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Abstract

Objective

Conventional risk stratification models for mortality of acute myocardial infarction (AMI)

have potential limitations. This study aimed to develop and validate deep-learning-based

risk stratification for the mortality of patients with AMI (DAMI).

Methods

The data of 22,875 AMI patients from the Korean working group of the myocardial infarction

(KorMI) registry were exclusively divided into 12,152 derivation data of 36 hospitals and

10,723 validation data of 23 hospitals. The predictor variables were the initial demographic

and laboratory data. The endpoints were in-hospital mortality and 12-months mortality. We

compared the DAMI performance with the global registry of acute coronary event (GRACE)

score, acute coronary treatment and intervention outcomes network (ACTION) score, and

the thrombolysis in myocardial infarction (TIMI) score using the validation data.

Results

In-hospital mortality for the study subjects was 4.4% and 6-month mortality after survival

upon discharge was 2.2%. The areas under the receiver operating characteristic curves

(AUCs) of the DAMI were 0.905 [95% confidence interval 0.902–0.909] and 0.870 [0.865–

0.876] for the ST elevation myocardial infarction (STEMI) and non ST elevation myocardial

infarction (NSTEMI) patients, respectively; these results significantly outperformed those of

the GRACE (0.851 [0.846–0.856], 0.810 [0.803–0.819]), ACTION (0.852 [0.847–0.857],

0.806 [0.799–0.814] and TIMI score (0.781 [0.775–0.787], 0.593[0.585–0.603]). DAMI pre-

dicted 30.9% of patients more accurately than the GRACE score. As secondary outcome,

during the 6-month follow-up, the high risk group, defined by the DAMI, has a significantly

higher mortality rate than the low risk group (17.1% vs. 0.5%, p < 0.001).
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Conclusions

The DAMI predicted in-hospital mortality and 12-month mortality of AMI patients more accu-

rately than the existing risk scores and other machine-learning methods.

Introduction

In the past decades, the mortality rate of acute myocardial infarction (AMI) has improved with

advances in early reperfusion therapy and adjunctive pharmacotherapy.[1] However, AMI is

still the major leading cause of mortality worldwide.[2–4] Risk stratification and prognosis

prediction are critical in identifying high risk patients and decision making for the treatment

of patients with AMI.[5] Conventional risk scoring systems including the thrombolysis in

myocardial infarction (TIMI), the global registry of acute coronary events (GRACE), and the

acute coronary treatment and intervention outcomes network (ACTION) scores are widely

validated and accepted tools that are estimated using patients’ clinical information.[6–8] How-

ever, these prognostic models have limitations for the current daily practice. First, these sys-

tems are questionable in contemporary practice because they had been developed 20 years ago.

Additionally, as these models use only selective variables based on a conventional statistical

method, there is a possibility of loss of important information.[9–12]

Recently, deep-learning has achieved high performance in several medical domains, such as

image classification (e.g., detection of abnormalities in retinal funduscopic result) and clinical

outcome prediction (e.g., in-hospital mortality and long-term outcomes).[13–15] An advan-

tage of deep-learning is the automatic learning of the feature and relationship from a given

data.[16] In this study, we developed and validated a deep-learning-based risk stratification for

the mortality of patients with acute myocardial infarction (DAMI) using the Korean working

group of myocardial infarction (KorMI) registry, a large national data.

Methods

Study population

We conducted a retrospective observational cohort study using data from the KorMI registry.

KorMI is a prospective multicenter registry of AMI in Korean patients. All 59 cardiovascular

centers in Korea were included in this study in January 2008. The full details of the KorMI reg-

istry’s aims and protocols have been published elsewhere.[17] This study was conducted in

accordance with the Declaration of Helsinki and the relevant guidelines and regulations. The

institutional review boards of Sejong General Hospital and Mediplex Sejong Hospital

approved this study protocol and granted waivers of informed consent based on general

impracticability and minimal harm. Patient information was anonymized and de-identified

before the analysis. The data obtained through KorMI were the demographic information,

treatment in the emergency room, laboratory results, electrocardiography findings, final diag-

nosis, clinical outcome during their hospital stay, and 12-month prognosis after discharge.

The data were collected at each hospital using an encrypted web database.

Data management

First, the study data was split according to the hospital to prepare the validation data (Fig 1).

The number of hospitals contributing data to the KorMI registry was 59, and we randomly

selected 60% (36 hospitals) and 40% (23 hospitals) of these hospitals from which to obtain
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training data and validation data, respectively. As deep-learning and machine-learning can

learn the characteristics of a hospital, we divided the data into training and validation dataset

not by study subjects, but by hospitals, for the purpose of confirming further exact validation

tests. For more accurate validation tests and subgroup analyses, we distributed as many study

subjects as possible into the validation datasets. The validation data was used to confirm

whether the DAMI can be applied to other hospitals after development.

The DAMI is a risk stratification model to predict in-hospital mortality after an AMI. We

used the demographic information and laboratory data of AMI patients including age, sex,

body mass index, cardiac arrest before visit, systolic blood pressure, heart rate, Killip class, cre-

atinine kinase-muscle/brain (CK-MB), glucose, C-reactive protein (CRP), creatinine, low-den-

sity lipoprotein, and elevation of the ST segment, as the predictor variables. We aim to develop

the model to help physicians in deciding a treatment plan, such as performing emergent coro-

nary angiography or mechanical circulatory support, at the time of initial evaluation and treat-

ment. Because of this, we used the predictor variables which could be obtained at the time of

Fig 1. Study flow chart.

https://doi.org/10.1371/journal.pone.0224502.g001
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initial evaluation. We used first documented values in each admission, such as a first vital

heart rate at emergency department.

Development of machine-learning prediction model

As shown in Fig 2, we developed the DAMI using only the derivation data. The The DAMI is

a multilayer perceptron (MLP) based on deep-learning, and the DAMI incorporates four hid-

den layers, 102 nodes, batch normalization, and dropout layers.[18–20] Because the accuracy

did not increase when five or more hidden layers were added, we used four hidden layers to

minimize the number of parameters to be learned. We used Tensor Flow (the Google Brain

Team) as the backend.[21] Further, we used the Adagrad optimizer with the default parame-

ters and binary-cross entropy as the loss function.[22] One node of the MLP is added by multi-

plying the values from the upper layer nodes (xk) by the weights (wk). The added value, (x1w1+

x2w2+� � �+xkwk+c), is processed by the activation function, and the value f(x1w1+x2w2+� � �

+xkwk+c) is sent to the next node. In this MLP, we used a rectified linear unit (ReLU) as the

activation function.[23] Because maximum accuracy is observed for this predictive model

using ReLU when compared with other activation functions such as soft max, linear, Tanh,

leaky ReLU, and exponential linear unit, all the hyper-parameters used in the DAMI were

tuned using grid search and manual tuning.

Before using the derivation data for the model development, we replaced the values of the

categorical variables to numeric values and normalized the values of the continuous variables

(Fig 2).[24] This data preprocessing was performed in the derivation data and validation data,

separately. To train the model, we input each value of the derivation data in the input layer

and adjusted the weight (wk) using the back propagation.[25] We have provided our prediction

model as S1 File.

We also develop two machine-learning models: logistic regression (LR) and random forest

(RF), for the performance comparison with the DAMI.[26] In the previous studies, LR and RF

are the most typically used machine-learning methods and showed better performance than

traditional methods in several medical domains.[27,28] The RF model consisted of 10,000

decision trees using the “randomForest” package in R (R Development Core Team, Vienna,

Austria).[29,30] The LR model was derived using the “‘glmulti” packages in R.[31] We used

the original Akaike IC as the information criterion and forward-backward directions for LR

model selection.

Validation of prediction model performance

After we developed the DAMI, LR, and RF models, we compared the performance of these

models with the GRACE, ACTION, and TIMI scores. We compared the performance of the

models using only validation data that were not used for the model development (Fig 1). We

analyzed the variable importance of logistic regression, random forest, and deep-learning by

using deviance difference, mean decrease Gini, and AUC difference, respectively. In the

GRACE and TIMI score, the formulas for calculating the risk score differ depending on the

elevation of ST segment. For this reason, we divided the validation data into ST elevation myo-

cardial infarction (STEMI) and non-ST elevation myocardial infarction (NSTEMI) and con-

firmed the accuracy at each group. We used the area under the receiver operating

characteristic curve (AUC) as the comparative measure. [32]

We divided the patients of the validation data into high risk, intermediate risk, and low risk

groups according to the DAMI and GRACE scores. The cutoff points of GRACE score were

determined in previous studies.[33] The predicted mortality of low, intermediate, high risk

group of GRACE score are less than 1%, 1–3%, and over 3%, respectively. And the optimal
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cutoff points of DAMI score were determined when the predicted in-hospital mortality of

each risk group was equal to the that of GRACE score. After dividing the risk group by the

DAMI and GRACE scores, we compared the accuracy for the in-hospital mortality through

the reclassification table. Further, we confirmed characteristics of the DAMI risk groups. The

continuous variables were presented as the mean and standard deviation and were compared

using the analysis of variance (ANOVA) test. The categorical variables are expressed as fre-

quencies and percentages and were compared by the Chi-square statistics. We estimated the

6-month mortality rate by the DAMI risk groups using the Kaplan–Meier method.

Results

We included 25,977 AMI patients enrolled in the KorMI registry from January 2008 to

December 2013 and excluded 3,102 patients according to the criteria mentioned in Fig 1.

There is observed to be no significant difference in predictor variables between included and

excluded study subjects, as shown in S1 Table. The study subjects comprised 22,875 patients of

59 hospitals, where 1,081 had in-hospital mortality. In-hospital mortality for the study subjects

was 4.4%. In study subjects who survived upon discharge, 6-month mortality was 2.2% and

mean (± standard deviation) of time after discharge was 28.5 days (± 41.7 days). The DAMI

was developed using 12,152 patients of the derivation data. The accuracy test was performed

using 10,723 patients of the validation data, where STEMI and NSTEMI patients were 5,841

and 4,882, respectively (Fig 1). We provide the developed DAMI, coding book for making

input tidy data, example of tidy validation data, and python code for accuracy test as a S1 File

to this article.

As shown in Fig 3, during the accuracy test of STEMI patients, the AUC of the DAMI was

0.905 [95% confidence interval 0.902–0.909] and this result significantly outperformed the

GRACE score (0.851 [0.846–0.856]), ACTION score (0.852 [0.847–0.857]), TIMI score (0.781

[0.775–0.787]), LR (0.873 [0.869–0.878]), and RF (0.890 [0.886–0.895]). In the NSTEMI

patients group, the AUC of the DAMI was 0.870 [0.865–0.876] and this accuracy significantly

outperformed the GRACE score (0.810 [0.803–0.819]), ACTION score (0.806 [0.799–0.814]),

TIMI score (0.593 [0.585–0.603]), LR (0.845 [0.839–0.851]), and RF (0.851 [0.845–0.858]). The

variable importance of each prediction model is shown in S2 Table. The variable importance is

different for each prediction model.

In the following experiments, we used the combined data from the STEMI and NSTEMI

validation data. In the validation data, the cut-off scores of the DAMI risk groups were 2.3 and

7.9. With this cut-off value, the DAMI classified 2,843, 2,957, and 4,923 patients as high, inter-

mediate, and low risk, respectively. Table 1 shows the baseline characteristics of patients

between the high, intermediate, and low risk groups, defined by the DAMI. As shown in the

reclassification table (Table 2), the DAMI predicted 34 in-hospital mortality patients and 3678

survival discharge patients more accurately than the GRACE score. And the DAMI predicted

31 in-hospital mortality patients and 573 survival discharge patients more incorrectly than the

GRACE score. In 3526 patients who were in intermediate group by GRACE score, 1937

patients were reclassified to low risk group and in 50 patients of in-hospital death, 24 patients

were reclassified to high risk group and 9 patients were reclassified to low risk group by DAMI

score (Fig 4).

For the analysis of mortality during the 6-month period, we considered the validation data

of 10,723 patients (Fig 1). As shown in the Kaplan-Meier survival curves of Fig 5, the high-risk

Fig 2. Deep-learning based model development and accuracy test. AMI denotes acute myocardial infarction, CKMB creatinine kinase-MB, CVA

cerebrovascular accident, DM diabetes mellitus, HTN hypertension, PMHx past medical history, ReLU rectified linear unit.

https://doi.org/10.1371/journal.pone.0224502.g002
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group defined by the DAMI shows a significantly higher hazard than the low risk group. The

high-risk group, defined by the DAMI, has a significantly higher mortality rate than the low-

risk group (17.1% vs. 0.5%, p< 0.001).

Discussion

In this study, we developed a risk stratification model for the mortality of patients with AMI

using deep-learning from a large prospective national registry. By the accuracy test, this study

revealed that the accuracy performance of the deep-learning model was excellent for predict-

ing the prognosis and is better than the conventional risk-prediction model. To the best of our

knowledge, this study is the first to predict AMI patient outcomes using deep-learning.

The TIMI and GRACE scores are extensively validated, traditional models for risk stratifi-

cation following AMI.[33,34] The previous validation studies have reported that the AUCs of

the TIMI and GRACE scores were 0.60–0.70 and 0.80–0.85, respectively.[35] It is confirmed in

this large study population as 0.59–0.78 for the TIMI score and 0.81–0.85 for the GRACE

score, implying moderate accuracy for predicting the mortality of AMI patients.

However, several notable limitations exist in the TIMI and GRACE scores. First, these mod-

els were developed based on the AMI patients’ data between the 1990s and early 2000s. In the

Fig 3. Receiver operating characteristic curve for predicting in-hospital mortality. AUC denotes area under the receiver operating characteristic curve, CI confidence

interval, GRACE global registry of acute coronary event, TIMI thrombolysis in myocardial infarction.

https://doi.org/10.1371/journal.pone.0224502.g003
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Table 1. Baseline characteristics of study subjects.

Derivation data

(n = 12,152)

Validation data

All population

(n = 10,723)

Low risk group

(n = 4923)

Intermediate risk group

(n = 2957)

High risk group

(n = 2843)

Baseline characteristics

Age, year 64.0 ± 12.8 63.63 ± 12.6 56.1 ± 10.7 68.3 ± 9.6 71.9 ± 10.8

Female (%) 3521(29.0%) 2992(27.9%) 778(15.8%) 1033(34.9%) 1181(41.5%)

Body mass index, kg/m2 24.0 ± 3.6 24.0 ± 3.3 24.9 ± 3.6 23.4 ± 2.7 23.1 ± 3.1

Hypertension (%) 6218(51.2%) 5173(48.2%) 1947(39.5%) 1541(52.1%) 1685(59.3%)

Diabetes (%) 3432(28.2%) 2885(26.9%) 866(17.6%) 891(30.1%) 1128(39.7%)

Dyslipidemia (%) 1553(12.8%) 1163(10.8%) 642(13.0%) 290(9.8%) 231(8.1%)

Current smoking (%) 4921(40.5%) 4321(40.3%) 2567(52.1%) 947(32.0%) 807(28.4%)

Congestive heart failure (%) 261 (2.1%) 134 (1.2%) 6 (0.1%) 35 (1.2%) 93 (3.3%)

Chronic kidney disease (%) 221 (1.8%) 219 (2.0%) 19 (0.4%) 44 (1.5%) 156 (5.5%)

Chronic lung disease (%) 241 (2.0%) 129 (1.2%) 30 (0.6%) 36 (1.2%) 63 (2.2%)

Chronic liver disease (%) 102 (0.8%) 83 (0.8%) 37 (0.8%) 24 (0.8%) 22 (0.8%)

Cancer (%) 262 (2.2%) 143 (1.3%) 39 (0.8%) 54 (1.8%) 50 (1.8%)

Prior AMI (%) 336 (2.8%) 398 (3.7%) 141 (2.9%) 116 (3.9%) 141 (5.0%)

Prior CVA (%) 861 (7.1%) 635 (5.9%) 171 (3.5%) 191 (6.5%) 273 (9.6%)

Prior PCI (%) 858 (7.1%) 563 (5.3%) 223 (4.5%) 181 (6.1%) 159 (5.6%)

Prior CABG (%) 80 (0.7%) 87 (0.8%) 16 (0.3%) 34 (1.1%) 37 (1.3%)

Family history of heart disease (%) 1143 (9.4%) 697 (6.5%) 464 (9.4%) 127 (4.3%) 106 (3.7%)

Past medical history

Aspirin (%) 2101 (17.3%) 1090(10.2%) 401 (8.1%) 340 (11.5%) 349 (12.3%)

Anti-platelet (%) 821 (6.8%) 467 (4.4%) 163 (3.3%) 133 (4.5%) 171 (6.0%)

Anti-coagulant (%) 70 (0.6%) 56 (0.5%) 22 (0.4%) 14 (0.5%) 20 (0.7%)

Statin (%) 1197 (9.9%) 589 (5.5%) 226 (4.6%) 176 (6.0%) 187 (6.6%)

Initial presentation

Chest pain (%) 10257(84.4%) 7286(67.9%) 3593(73.0%) 2013(68.1%) 1680(59.1%)

Dyspnea (%) 3449(28.4%) 1763(16.4%) 468(9.5%) 431(14.6%) 864 (30.4%)

Killip Class

Class I—II (%) 10687(87.9%) 9307(86.8%) 4901(99.6%) 2816(95.2%) 1590(55.9%)

Class III (%) 808 (6.6%) 877 (8.2%) 22 (0.4%) 132 (0.4%) 723 (25.4%)

Class IV (%) 657 (5.4%) 539 (5.0%) 0 (0%) 9 (0.3%) 530 (18.6%)

Systolic blood pressure, mmHg 128.8 ± 28.1 130.0 ± 26.6 136.8 ± 24.7 128.6 ± 24.7 119.7 ± 28.0

Diastolic blood pressure, mmHg 78.1 ± 16.2 79.7 ± 15.8 83.8 ± 15.0 78.5 ± 14.3 73.7 ± 16.7

Heart rate, bpm 78.9 ± 20.0 77.6 ± 18.3 73.5 ± 14.3 76.7 ± 16.0 85.6 ± 23.5

ST segment elevation (%) 6494(53.4%) 5841(54.5%) 2602(52.9%) 1616(54.6%) 1623(57.1%)

Cardiac arrest (%) 242 (2.0%) 216 (2.0%) 7 (0.1%) 20 (0.7%) 189 (6.6%)

Initial Laboratory findings

Glucose, mg/dL 171.7 ± 81.3 170.1 ± 81.3 147.1 ± 52.9 169.7 ± 76.9 210.2 ±106.8

Creatinine, mg/dL 1.2 ± 1.0 1.1 ± 1.0 0.9 ± 0.3 1.1 ± 0.9 1.6 ± 1.6

CK-MB, ng/mL 121.3 ± 196.7 112.8 ±234.9 101.7 ±167.8 105.3 ±162.0 140.1 ±362.0

Troponin I, ng/mL 38.7 ± 111.1 40.9 ±98.0 34.6 ±58.4 41.0 ± 98.4 51.7 ± 141.7

Total cholesterol, mg/dL 181.7 ± 45.4 182.8 ± 44.5 192.1 ± 44.0 179.4 ± 41.8 170.3 ± 44.3

-cholesterol, mg/dL 114.4 ± 38.6 114.5 ± 38.2 122.2 ± 39.7 110.9 ± 35.9 104.7 ± 34.8

AMI indicates acute myocardial infarction; CABG, coronary artery bypass graft; CK, creatinine kinase; CVA, cerebrovascular accident; ECG, electrocardiography; LDL,

low density lipoprotein; NSTEMI, non-ST-elevation myocardial infarction; PCI, percutaneous coronary intervention; and STEMI ST-elevation myocardial infarction.

https://doi.org/10.1371/journal.pone.0224502.t001
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past decade, early reperfusion therapy and the routine usage of drug-eluting stents have

become routine. The benefit of intensive statin therapy was confirmed and potent antiplatelet

agents, such as prasugrel and ticagrelor were introduced in our daily practice.[36–39] In

Table 2. Reclassification table.

Reclassified predicted risk

with DAMI score

Subjects reclassified with

Low risk

group

Intermediate risk

group

High risk

group

Increased risk Decreased risk Net correctly reclassified

(%)

In-hospital mortality patients (N = 459)

Predicted risk with

GRACE

Low risk group 7 5 5 34 (7.2%) 31 (6.6%) 3 (0.6%)

Intermediate risk

group

9 17 24

High risk group 0 22 384

Survival discharge patients (N = 8907)

Predicted risk with

GRACE

Low risk group 2580 253 40 573 (5.6%) 3678 (35.9%) 3105 (30.3%)

Intermediate risk

group

1937 1309 280

High risk group 390 1351 2110

https://doi.org/10.1371/journal.pone.0224502.t002

Fig 4. Reclassification of Individuals predicted to be at intermediate risk group by additional assessment of DAMI. DAMI denotes deep-learning-based risk

stratification for the mortality of patients with AMI and GRACE denotes global registry of acute coronary event.

https://doi.org/10.1371/journal.pone.0224502.g004
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addition, these scoring systems are different for STEMI and NSTEMI. Recently, Song et al.

reported a new scoring system for predicting the outcomes in survivors treated with guideline-

adherent optimal therapies after AMI using the conventional statistical approach, which had

better discrimination power than the GRACE model or other scoring system.[40] The DAMI

risk stratification model was developed based on relatively recent data, which can better pre-

dict the mortality of AMI patients in the current practice. And the status of ST segment is

included in DAMI algorithm, DAMI can equally well predict the mortality of AMI regardless

of ST elevation. Next, the old models, used in TIMI, GRACE, and ACTION, inevitably restrict

the numbers of predictive factors, because these models were developed by the conventional

statistical approach using the logistic regression model that contains limitation including the

fixed assumptions on data behavior, and the necessity to preselect variables in the development

phase, thus leading to potential information loss.[9–12] Unlike the conventional statistical

approach, deep-learning does not require the preselection of important variables, and the less

important variables are naturally ignored in the model fitting.[41–43] Further, deep-learning

does not limit the number of input predictive factors and can use all available information

without potential loss. Subsequently, the old models cannot reflect the relationship between

Fig 5. Kaplan-Meier survival curve stratified by deep-learning model risk score group.

https://doi.org/10.1371/journal.pone.0224502.g005

Deep-learning for mortality prediction of AMI

PLOS ONE | https://doi.org/10.1371/journal.pone.0224502 October 31, 2019 10 / 15

https://doi.org/10.1371/journal.pone.0224502.g005
https://doi.org/10.1371/journal.pone.0224502


variables. This is because the risk is measured only by the sum of the variables. Meanwhile,

deep-learning obtains the relationship between the variables, as shown in Fig 2, unlike conven-

tional methods.[16]

A previous study attempted to predict a 30-day mortality after ST-elevation myocardial

infarction using conventional machine-learning methods including LR and RF and confirmed

that RF performed the best.[28] However, no significant difference in performance is shown

between the RF and GRACE scores. In that study, the machine-learning requires a feature-

selection step before developing a predictive model. The feature selection is to delete variables

that are less relevant to the prediction outcome and leads to potential information loss.[44] An

important advantage of the deep-learning compared with conventional machine-learning,

such as LR and RF, is feature learning.[16] In our study, feature learning is applied to obtain

useful features to predict the endpoint of an AMI patient. Using a large amount of data, the

deep-learning model automatically learns the features and conducts the given tasks such as

classification and detection. This is why deep-learning shows better results than traditional

machine-learning.[41–43]

Deep-learning and machine-learning are used to obtain the relationship between the pre-

dictor variables and outcome variable, rather than creating a rule based on medical knowledge.

Hence, the performance of machine-learning and deep-learning is not guaranteed in other sit-

uations as the algorithms can memorize only the characteristics of the derivation data. Wolpert

explains the no-free-lunch theorem; if optimized in one situation, a model cannot produce

good results in other situations.[45] Hence, we conducted an accuracy test using data which

were not used for the model derivation. As deep-learning and machine-learning can learn the

characteristics of a hospital, the hospital that developed the model and the hospital that con-

ducted the accuracy test were completely separated.

Many researchers have attempted to determine whether machine-learning models devel-

oped for the prediction of one outcome can predict other similar outcomes. For example,

some researchers have confirmed that a machine-learning model trained from in-hospital car-

diac arrest data can predict unexpected intensive care unit transfer due to deterioration or

death without attempted resuscitation.[15,27] We have confirmed that DAMI, which was

developed with in-hospital mortality data, can predict 6-month mortality in this study. Because

the available data is limited and the outcomes to be predicted are highly diverse, this result is

promising to future studies in medical domains and will inspire many researchers.

Several limitations are present in our study. First, deep-learning is known as a “black box.”

Although we can fit the deep-learning model by confirming each weight (wk), we cannot inter-

pret the deep-learning model, in terms of variable importance or the approach to the decision

of risk score. Recently, interpretable deep-learning has been studied and will be our next area

of study.[46,47] Second, as previously described, deep-learning models rely on the represent-

ability of data. One of the most important characteristics of deep-learning is that it uses only

the relationship between variables, as opposed to medical knowledge. Because of this, the

developed deep-learning-based model can be tied to representativeness of training data and

can thus be biased. Hence, it is necessary to validate this model in other environments, we

have provided our prediction model as S1 File. Third, deep-learning only uses existing rela-

tionships in the data, regardless of whether they are due to causality or not. Fourth, as DAMI

cannot be calculated manually, it is more difficult to use than conventional methods such as

TIMI and GRACE. However, there are many hospitals using electronic health records (EHR),

the DAMI score could be implemented to these EHRs with the S1 File and calculated automat-

ically. Finally, the proportion of STEMI patients in this study was seen to be significantly

higher than that of other studies, in which STEMI patients were 30–40%. There could be a risk

of bias and overfitting for STEMI. However, the analysis of each group (STEMI and NSTEMI)
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showed similar patterns of the performance of deep learning model and conventional model

for STEMI and NSTEMI.

Conclusion

In conclusion, we developed and validated a new risk stratification model of AMI based on the

deep-learning approach. The DAMI predicted the in-hospital mortality and 12-month mortality

of AMI patients more accurately than the existing risk scores and other machine-learning meth-

ods. This study showed the feasibility and effectiveness of the deep-learning-based algorithm

model for cardiology, which can be a useful tool for precise decision making in daily practice.
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