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Background: Single-nucleotide polymorphism (SNP) arrays are an ideal technology for
genotyping genetic variants in mass screening. However, using SNP arrays to detect rare
variants [with a minor allele frequency (MAF) of <1%] is still a challenge because of noise
signals and batch effects. An approach that improves the genotyping quality is needed for
clinical applications.

Methods: We developed a quality-control procedure for rare variants which integrates
different algorithms, filters, and experiments to increase the accuracy of variant calling.
Using data from the TWB 2.0 custom Axiom array, we adopted an advanced normalization
adjustment to prevent false calls caused by splitting the cluster and a rare het adjustment
which decreases false calls in rare variants. The concordance of allelic frequencies from
array data was compared to those from sequencing datasets of Taiwanese. Finally,
genotyping results were used to detect familial hypercholesterolemia (FH), thrombophilia
(TH), and maturity-onset diabetes of the young (MODY) to assess the performance in
disease screening. All heterozygous calls were verified by Sanger sequencing or qPCR.
The positive predictive value (PPV) of each stepwas estimated to evaluate the performance
of our procedure.

Results: We analyzed SNP array data from 43,433 individuals, which interrogated
267,247 rare variants. The advanced normalization and rare het adjustment methods
adjusted genotyping calling of 168,134 variants (96.49%). We further removed 3916
probesets which were discordant in MAFs between the SNP array and sequencing data.
The PPV for detecting pathogenic variants with 0.01%<MAF≤1% exceeded 99.37%.
PPVs for those with an MAF of ≤0.01% improved from 95% to 100% for FH, 42.11% to
85.19% for TH, and 18.24% to 72.22% for MODY after adopting our rare variant quality-
control procedure and experimental verification.

Conclusion: Adopting our quality-control procedure, SNP arrays can adequately detect
variants with MAF values ranging 0.01%∼0.1%. For variants with MAF values of ≤0.01%,
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experimental validation is needed unless sequencing data from a homogeneous
population of >10,000 are available. The results demonstrated our procedure could
perform correct genotype calling of rare variants. It provides a solution of pathogenic
variant detection through SNP array. The approach brings tremendous promise for
implementing precision medicine in medical practice.
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INTRODUCTION

Globally, over 7,000 rare diseases affect 5–10% of the population
(Richmond et al., 2021). Most of these diseases are caused by rare
pathogenic variants, which have a minor allele frequency (MAF)
in a population of <1% with high penetrance (Gautheron and
Jéru, 2020). For example, inherited retinal degenerations are
caused by mutations of 271 genes, including the EYS and
ABCB4 genes (Chen et al., 2021; Retnet, (1996). Recent studies
also discovered several pathogenic variants which are associated
with common traits or complex diseases, such as hyperlipidemia,
myocardial infarction, and diabetes (Lee et al., 2014; Riddle et al.,
2020; Vrablik et al., 2020; Momozawa and Mizukami, 2021).
Although detecting rare variants is important, it is still challenged
because of the low MAF values. Large-scale genomic data are
needed to identify pathogenic variants with a large effect and high
penetrance.

Recently, several biobanks have been set up and have collected
large-scale genetic data, including single-nucleotide
polymorphism (SNP) arrays and next-generation sequencing
(NGS) data (Chen et al., 2011; Bycroft et al., 2018; Kanai
et al., 2018). Through such data, many rare pathogenic
variants have been identified (Cirulli et al., 2020),
(Blauwendraat et al., 2021) and have been widely used as
disease-associated genetic markers, including monogenic
(Firdous et al., 2018) and complex diseases (Marvel et al.,
2017; Jurgens, 2020; Patel et al., 2020; Chen et al., 2021).
High-density SNP arrays provide a rapid and efficient method
to simultaneously genotype hundreds of thousands of specific
variants (Kim and Misra, 2007; Visscher et al., 2017; Kim et al.,
2018). The Taiwan Biobank has utilized SNP arrays to discover
specific variants associated with hereditary diseases, drug
metabolism, and drug responses of the Han Chinese
population in Taiwan (Lin et al., 2019). Also, several
companies, such as 23andme, provide direct-to-consumer
genetic testing services which assess genetic risks for diseases
or health conditions using SNP arrays (Tandy-Connor et al.,
2018; Horton et al., 2019; Schleit et al., 2019). However, recent
articles have pointed out the low accuracy and high false positive
rates of SNP arrays for detecting rare variants (Wright et al., 2019;
BMJ, 2021).

Variant calling of SNP arrays relies on clustering of probeset
signals (Lamy et al., 2006). Clustering of rare variants becomes
very difficult when only a limited number of alternative alleles
exist (Weedon, 2019). Differences in signal distributions due to
batch effects also cause misclustering. As shown as
Supplementary Figure S1 in “Supplemental materials”,

samples in a batch with high average signals of major alleles
can be misclassified as alternative alleles. Noise signals induced in
the experiment, such as by air bubbles or scratches, also cause
incorrect calling (Supplementary Figure S1B). In addition,
cross-hybridization reactions with non-target sequences can
also induce false calling for probesets with low specificity for
targeting sequences. The performance of probesets for rare
variants is difficult to evaluate because of the low frequency of
alternative alleles. Although several algorithms or procedures
have been developed to improve the accuracy of genotyping of
common variants (Hua et al., 2007; Xiao et al., 2007; Hunter-
Zinck et al., 2020), methods that focus on rare variant calling for
SNP arrays are still lacking. New strategies are needed to improve
the accuracy of rare variants for further applications.

The objective of this study is to develop a rare variant quality-
control (QC) procedure to improve the calling accuracy. We
proposed a procedure combining advance normalization, rare het
adjustment, and MAF comparisons to improve true positive rate.
This approach was evaluated by Sanger validation or real-time
Polymerase Chain Reaction (qPCR) and an external data set. As
we demonstrate, our method provides a solution which makes
SNP arrays feasible as screening tools for rare variants.

MATERIALS AND METHODS

Dataset of Single-Nucleotide Polymorphism
Arrays
We used SNP arrays from the project of Taiwan Precision
Medicine Initiative (TPMI) to conduct our data analysis. In
total, 43,531 individuals were recruited from Taichung
Veterans General Hospital (TCVGH; Taichung, Taiwan).
Participants consented for blood to be drawn and SNP arrays
to be performed, as well as for their clinical information to be
linked. DNA of participants was extracted for genotyping on a
custom Axiom array, TWB2.0, which was designed by the TWB
based on 970 whole-genome sequence (WGS) data in the
Taiwanese population (Lin et al., 2019).

In total, 714,461 probesets were designed on the TWB 2.0
Array plate (Santa Clara, CA, United States). It contained about
415,000 probesets for gene-wide association studies (GWASs)
and imputation and also about 114,000 probesets for risk or
pathogenic analysis selected from several sources, including
ACMG, ClinVar, GWAS Catalog, HGMD, and the literature.
We selected 267,247 probe-sets associated with rare variants
(with an MAF of <1% in NGS data) to evaluate the calling
accuracy of rare variants.
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Genotype Calling, Advanced Normalization,
and Rare Het Adjustment
Genotype calling was based on Affymetrix® Power Tools (APT,
command-line software, Santa Clara, CA, United States). Data of 24
plates were grouped as a batch according to the processing date. After
genotyping, we applied advanced normalization to adjust
misclustering based on the batch effect. Advanced normalization
was conducted with the advnorm package provided by Thermo
Fisher Scientific (Santa Clara, CA, United States). We also applied a
rare het adjustment to exclude probesets with different signals in
replicated probes. The rare het adjustment was conducted with the
axiomBestPractices-1.2.4 program and the command “-do-rare-het-
adjustment’’ (see supplemental methods).

Comparing Allelic Frequencies Between the
Single-Nucleotide Polymorphism Array and
NGS Data
We collected 3,370WGSs to estimate theMAFs for all variants. Data
of 1,200 WGSs were accessed from TWB, and 2,170 of them were
collected from our in-house program. Briefly, about 30× whole-
genome sequencing was performed. Reads were aligned to the
GRCh38 human genome using the GATK pipeline. Values of the
MAF were calculated using VCFtools.

To compare allelic frequencies, MAFs between the SNP array
and sequencing data were log2 transformed. Log2 ratios of MAFs
between the SNP array and sequencing data were calculated and
utilized as parameters to estimate the MAP concordance. With
the predict method Setting the upper and lower thresholds as 1.72
and −2, respectively, the probe-sets with mis-concordance of
MAFs were identified and excluded.

Variant Validation Based on a Quantitative
Polymerase Chain Reaction (qPCR) or
Sanger Sequencing
We respectively selected 1,090, 55, and 132 probesets of familial
hypercholesterolemia (FH), thrombophilia (TH), and maturity-onset
diabetes of the young (MODY) for disease-oriented analyses. The
MAF distributions of the probesets are shown in Supplementary
Table S2 in “Supplemental materials”. All samples with heterozygous
calls were validated by a qPCR or Sanger sequencing. We used the
Applied Biosystems™ Primer Designer™ Tool (Applied Biosystems,
SantaClara, CA,United States) to pick specific primer pairs for Sanger
sequencing, we designed primers with the Primer3 algorithm (Kumar
and Chordia, 2015) and checked for sequence similarities throughout
the human genome using the Primer-BLAST tool (Ye et al., 2012).

Independent Dataset for External
Validation
Newly collected SNP array data of 5,358 samples was used to
measure the reproducibility of our QC procedure. We used the
same workflow to genotype calling. Samples with heterozygous
calls were verified through qPCR or Sanger sequencing to
evaluate calling accuracy.

RESULTS

An Analytical Algorithm for Rare Variant
Detection
We implemented a QC procedure that contains four key
components to precisely detect rare variants in SNP arrays. As
shown in Figure 1A, two algorithms, advanced normalization
and rare het adjustment, were applied to post-QC data. The rare
het adjustment checked signals of heterozygous calls from each
replicate probe group and compared the signal distribution in a
batch. Heterozygous calls were adjusted to “no call” if the signal
distribution from the replicate probe group was uncertain.
Advanced normalization detected clustering errors from
specific plates in batches and reassigned those calls to the
correct cluster. We consolidated results from the two
algorithms and filtered conflicting results. In the third step, we
compared the concordance of the MAF of each variant in the
array with the corresponding variant in Taiwanese WGS data.
Probesets with high deviations of MAF noted as low-concordance
probes were excluded from the following analysis. Last, we
assessed the performance of the genotyping results in disease
screening and verified the results by a qPCR or Sanger. We
designed this integrating approach to improve the quality of SNP
array data in genotyping rare variants.

Genotype Correction Procedure Adjusts
Incorrect Calls on the Array
We analyzed SNP array data from 43,433 individuals, which
interrogated 267,247 rare variants. We assessed the crude number
and rate of adjustments made by the two algorithms in
correlation with the MAF. We adjusted 136,773 calls with the

FIGURE 1 |Quality-control procedure of TWB 2.0 arrays of rare variants.
The shaded boxes are steps of the rare variant quality-control procedure. The
dotted line represents the management of variants with low PPV.
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advanced normalization method (Figure 2A) and 19,347 calls
with the rare het adjustment method (Figure 2B). Figure 2C
shows distributions of variants that were adjusted by MAF. The
adjustment rate was the highest in variants with MAFs of ≤0.01%.

In these genotype callings, 168,134 variants had at least one
heterozygous call, and 99,110 variants were completely wild-type.
The advanced normalization algorithm adjusted 10,420 variants
(6.20%) to be the wild-type and modified the number of
heterozygous calls in 147,193 variants (87.55%). The rare het
adjustment algorithm adjusted 5,119 variants (3.04%) to be the
wild-type and modified the number of heterozygous calls in
14,255 variants (8.48%). Taken together, our algorithm
adjusted the genotyping calling of 162,230 variants (96.49%) in
which 14,214 variants (8.45%) were adjusted to the wild-type and
148,016 variants (88.03%) were modified. Only 5,904 variants
(3.51%) remained the same after these adjustments (Figure 2D).

Discordance by Minor Allele Frequencys
We used log2 ratio of the computed MAFs as the parameter to
compare between the SNP array and NGS (Figure 3A). By setting
the upper threshold value to 1.72 and lower to −2, we were able to
obtain the highest coefficient of determination in the MAF scatter
plot. We removed 3,916 low-concordance probe-sets which were
discordant in MAFs between the SNP array and NGS. The

remaining probesets showed good concordance. The
coefficient of the linear regression was 1.104, and the
coefficient of determination was 0.972 (Figure 3B).

The number of discordant probesets in each MAF group is
presented in Figure 3C. Compared to 0.6% of the probesets in the
group of 0.5% < MAF≤1% which showed low concordance,
30.4% of the probesets in the group of 0.05% < MAF≤0.01%
showed low concordance. This step excluded lots of non-working
probesets. However, variants in the group of MAF<0.01% could
not be applied due to limited MAF resolution of sequencing data.

Disease Screening and Experimental
Validation of the True Positive Rate
To test the performance of genotype calling in disease screening
after applying our analytical procedure, we investigated
pathogenic variants of three hereditary diseases: FH, TH, and
MODY. Totals of 1,090, 132, and 55 pathogenic variants on the
SNP array were respectively associated with FH, MODY, and TH.
There were 499 mutation carriers detected in FH, 76 in TH, and
148 in MODY in the original data. Numbers of carriers are
presented in Table 1 by 0.01% <MAF≤1% and MAF≤0.01%. We
verified all samples with heterozygous genotypes through Sanger
sequencing or a qPCR. Using our rare-variant QC procedure and

FIGURE 2 | Minor allele frequency (MAF) distribution and probeset count after performance of the rare variant quality-control procedure. (A,B) The former is the
MAF distribution after using the advanced normalization method, and the latter is the MAF distribution after using the rare het adjustment method. The upper plot shows
the number of probesets adjusted (red bar) or unadjusted (blue bar) by this algorithm. The bottom plot shows the distribution of MAFs between the single-nucleotide
polymorphism (SNP) array and sequencing data. Adjusted data points are marked with a red “×”, and unadjusted data points are marked with a blue dot. (C) Box
plot of the adjusted rate per MAF bin based on sequencing data. (D) Number of rare variants with at least one heterozygous call in the original data, and after advanced
normalization and rare het adjustment. Variants not adjusted by our algorithms are represented as a gray slice. Variants adjusted by our algorithms are represented as a
blue slice. Variants adjusted by our algorithms are represented as a pink slice.
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experimental verification, the PPV improved from 98.96 to
99.37% in variants with 0.01% < MAF≤1% and from 95 to
100% in variants with MAF≤0.01% in FH. The PPV remained
100% in variants with 0.01% < MAF≤1%, and it improved
from 42.11 to 85.19% in variants with MAF≤0.01% in TH. In
detecting pathogenic variants in MODY, all variants were in
the group of MAF≤0.01%, and the PPV improved from 18.24
to 72.22% after our QC approach. We also examined 1.35% of
negative calls and reached 100% of negative predictive value
(NPV). The filtration trace in each step is shown in
Supplementary Table S3.

In addition, we used an independent dataset of 5,358 samples
to evaluate our procedures as an external validation. We reached
98.57, 100 and 66.67% of positive predictive value in familial
hypercholesterolemia (FH), thrombophilia (TH), and maturity-
onset diabetes of the young (MODY) respectively. (Table 1)

DISCUSSION

SNP array was widely used for variant calling. This proposed
quality-control procedure can improve the accuracy of rare

FIGURE 3 | Quality-control assessments on the TWB 2.0 data after performance of rare variant quality-control procedures. (A) Comparison of minor allele
frequencies (MAFs) between sequencing data and the TWB 2.0 before excluding low-concordance probes. (B)Comparison of MAFs between sequencing data and the
TWB 2.0 after excluding low-concordance probes. (C) The distribution of excluded probes according to the MAF bins.

TABLE 1 | Performance of the TWB 2.0 in detecting rare pathogenic variants for familial hypercholesterolemia, thrombophilia, and maturity onset diabetes of the young in
data with the original quality-control process, with rare variants quality-control procedure, and experimental verification.

Familial hypercholesterolemia Thrombophilia Maturity-onset diabetes of the young

— 0.01% < MAF≤1% MAF≤0.01% 0.01% < MAF≤1% MAF≤0.01% 0.01% < MAF≤1% MAF≤0.01%

Dataset TPs FPs PPV
(%)

TPs FPs PPV
(%)

TPs FPs PPV
(%)

TPs FPs PPV
(%)

TPs FPs PPV
(%)

TPs FPs PPV
(%)

Original 474 5 98.96 19 1 95.00 19 0 100 24 33 42.11 — — — 27 121 18.24

With rare
variants QC

470 3 99.37 17 0 100 19 0 100 23 4 85.19 — — — 26 10 72.22

External dataset
(5,358 samples)

67 1 98.53 2 0 100 2 0 100 0 1 0 — — — 2 0 100

MAF, minor allele frequency; TPs, true positives; FPs, false positives; PPV positive predictive value.
The qPCR and Sanger sequencing results are the gold standard for TP and FP.
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variant calling to extend the application of SNP array. Although
NGS has high accuracy of rare variant detection and considered
as the gold standard, it requires high computational power and
skilled bioinformaticians for variant calling. The computational
process is massive when we have a large number of samples. SNP
array is an alternative method to detect known-pathogenic
variants. It is more convenient and efficient for variant calling
due to the characteristic of probe hybridization comparing to
WGS. This procedure makes SNP array suitable for pathogenic
variant screening. Also, it enables us to utilize available biobank
data for studying pathogenic variant in a population level.

We developed a robust QC pipeline which can effectively
adjust false positive calling in rare variants and increase the
positive detection rate. Two major algorithms, rare het
adjustment and advance normalization, were used to correct
false signals, while MAF comparisons tagged low-concordance
probesets. Our data showed dramatic improvements in true
positive rates. The PPVs for MODY and TH improved from
18 to 93% and from 57 to 100%, respectively. The demonstrated
performance indicated that SNP array data combined with our
QC algorithm could be directly applied to large-scale disease
screening for the Taiwanese population.

The data of the original genotype calling algorithm showed a
poor performance for rare variants in some cases. Positive rates of
TH and MODY were as low as 56.58 and 17.53%, respectively.
One of the potential reasons is that the original genotyping
pipeline was designed for common variants (Bush and Moore,
2012). Most rare variants lack alternative alleles, causing an
extremely skewed dataset for initial genotype gating and
cluster splitting. This leads to incorrect genotype calling (King
and Nicolae, 2014). Another reason for false calling could be
induced by abnormal fluorescence signals due to bubbles or
scratches. Although most probesets of the SNP array were
designed for repetitive probes and randomly distributed at
different locations to eliminate the effect, extremely high
signals from bubbles or scratches will increase the average
signal and raise false calls (BioRxiv, 2020). We introduced the
rare het adjustment to eliminate this effect. It changed the
unexpected result to “no call”. Wrong clustering caused by
batch effects is another source of incorrect calling. This kind
of probeset often has a high intensity in the genotype cluster plot,
leading to a missed split into the wrong cluster. To target this
issue, advanced normalization was applied to identify batch
effects and reassign genotype clusters. As the result we
demonstrated, the two algorithms increased the PPVs of TH
and MODY. By combining the two procedures, the performance
of base calling of rare variants could be dramatically increased to
91.30 and 72.22%, respectively.

Incorrect calls from low-concordance probes are an
important issue in rare variant detection. They can be
caused by an improper probe design and non-specific
hybridization. We utilized the procedure of MAF
comparison to check the concordance of MAFs between
array data and sequencing. Any probes with out-of-range
MAF values were identified as low-concordance probes and
excluded. This procedure marked 9.17% of probesets with low
performance in the array. However, the procedure only works

on variants with a frequency of >0.01% due the resolution of
sequencing data. For probesets that interrogated variants
with a frequency of <0.01%, experimental validation was
used to test the concordance of the probesets.

Our data reveal the challenge of detecting rare mutations,
especially of variants with a frequency of <0.01%. The
positive rate decreased when the MAF decreased. For
example, the positive detection rate of FH was up to 98.8%
in the original data. MAFs of FH variants were mainly in the
range of 0.5–0.01%. However, the positive rate of MODY was
down to 17.53%, because the frequency of all variants was
<0.01%. By considering the issue discussed above, our
procedure demonstrated significant improvement in the
positive prediction rate without losing many true positive
calls, but one positive call was lost for TH and MODY.

We used the Log2 ratios of MAFs between the SNP array and
sequencing data as a parameter to estimate the MAF concordance.
Ideally, the coefficient of regression line should be 1 if the MAFs of
SNP array and sequencing are came from the same samples.However,
the MAFs of SNP data and sequence data are derived from different
cohort in our study. We observed the difference between array MAFs
andWGSMAFs. Taking two variants we did experimental validation
as example, theMAFof rs749038326 is 0.0842% in SNP array, but it is
0.0461% in the sequencing data. The MAF of another SNP,
rs730882109, is 0.192% in the array data, but it is 0.0691% in the
sequencing data. Few reasons can help to explain this phenomenon.
First, the SNPdata andWES datawere derived fromdifferent cohorts.
Different age distribution and disease condition of two cohorts may
cause the discrepancy. In addition, the total number in the SNP data
and the WES data are different. MAFs estimated from WGS did not
provide enough resolution for rare variants.

As increasing numbers of novel variants are discovered from
sequencing and WGS approaches, custom-designed
genotyping arrays are an alternative strategy for
investigating low-frequency and rare variants for large
cohorts with the advantage of low costs (Hurd and Nelson,
2009; Berry et al., 2019). It The procedure we developed
provides an excellent solution to overcome genotyping call
issues in rare variants. In addition, as results we demonstrated,
SNP arrays can be used for genetic disease screening. This has
great potential for clinical utilization based on the advantage of
low costs and low demands for computational power. The
capacity of SNP arrays is up to millions of SNPs. All known
pathogenic variants of genetic diseases in populations could be
screened simultaneously. Our procedure provides a solution of
correct genotype calling. Combined together, the approach
brings tremendous promise for implementing precision
medicine in medical practice.
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