and a voltage value of 77.2 V. This paper has compared
the physical test results of triangular and rectangular PCBs, as shown in Figure 22.
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It can be seen from Figure 22 that the output voltage of the triangular cantilever
beam was higher than the rectangular cantilever beam; the resonance frequency is lower,
and there are more resonance points in the low-frequency range than the rectangular
cantilever beam. Therefore, triangular PCBs are more practical than rectangular in terms of
energy collection.

4. The Performance Test of Self-Power Sensor
4.1. The Capacity Test of Piezoelectric Power Generation

The power generation capacity of triangular PCB was carried out in this paper. A
power amplifier, hev-20 high energy exciter, dpo-2024 oscilloscope, breadboard and rectify-
ing device were used to test the triangular PCB. Rectify the output voltage of the PCB on
the breadboard, and then connect the capacitor for charging, as shown in Figure 23. We
adjust the high energy exciter so that the excitation frequency of the cantilever beam was
12 Hz, and then connect the cantilever beam output end to the input end of the breadboard
and connect the output end of the breadboard to the oscilloscope, as shown in Figure 24.
The capacitor voltage value and the corresponding times tested by the oscilloscope were
recorded and the relationship curve between voltage and times was plotted, as shown in
Figure 25.

The final value of the voltage in the capacitor was 1.4 V through 4 h continuous
collection. The relationship between electric energy and voltage can be expressed by
Equation (1).

E =
1
2

CU2 (1)

where C is piezoelectric equivalent capacitance and U is open circuit voltage.
The power generation of the triangular PCB was 0.98 J in 4 h by Equation (1), so

the power generation was 0.245 J in 1 h. The wireless acceleration sensor in this paper
has a current of 28.15 mA when transmitting data. The consuming is 100 ms and the
working voltage is 3.3 V, so the required electric energy was 0.009 J. A piezoelectric energy
harvesting device can install eight triangular PCBs which were designed in this paper, so it
can generate 1.96 J in 1 h, which can be used for the wireless acceleration sensor to transmit
data 217 times.

4.2. The Self-Powered Performance Test of Sensor

In order to test the effect in practical applications, a self-powered sensor experiment
in the laboratory was carried out in this paper. There are four pins at the aviation plug of



Sensors 2021, 21, 8319 13 of 17

the wireless acceleration sensor in this paper, namely the power supply pin, the switch
pin, the GND ground pin, and the serial output pin. The power supply pin and switch
pin were connected to the capacitor, and the GND ground pin and the serial output pin
were connected to the USB serial chip, as shown in Figure 26. We can download the data
from the computer by connecting the USB serial chip to the computer. Additionally, the
power consumption of transmitting data through the serial port is 14 mA, which is lower
than the wireless transmission. The time for data transmission is 50 ms, which is less than
wireless transmission.
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In this experiment, a triangular PCB was used as the source of power generation.
The output power of the power amplifier was adjusted to keep the cantilever vibration
frequency at 11 Hz and the fixed end amplitude at 1 mm. Fix the sensor on the vibrating
table, then adjust the host parameters (frequency and strength) of the vibration table to
give the vibration table a sinusoidal excitation, as shown in Figure 27. The cantilever beam
continues to vibrate and generate electricity to charge for the capacitor. When the battery
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is charged enough for the sensor to collect and transmit data once, the sensor will start
the CPU.
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We set the time when the cantilever beam starts to vibrate as the start time, and
the serial interface on the computer received the sensor’s data on the vibration after the
cantilever beam was vibrating for about 35 s, as shown in Figure 28.

The experiment’s results proved the effectiveness of the self-powered sensor designed
in this paper. This is a preliminary research study of a self-powered sensor. Additionally,
an energy management circuit will be designed and optimized to improve the energy
harvesting performance of the PCB.

The dimensions of the vibration energy harvesting device does not correlate with the
dimensions of the sensor. We will design and make a nylon package box to integrate the
sensor and piezoelectric device and test its performance in future study.
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5. Summary

This paper developed a wireless acceleration sensor that is suitable for bridge vibra-
tion monitoring, which is the front-end sensing node of the bridge monitoring system.
Additionally, a new structure type of a PCB energy harvesting device was simulated
and physically tested, which realizes the technical method of bridge piezoelectric energy
harvesting. In particular, the main contributions can be summarized as follows:

1. A wireless acceleration sensor with low power consumption and high sensitivity for
bridge vibration monitoring was developed, which solves the difficulties of traditional
wiring monitoring. Calibration and performance comparison tests have verified the
accuracy of the sensor in data collection.

2. A triangular PCB was designed and fabricated based on the research results of
different shapes of PCBs. It was shown that the triangular PCB has greater power
generation capacity than the rectangular and trapezoidal PCBs, and the natural
frequency is lower than the rectangular and trapezoidal PCBs.

3. The acceleration sensor was integrated with the triangular PCB through the circuit,
and its self-powered ability was tested. The experiment results showed that the single
triangular PCB can generate 0.245 J within 1 h under excitation of 12 Hz, which
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proved the feasibility of installing piezoelectric energy harvesting devices on bridges
to supply power for the sensors.
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