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Transethnic Meta-Analysis of Genomewide Association Studies
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The detection of loci contributing effects to complex human traits, and their subsequent fine-mapping for the location of
causal variants, remains a considerable challenge for the genetics research community. Meta-analyses of genomewide
association studies, primarily ascertained from European-descent populations, have made considerable advances in our
understanding of complex trait genetics, although much of their heritability is still unexplained. With the increasing
availability of genomewide association data from diverse populations, transethnic meta-analysis may offer an exciting
opportunity to increase the power to detect novel complex trait loci and to improve the resolution of fine-mapping of causal
variants by leveraging differences in local linkage disequilibrium structure between ethnic groups. However, we might also
expect there to be substantial genetic heterogeneity between diverse populations, both in terms of the spectrum of causal
variants and their allelic effects, which cannot easily be accommodated through traditional approaches to meta-analysis.
In order to address this challenge, I propose novel transethnic meta-analysis methodology that takes account of the expected
similarity in allelic effects between the most closely related populations, while allowing for heterogeneity between more
diverse ethnic groups. This approach yields substantial improvements in performance, compared to fixed-effects meta-
analysis, both in terms of power to detect association, and localization of the causal variant, over a range of models of
heterogeneity between ethnic groups. Furthermore, when the similarity in allelic effects between populations is well
captured by their relatedness, this approach has increased power and mapping resolution over random-effects meta-
analysis. Genet. Epidemiol. 35:809–822, 2011. r 2011 Wiley Periodicals, Inc.
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INTRODUCTION

Genomewide association studies (GWAS) have been
extremely successful in identifying loci contributing
genetic effects to a wide range of complex human traits.
However, despite this success, the joint effects of these loci
typically explain only a small proportion of the heritability
[Manolio et al., 2009; McCarthy et al., 2008]. Furthermore,
the loci identified through GWAS often extend over
hundreds of kilobases, contain many genes and large
numbers of variants with indistinguishable signals of
association, occurring as a result of linkage disequilibrium
(LD) across the region. The challenge is now to identify
novel loci that contribute to the ‘‘missing’’ heritability of
complex traits, and to refine the location of causal variants
within already established loci in order to prioritize genes
for followup through functional studies.

The vast majority of GWAS have been undertaken in
populations of European descent [Rosenberg et al., 2010].
The availability of European-descent population cohorts,
such as those made available by the Wellcome Trust Case
Control Consortium [The Wellcome Trust Case Control

Consortium, 2007], has expedited the use of ‘‘shared
controls’’ between GWAS, reducing the burden of sample
collection and genotyping [Zhuang et al., 2010].
Meta-analyses of European-descent GWAS have proved
to be profitable in identifying additional complex trait loci
by increasing sample size without the cost of additional
genotyping [Barrett et al., 2009; Dupuis et al., 2010; Lango
Allen et al., 2010; Voight et al., 2010]. This process has been
greatly aided by the development of imputation techni-
ques that allow the prediction of genotypes not typed on
GWAS chips, but present on a higher density reference
panel of phased haplotypes from the same, or a closely
related population [Marchini and Howie, 2010]. Appro-
priate reference panels for European-descent populations
have been made available through the International
HapMap Project [The International HapMap Consortium,
2007, 2010] and at higher density through the 1000
Genomes Project [The 1000 Genomes Project Consortium,
2010]. These reference panels provide more complete
coverage of common genetic variation throughout
the genome, and thus will be more likely to explicitly
include causal variants than will GWAS genotyping
products. However, LD between common variants among
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European-descent populations will likely continue to
hamper fine-mapping efforts, even with the large sample
sizes accrued through GWAS meta-analysis.

Two of the key challenges in performing GWAS in other
ethnic groups have been the lack of appropriate genotyp-
ing products and availability of well-matched imputation
reference panels [Jallow et al., 2009]. Initial GWAS chips
were designed to preferentially capture common genetic
variation in Europeans [Rosenberg et al., 2010]. Under-
lying differences in the structure of LD between diverse
populations reduced the efficiency of these genotyping
products in other ethnic groups. However, more recent
chips are less biased to European-descent populations, and
GWAS are now increasingly undertaken, with great
success, in other ethnic groups including Japanese
[Kamatani et al., 2010; Kochi et al., 2010; Takata et al.,
2010; Uno et al., 2010; Yamauchi et al., 2010], Chinese
[Abnet et al., 2010; Chen et al., 2011; Wang et al., 2010],
Koreans [Jee et al., 2010], Indian Asians [Chambers et al.,
2010] and Africans [Petrovski et al., 2010; Thye et al., 2010].
Furthermore, the 1000 Genomes Project will provide
comprehensive reference panels of common variants, and
hence permit accurate imputation, in diverse ethnic
groups from African, Asian and American, as well as
European-descent populations [The 1000 Genomes Project
Consortium, 2010].

With the increasing availability of GWAS data from
diverse populations, transethnic meta-analysis may offer
an exciting opportunity to increase the power to detect
novel loci, through increased sample size, as well as to
improve the resolution of fine-mapping of causal variants
[Cooper et al., 2008; Zaitlen et al., 2010]. The underlying
differences in the structure of LD between ethnic groups
can be leveraged to amplify the signal of association at the
causal variant. In particular, we would not expect that any
set of indistinguishable associated variants will be the
same in all populations from different ethnic groups.
However, the allele frequency spectrum is also highly
variable between diverse populations, with the result that
a causal variant may be specific, or more relevant, to one
ethnic group. For example, the risk allele for a causal
variant for cardiomyopathy in MYBPC3 has 4% frequency
in populations from the Indian subcontinent, but is much
rarer or not observed in other ethnic groups [Dhandapany
et al., 2009]. Furthermore, causal variants may interact
with environmental risk factors that differ in exposure
between ethnic groups, generating variability in the
marginal allelic effect between populations. It is thus not
clear that the findings of GWAS will translate from one
ethnic group to another, and hence that we might expect
considerable heterogeneity in allelic effects between
distantly related populations.

Irrespective of the source of genetic heterogeneity,
traditional methodology for the meta-analysis of GWAS,
as implemented in the GWAMA software [Magi and
Morris, 2010], cannot appropriately take account of the
resulting variability in allelic effects between ethnic
groups. Fixed-effects meta-analysis assumes the allelic
effect to be the same in all populations. Conversely,
random effects meta-analysis assumes that each popula-
tion has a different underlying allelic effect. This is also
unsatisfactory since we expect populations from the same
ethnic group to be more homogeneous than those that are
more distantly related. In order to address this challenge,
I have developed novel transethnic meta-analysis

methodology that takes account of the expected similarity
in allelic effects between the most closely related popula-
tions by means of a Bayesian partition model [Denison and
Holmes, 2001; Knorr-Held and Rasser, 2000]. Briefly, for
each variant, allelic effects and the corresponding stan-
dard errors are estimated within each population under
the assumption of an additive model for the reference
allele. Populations are then clustered according to their
similarity in terms of relatedness (i.e. shared ancestry)
and allelic effects at the variant. Populations within the
same cluster are assumed to have the same underlying
allelic effect. However, clusters are assumed to have
different underlying allelic effects, thus allowing for
heterogeneity. The methodology has been implemented
in the MANTRA (Meta-ANalysis of Transethnic Associa-
tion studies) software.

In this article, I apply MANTRA to association studies of
type 2 diabetes (T2D) from five diverse ethnic groups
[Waters et al., 2010], and highlight the evidence of
heterogeneity in allelic effects between populations at
the CDKAL1 locus. I demonstrate, by means of simulation,
substantial improvements in the performance of
MANTRA, compared to traditional fixed-effects meta-
analysis, both in terms of power to detect association, and
localization of the causal variant, over a range of models of
heterogeneity between ethnic groups. Furthermore,
I also demonstrate increased power and mapping resolu-
tion for MANTRA over random-effects meta-analysis
when the pattern of allelic effects between populations is
well captured by the Bayesian partition model. These
results highlight the potential of MANTRA to detect and
fine-map novel loci for complex traits through application
to transethnic GWAS.

METHODS

Consider the results of a series of N transethnic GWAS
of a continuous or dichotomous trait, ascertained from
populations P1, P2,y, PN, at a given variant. We denote by
bi and si the estimated allelic effect (under an additive
model, i.e. log-odds ratio in the context of a dichotomous
trait) and corresponding standard error, respectively, of the
ith study at the variant. In traditional meta-analysis, we
typically assume that bi�N(bi,si), where bi denotes the ith
population-specific allelic effect.

Under the null model, M0, of no association of the
variant with the trait in any population, b5 0. In a
Bayesian framework, the evidence in favor of the
alternative model, M1, corresponding to b6¼0, can be
assessed by means of the Bayes’ factor [Kass and Raftery,
1995], given by

L ¼
fðb; sjM1Þ

fðb; sjM0Þ
:

In this expression, f(b,s|M) denotes the marginal like-
lihood of the observed allelic effects under model M. This
marginal likelihood is given by integration over the
unknown model parameters, h, which include the popula-
tion-specific allelic effects, b, and additional hyper-
parameters relating to their prior distribution, to be
defined later. It thus follows that

fðb; sjMÞ /

Z
h

fðb; sjhÞfðhjMÞ @h; ð1Þ
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where the likelihood

fðb; sjhÞ ¼ fðb; sjbÞ ¼
YN
i¼1

fðbi; sijbiÞ;

and

fðbi; sijbiÞ /
1

si
exp �

ðbi � biÞ
2

2s2
i

� �
: ð2Þ

BAYESIAN PARTITION MODEL

Under a Bayesian partition model [Denison and
Holmes, 2001; Knorr-Held and Rasser, 2000], b is deter-
mined by the assignment of populations to ethnic clusters,
referred to as a tessellation, and the corresponding cluster
allelic effects, w. The tessellation is defined by specifying K
cluster centers, C ¼ fC1;C2; . . . ;CKg, ordered and without
replacement from the populations. Remaining populations
are then assigned to the ‘‘nearest’’ cluster centre. Here, the
distance between the ith population, Pi, and kth cluster
centre, Ck, is measured by the F-statistic (FST) or some
other metric of allele frequency dissimilarity [Weir and
Cockerham, 1984; Weir and Hill, 2002; Wright, 1951]. If a
population is equidistant from multiple nearest cluster
centers, it is assigned to that with minimum k. The
tessellation is then given by T, where Tik 5 1 if population
Pi is assigned to the cluster with centre Ck, and 0 otherwise.

For a given tessellation, we can then express the popula-
tion-specific contribution to the likelihood in Equation (2) as

fðbi; sijbiÞ ¼ fðbi; sijK;C;wÞ /
1

si
exp �

ðbi �
PK

k¼1 TikckÞ
2

2s2
i

" #
:

ð3Þ

The special case of a single cluster, K 5 1, corresponds to
no heterogeneity between population-specific allelic
effects, and thus can be thought of as a Bayesian
implementation of fixed-effects meta-analysis. Further-
more, when K 5 N, each population is assigned to a
different cluster, and thus can be thought of as a Bayesian
implementation of random-effects meta-analysis.

PRIOR DENSITY FUNCTION

The Bayes’ factor, L, depends on the prior density
function, f(h|M), of parameters under model M. Under the
null model, M0, the population-specific allelic effects are
all zero, and hence any clustering of populations is
irrelevant. Hence, f(h|M0) 5 1 if b 5 0, and 0 otherwise.
Conversely, under M1, population-specific allelic effects
are determined by the Bayesian partition model. Under
this model, the prior density of the number of clusters of
populations is given by

fðKÞ ¼

1
2 if K ¼ 1

2N�1

2Kð2N�1�1Þ
otherwise

:

8<
:

In other words, the prior probability of heterogeneity
in allelic effects between populations is 0.5. Furthermore,
when there is heterogeneity between populations,
the number of clusters has a geometric distribution, such
that f(K)/f(K11) 5 2. This prior model gives greater
probability to a partition with few clusters of populations.
This is consistent with a prior belief that allelic effects are

most likely to vary between broad ethnic groups, but
are less likely to vary between more closely related
populations.

Given K, each population is equally likely, a priori, to be a
cluster centre, and the cluster allelic effects have a prior
N(m,s) distribution, independent of C, where m has a prior
uniform distribution and s has a prior exponential
distribution with expectation 1. The weak joint prior density
f(w,m,s) is readily overwhelmed by the data, and has been
selected for computationally efficiency. Combining the
components of the prior density function, it follows that

fðhjM1Þ / fðKÞðN � KÞ!
exp½�s�

s

YK
k¼1

exp �
ðck � mÞ2

2s2

� �
:

MCMC ALGORITHM

It is not possible to evaluate the marginal likelihood
f(b,s|M) directly. However, consider the joint posterior
density of h ¼ fK;C;w; m;sg under the model M, given by

fðhjb; s;MÞ / fðb; sjhÞfðhjMÞ: ð4Þ

This density appears in the integrand of Equation (1)
and can be approximated by means of a Metropolis–Hast-
ings MCMC algorithm [Hastings, 1970; Metropolis et al.,
1953]. The dimensionality of h depends on the number of
clusters of populations and can be addressed by incorpor-
ating a birth-death process for K by means of a reversible-
jump step in the MCMC algorithm [Green, 1995]. In each
iteration of the algorithm, candidate parameter values, h

0

,
are proposed by making ‘‘small’’ changes to the current
set, as described in Supplementary Methods. The pro-
posed parameter values are then accepted in place of
h0 with probability proportional to f(h0|b,s,M)/f(h|b,s,M);
otherwise the current set is retained.

The MCMC algorithm is run for an initial burn-in period
to allow convergence from randomly assigned starting
values for h. Convergence is assessed using standard
diagnostics [Gammerman, 1997]. After convergence, each
set of parameter values accepted or retained by the
algorithm represents a draw from the posterior distribu-
tion f(h|b,s,M). To reduce autocorrelation between con-
secutive draws of h, the sampled set of parameter values is
recorded at only every tth iteration of the algorithm, for
some suitably large t.

Over R recorded outputs from the MCMC algorithm,
with parameter values denoted hð1Þ; hð2Þ; . . . ; hðRÞ, the
marginal likelihood f(b,s|M) is approximated by

fðb; sjMÞ �
1

R

XR

r¼1

fðb; sjhðrÞÞ�1

" #�1

;

the harmonic mean of sampled likelihood values [Newton
and Raftery, 1994]. In this expression,

fðb; sjhðrÞÞ ¼
YN
i¼1

fðbi; sijK
ðrÞ;CðrÞ;wðrÞÞ;

where fðbi; sijKðrÞ;C
ðrÞ;wðrÞÞ is given by Equation (3) for

parameter values in hðrÞ. An estimate of the Bayes’ factor,
L, can then be obtained from two independent runs of the
MCMC algorithm, once each under model M0 and M1.

The interpretation of the Bayes’ factor depends on
our prior beliefs about SNP association with the
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trait under investigation. On the basis of one million
independent loci across the genome, plausible prior
odds might be of the order of 104

�106 against association
[The Wellcome Trust Case Control Consortium, 2007].
Consequently, a Bayes’ factor of the same order of
magnitude would be necessary to provide convincing
evidence of association [Stephens and Balding, 2009].
Alternatively, we could approximate the Bayesian false-
discovery probability [Wakefield, 2007], and could vary
the prior probability of association of each SNP according
to annotation and/or minor allele frequency [Wang et al.,
2005].

Output from the MCMC algorithm can be used directly
to approximate the posterior distribution of the allelic
effect, bi, in the ith population. Over R outputs, the
posterior mean of this distribution is given by

b̂i ¼

PR
r¼1

PK
k¼1 TðrÞik c

ðrÞ
k

R
;

where TðrÞik and cðrÞk are parameter values in hðrÞ.
Output from the algorithm can also be used to

approximate the posterior probability of heterogeneity in
allelic effects between populations under the alternative
model of SNP association with the trait, given by the
proportion of MCMC outputs for which K is greater than
one. The prior model, f(K), assumes allelic effects to be
equally likely to be homogeneous or heterogeneous across
populations, so that f(K 5 1) 5 f(K41) 5 0.5. Thus, a poster-
ior probability of heterogeneity of greater than 0.95 would
provide strong evidence of a deviation from homogeneity
in allelic effects across populations. In this case, the
posterior probability of heterogeneity in allelic effects
between any given pair of populations can be approxi-
mated by the proportion of MCMC outputs for which they
are assigned to different clusters of the Bayesian partition
model. These probabilities can be used to construct a
dendogram to represent the similarity between popula-
tions in terms of relatedness and allelic effects by
application of average-linkage hierarchical clustering
techniques [Hartigan, 1975].

SOFTWARE AVAILABILITY

The MANTRA software has been developed to imple-
ment two independent runs of the MCMC algorithm, once
each under M0 and M1. For each variant, and each
population, MANTRA requires the following information:
(i) the effect allele; (ii) the estimated effect allele frequency;
(iii) the estimated allelic effect (log-odds ratio in the
context of a dichotomous phenotype) and the correspond-
ing standard error. For each variant, the software will
estimate the Bayes’ factor, L, in favor of association and
summarize the output of the MCMC algorithm. MANTRA
is available, as a suite of executables, on request from the
author.

The run-time of the algorithm, per SNP, depends
crucially on the number of studies, but is feasible on the
scale of the whole genome through efficient parallel
processing. For example, application of the MANTRA
software to the meta-analysis of 28 transethnic GWAS,
imputed up to 2.5 million SNPs from the International
HapMap Project [The International HapMap Consortium,
2007], took less than 1 week with a cluster of 32 dedicated
processors.

RESULTS

In this section, I demonstrate the utility of MANTRA by
application to association studies of T2D from five diverse
ethnic groups [Waters et al., 2010]. I also present the results
of a detailed simulation study to investigate the properties
of MANTRA over a range of models of allelic effects
between ethnic groups, primarily in terms of: (i) the power
to detect association with a causal variant; and (ii) the
localization of the causal variant within a 1-Mb region of
the genome.

EXAMPLE APPLICATION: TRANSETHNIC
ASSOCIATION STUDIES OF T2D

There are more than 40 established loci associated with
susceptibility to T2D, the majority of which have been
identified through large-scale GWAS and meta-analysis in
European-descent populations [Dupuis et al., 2010; Voight
et al., 2010]. I have applied MANTRA to the results of five
association studies of T2D [Waters et al., 2010], with
samples ascertained from diverse populations: European
Americans, African Americans, Latinos, Japanese Amer-
icans, and Native Hawaiians. A total of 6,142 cases and
7,403 controls were genotyped at 19 variants in established
T2D loci (Table I). Relatedness between the populations
was measured via the mean reference allele frequency
difference over the 19 variants (Fig. 1A). Table I presents
the results of two MANTRA analyses at each variant: (i)
with an unconstrained number of clusters, K, of popula-
tions; and (ii) with a single cluster (K 5 1, i.e. fixed-effects).
The results of the MANTRA analysis (K unconstrained)
revealed overwhelming evidence of heterogeneity (99.2%
posterior probability) in allelic effects between popula-
tions at just one locus: CDKAL1. The MANTRA analysis
with K unconstrained at rs7754840 thus provided stronger
evidence of association (log10 Bayes’ factor 5 11.0) than
with fixed effects (K 5 1, log10 Bayes’ factor 5 8.9). The
odds ratio of the risk allele at rs7754840 was noticeably
stronger in the closely related Japanese American and
Native Hawaiian populations than in European Amer-
icans, African Americans, and Latinos (Table II). It is not
possible to formally partition within- and between-cluster
heterogeneity in allelic effects at this variant. However, it
was clear that the Japanese American and Native
Hawaiians were often assigned to the same cluster of the
Bayesian partition model at this variant (80.5% posterior
probability), but rarely to a cluster containing the other
populations (0.8% posterior probability), as demonstrated
by the dendogram in Figure 1B.

SIMULATION STUDY

Phase III of the International HapMap Project (HMP3)
provides a reference panel of haplotypes at approximately
1.6 million variants, genomewide, obtained from 1,184
samples ascertained from 11 populations of European,
Asian, and African descent [The International HapMap
Consortium, 2010]. The relatedness between the popula-
tions, as measured via the mean allele frequency differ-
ence at 10,000 independent autosomal variants across the
genome, is presented by means of the dendogram in
Figure 2. In order to investigate the properties of
MANTRA for detecting association with a quantitative
trait, and fine-mapping the causal variant, I consider a
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TABLE I. Transethnic meta-analysis of five association studies of T2D at 19 variants in established susceptibility loci

Effect allele
K unconstrained

K 5 1 (fixed effect)

Locus SNP Chromosome Position (bp) frequencies log10 BF P(heterogeneity) log10 BF

NOTCH2 rs10923931 1 120,319,482 0.02–0.29 0.1 21.8% 0.0
THADA rs7578597 2 43,586,327 0.75–0.99 0.8 25.4% 0.8
PPARG rs1801282 3 12,368,125 0.89–0.97 0.8 55.2% 0.2
ADAMTS9 rs4607103 3 64,686,944 0.61–0.73 �0.3 9.2% �0.3
IGF2BP2 rs4402960 3 186,994,381 0.27–0.49 3.3 24.6% 3.3
WFS1 rs10010131 4 6,343,816 0.59–0.98 2.0 70.1% 1.6
CDKAL1 rs7754840 6 20,769,229 0.29–0.55 11.0 99.2% 8.9
JAZF1 rs864745 7 28,147,081 0.51–0.77 7.4 22.7% 7.3
SLC30A8 rs13266634 8 118,253,964 0.60–0.89 3.7 11.0% 3.8
CDKN2A/B rs2383208 9 22,122,076 0.56–0.85 5.0 15.6% 5.3
HHEX rs1111875 10 12,368,016 0.28–0.74 0.4 32.2% 0.1
TCF7L2 rs7903146 10 94,452,862 0.04–0.28 17.0 21.9% 16.9
CDC123 rs12779790 10 114,748,339 0.14–0.18 1.3 16.1% 1.1
KCNQ1 rs2237895 11 2,813,770 0.20–0.42 1.7 13.3% 1.8
KCNQ1 rs2237897 11 2,815,122 0.62–0.95 3.9 13.7% 3.8
KCNJ11 rs5219 11 17,366,148 0.09–0.37 4.0 20.1% 3.8
TSPAN8 rs7961581 12 69,949,369 0.21–0.29 �0.3 13.2% �0.4
FTO rs8050136 16 52,373,776 0.20–0.43 �0.3 10.0% �0.3
HNF1B rs4430796 17 33,172,153 0.31–0.65 0.4 48.0% 0.1

Two MANTRA analyses are performed at each variant: (i) with an unconstrained number of clusters, K, of populations; and (ii) with a
single cluster (K 5 1, i.e. fixed-effects). For each analysis, the log10 Bayes’ factor (BF) in favor of association is presented. For the analysis
with K unconstrained, the posterior probability of heterogeneity in allelic effects, P(heterogeneity), is also presented. T2D, type 2 diabetes.

Fig. 1. Dendograms to represent the relatedness between five populations from diverse ethnic groups. Population codes: African American

(AFR); European American (EUR); Latinos (LAT); Japanese Americans (JAP); and Native Hawaiians (HAW). Panel A corresponds to the prior

model of relatedness between populations, constructed on the basis of mean allele frequency differences across 19 variants. Panel B

corresponds to the posterior similarity between populations in terms of relatedness and allelic effect at rs7754840, constructed from the
posterior probabilities that each pair of populations appear in the same cluster of the Bayesian partition model.

TABLE II. Transethnic meta-analysis of five association studies of T2D at rs7754840 in the CDKAL1 locus

Population
Sample size

cases/controls
Effect allele
frequency

Posterior median odds ratio
(95% credibility interval)

European Americans 533/1,006 0.29 1.12 (1.03–1.38)
Latinos 2,220/2,184 0.31 1.10 (1.02–1.21)
African Americans 1,077/1,469 0.55 1.08 (0.95–1.19)
Japanese Americans 1,736/1,761 0.40 1.36 (1.23–1.48)
Native Hawaiians 576/983 0.52 1.36 (1.22–1.50)
Fixed-effects analysis 6,142/7,403 1.19 (1.13–1.25)

Two MANTRA analyses are performed: (i) with an unconstrained number of clusters, K, of populations; and (ii) with a single cluster (K5 1, i.e. fixed-
effects). Posterior median odds ratios and 95% credibility intervals for each ethnic group are obtained for K unconstrained. The fixed-effects posterior
median odds ratio and 95% credibility interval is obtained for K5 1, assuming the same allelic effect across all five ethnic groups. T2D, type 2 diabetes.
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range of models of heterogeneity in allelic effects between
the populations, described in the four panels of Figure 2: (a)
transethnic fixed-effect; (b) African-specific effect; (c)
European and East-Asian opposing effects; and (d)
Western exposure effect. In model (a), there is no
heterogeneity in allelic effects at the causal variant
between populations. In model (b), the causal variant has
the same allelic effect in the four African descent
populations (MKK, ASW, LWK, and YRI), but no effect
in any of the other ethnic groups. In model (c), the causal
variant has opposing allelic effects, of the same magni-
tude, in European-descent (CEU and TSI) and East-Asian
descent populations (CHB, CHD, and JPT), but no effect in
the other ethnic groups. Finally, in model (d), the causal
variant has the same effect in those populations living in
Europe or the USA (ASW, CHD, CEU, and TSI), but not in
any other area. Such heterogeneity could occur, for
example, when genotypes at the causal variant interact
with exposure to a Western diet. In model (d), therefore,
the most closely related populations do not share the most
similar allelic effects, and thus offers the opportunity to
test the sensitivity of MANTRA to this prior assumption.

For each model, I consider a range of population-
specific allelic effect sizes, denoted lP (Fig. 2). For each
allelic effect size, I then generate 1,000 replicates of data
using the following approach:

(1) Select a causal variant at random from HMP3,
provided that it has a minor allele frequency of at

least 1% in at least one population. Select one allele at
this variant as the mean phenotype ‘‘increaser.’’
Consider all variants within 100 kb, up- and down-
stream, as part of the analysis region.

(2) For population P, simulate a cohort of 1,000 individuals
by selecting pairs of reference haplotypes, at random,
from HMP3. Record the genotypes of each individual
at each variant within the analysis region. Simulate
the phenotype of each individual from a unit variance
Gaussian distribution, with mean given by lPgi, where
gi is the number of increaser alleles, according to
the model of heterogeneity. Repeat for each population.

(3) For each population, estimate the effect of the increaser
allele (assuming an additive model) and the corre-
sponding standard error, bP and sP, at each variant in
the analysis region.

(4) Perform three meta-analyses at each variant across
populations using MANTRA: (i) assuming a single
cluster of populations (K 5 1, i.e. transethnic fixed-
effect); (ii) assuming each population in assigned to a
different cluster (K 5 N, i.e. random effects); and (iii)
with the number of clusters of populations uncon-
strained. For each analysis, record the following
summary statistics: (i) the Bayes’ factor at the causal
variant; (ii) the rank of the Bayes’ factor at the causal
variant among all variants in the analysis region; and
(iii) the distance between the causal variant and the
variant with the largest Bayes’ factor in the analysis
region (i.e. location error).

Fig. 2. Dendogram to represent the relatedness between 11 diverse populations from Phase III of the International HapMap Project and

the models of heterogeneity in allelic effects between them considered in the simulation study. Population codes: African ancestry in

Southwest USA (ASW); Utah residents with North and Western European ancestry (CEU); Han Chinese in Beijing (CHB); Chinese in

Metropolitan Denver (CHD); Gujarati Indians in Houston (GIH); Japanese in Tokyo (JPT); Luhya in Webuye, Kenya (LWK); Mexican
ancestry in Los Angeles (MEX); Maasai in Kinyawa, Kenya (MKK); Toscani in Italy (TSI); and Yoruba in Ibadan, Nigeria (YRI). The

relatedness between populations was measured by means of the mean allele frequency difference at 10,000 independent autosomal

variants across the genome. The four models of heterogeneity are parameterised in terms of population-specific allelic effects, k, and

correspond to: (a) transethnic fixed-effect; (b) African-specific effect; (c) European and East Asian opposing effects; and (d) Western
exposure effect.
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Performance of MANTRA under the null model
of no association. Table III presents summary statistics
for the two MANTRA analyses (K 5 1 and K uncon-
strained) under the null model of no effect of the causal
variant in any population (l5 0). There are no discernable
differences between the three analyses in terms of the
evidence in favor of association at the causal variant, the
location error, or the rank of the Bayes’ factor at the causal
variant. Given the size of the analysis region (100 kb up-
and down-stream of the causal variant), the results are
consistent with the expected location error of 50 kb.
Furthermore, given that the density of variants in HMP3
is approximately one per 2 kb, the results are consistent
with the expected median rank of the causal variant of 50.

Power. Figure 3 presents the power of the three
MANTRA analyses (K 5 1, K 5 N, and K unconstrained),
as a function of the allelic effect size, to detect evidence in
favor of association at the causal variant at a Bayes’ factor
of 105. This threshold corresponds to prior odds of 105

against association of any variant with the phenotype [The
Wellcome Trust Case Control Consortium, 2007], but has

no impact on the relative performance of the three
analyses. Figure 3A presents the power of the three
analyses under the transethnic fixed-effect model where
the allelic effect of the causal variant is the same in all
populations. Consequently, there is no discernable differ-
ence in power between the three MANTRA analyses. In
the remaining panels of Figure 3, corresponding to models
of heterogeneity in allelic effects between populations, the
fixed-effect MANTRA analysis (K 5 1) has substantially
less power than the random-effect analysis (K 5 N) or the
unconstrained analysis. The difference is particularly
striking for the model of European and East Asian
opposing effects (Fig. 3C). In this scenario, the allelic
effects in these two ethnic groups effectively cancel each
other out, with the result that the fixed-effects MANTRA
analysis has minimal power to detect association.
Figure 3D, corresponding to the Western exposure effect
model, demonstrates the increased power of the uncon-
strained MANTRA analysis, even when allelic effect
heterogeneity does not adhere to our prior assumption of
relatedness between populations. Figure 3B, corresponding

TABLE III. Summary statistics for three MANTRA analyses (K 5 1, K 5 N, and K unconstrained) under the null model
of no effect of the causal variant in any population

Summary statistic K 5 1 (fixed effect) K 5 N (random effect) K unconstrained

Probability that BF41 at the causal variant 0.09 0.12 0.09
Probability that BF410 at the causal variant 0.00 0.01 0.01
Probability that BF4105 at the causal variant 0.00 0.00 0.00
Mean location error of the causal variant (kb) 50.95 49.64 48.61
Median rank of BF at the causal variant 50.0 46.5 47.5
Probability that the causal variant has the largest BF 0.00 0.00 0.00

Evidence in favor of association is assessed by means of the BF. BF, Bayes’ factor.
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Fig. 3. Power of three MANTRA analyses (K 5 1, K 5 N, and K unconstrained), as a function of the allelic effect size, to detect evidence

in favor of association at the causal variant at a Bayes’ factor of 105. Panels correspond to four models of heterogeneity in allelic effects

between the populations: (A) transethnic fixed-effect; (B) African-specific effect; (C) European and East-Asian opposing effects; and

(D) Western exposure effect.
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to the African-specific effect model highlights reduced
power for the random-effect MANTRA analysis (K 5 N)
compared to the unconstrained analysis. There is no
discernable difference in power between these two
analyses for the model of European and East Asian
opposing effects (Fig. 3C), where we would expect four
clusters of populations to best explain the heterogeneity in
allelic effects. However, in Figure 3D, corresponding to the
Western exposure effect model, the random-effect MAN-
TRA analysis is most powerful. These results suggest that
the unconstrained MANTRA analysis has greatest gains in
power over the random-effect analysis when the pattern of
heterogeneity in allelic effects between populations is well
represented by the prior Bayesian partition model, and
when there are fewer clusters.

Heterogeneity in allelic effects between popula-
tions. Figure 4 presents the mean posterior probability
of heterogeneity from the MANTRA analysis with K
unconstrained, as a function of the allelic effect size.
Figure 4A presents the mean posterior probability under the
transethnic fixed effect model, and thus shows no evidence
of heterogeneity, relative to the prior probability of 0.5,
irrespective of allelic effect size. However, in each of the
models of heterogeneity between populations presented in
the remaining panels of Figure 4, the mean posterior
probability increases with allelic effect size, as expected.

Localization. Figure 5 presents the mean location
error (kb) of the three MANTRA analyses (K 5 1, K 5 N,
and K unconstrained) as a function of the allelic effect size.
As expected, there is no discernable difference in location
error between the three analyses under the transethnic
fixed effect model (Fig. 5A). In the remaining panels
of Figure 5, corresponding to models of heterogeneity
in allelic effects between populations, the fixed-effect
MANTRA analysis (K 5 1) has substantially less precision

for fine-mapping than the random-effect MANTRA
analysis (K 5 N) or the unconstrained analysis. The same
conclusions are reached by considering the probability that
the causal variant has the largest Bayes’ factor in favor of
association in the 200-kb analysis region (Fig. 6). In the
same way as for power, the most striking differences in
localization between the three MANTRA analyses were
observed for the most extreme model of heterogeneity
between populations, namely European and East Asian
opposing allelic effects (Figs. 5C and 6C). Furthermore, the
unconstrained MANTRA analysis demonstrated greater
precision for fine-mapping than the random-effect analy-
sis (K 5 N), unless the pattern of heterogeneity in allelic
effects between populations is poorly represented by the
prior Bayesian partition model.

Impact of the sample size of an outlying
cluster. In order to assess the impact of sample size of
studies in an outlying cluster of the Bayesian partition
model, I have repeated simulations of an African-specific
effect (with l5 0.25 in all African populations). Figure 7
presents summary statistics for the three MANTRA
analyses (K 5 1, K 5 N, and K unconstrained) as a function
of the sample size of the four studies of African descent
(MKK, ASW, LWK, and YRI). The three panels demon-
strate that the advantage of the unconstrained MANTRA
analysis over fixed-effect (K 5 1) analysis and random-
effect (K 5 N) analysis is unaffected by sample size, both
in terms of power (Fig. 7A) and of precision of fine-
mapping (Fig. 7B and C).

Assessment of the impact of transethnic data on
power and localization. In order to assess the benefits
of transethnic GWAS for the detection and fine-mapping
of novel loci for complex traits, I have repeated simula-
tions of the transethnic fixed-effect model under
two scenarios: (i) 11 GWAS of 1,000 individuals, each
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ascertained from a different HMP3 population; and (ii) 11
GWAS of 1,000 individuals, each ascertained from the
same CEU population. Figure 8 presents summary
statistics for the MANTRA analysis (K unconstrained), as
a function of the allelic effect, in each of the two scenarios.
Figure 8A highlights no discernable difference in power

between the two scenarios, which would be expected
given that the causal variant has the same allelic effect in
all populations. Within any single replicate of data,
differences in the Bayes’ factor in favor of association
reflect variation in allele frequencies at the causal variant
across populations. The remaining panels of Figure 8
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demonstrate that the transethnic GWAS strategy has
improved precision for fine-mapping, despite the trans-
ethnic fixed-effect, with lower mean location error and
higher probability that the causal variant has the largest
Bayes’ factor in favor of association in the 200-kb analysis
region. These improvements in mapping resolution, with-
out a corresponding increase in power to detect associa-
tion, reflect differences in LD patterns with the causal
variants between ethnic groups, which cannot be lever-
aged from using GWAS ascertained from the same
population.

DISCUSSION

Meta-analysis of GWAS of primarily European-descent
populations has been an extremely efficient approach to

identifying novel loci contributing effects to complex traits
by increasing sample size without de novo genotyping.
The underlying assumption of traditional fixed-effects
meta-analysis is that the allelic effect of a given variant is
homogeneous across studies. For GWAS ascertained from
the same or closely related populations, such an assump-
tion is reasonable. The recent shared ancestry of these
populations increases the likelihood that they will have the
same underlying common causal variants, similar allele
frequency spectra and local LD profiles. Exposure
to potential nongenetic risk factors, such as diet,
smoking, and pollution, which may interact with geno-
types at causal variants, is also likely to be similar in
European populations, further reducing the prospect of
heterogeneity in allelic effects between them.

0

0.2

0.4

0.6

0.8

1

100              200               500             1000             2000             5000
African sample size

P
o

w
er

K = 1 K = N K unconstrained

100              200               500             1000             2000             5000
African sample size

K = 1 K = N K unconstrained

100              200               500             1000             2000             5000
African sample size

K = 1 K = N K unconstrained

0

10

20

30

40

50

60

L
o

ca
ti

o
n

 e
rr

o
r 

(k
b

)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y 
ra

n
k 

o
f 

ca
u

sa
l 

va
ri

an
t 

is
 1

A

B

C

Fig. 7. Summary of three MANTRA analyses (K 5 1, K 5 N, and
K unconstrained), as a function of the sample size of studies

from populations of African descent (MKK, ASW, LWK and

YRI). These simulations assume an African-specific effect of
k 5 0.25. The three panels correspond to: (A) power to detect

evidence in favor of association at the causal variant at a Bayes’

factor of 105; (B) mean location error (kb); and (C) probability

that the causal variant has the largest Bayes’ factor in favor of
association.

0

0.2

0.4

0.6

0.8

1

0                0.05               0.1               0.15              0.2               0.25
Allelic effect size

P
o

w
er

Trans-ethnic CEU only

0                0.05               0.1               0.15              0.2               0.25
Allelic effect size

Trans-ethnic CEU only

0                0.05               0.1               0.15              0.2               0.25
Allelic effect size

Trans-ethnic CEU only

0

10

20

30

40

50

60

L
o

ca
ti

o
n

 e
rr

o
r 

(k
b

)

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
ty

 r
an

k 
o

f 
ca

u
sa

l 
va

ri
an

t 
is

 1

C

B

A

Fig. 8. Summary of MANTRA analysis with K unconstrained, as

a function of the allelic effect size, for 11 GWAS from the same

CEU population compared with 11 GWAS from different

transethnic populations. These simulations incorporate no
heterogeneity in allelic effects between populations, i.e. a

transethnic fixed-effect model. The three panels correspond to:

(A) power to detect evidence in favor of association at the causal
variant at a Bayes’ factor of 105; (B) mean location error (kb); and

(C) probability that the causal variant has the largest Bayes’

factor in favor of association.

818 Morris

Genet. Epidemiol.



With the increasing availability of GWAS from more
diverse populations, transethnic meta-analysis might be
expected to further increase power to detect additional
complex trait loci with ever more modest effects. How-
ever, with more diverse populations, less recent shared
ancestry introduces greater opportunity for genetic hetero-
geneity, both in terms of the underlying causal variants
and their allelic effect on the trait. Standard statistical
methodology exists for assessing the evidence of hetero-
geneity in fixed-effects meta-analysis, such as I2 and
Cochran’s Q-Statistic [Higgins and Thompson, 2002;
Huedo-Medina et al., 2006; Ioannidis et al., 2007], and
can thus be used to highlight populations with outlying
allelic effects. In the presence of such allelic heterogeneity,
these outlying populations could be removed, although
potentially resulting in a reduction in power. On the other
hand, random-effects meta-analysis, which assumes that
each population has a different underlying allelic effect,
can be used to overcome the problem of heterogeneity.
However, this is also unsatisfactory since we expect
populations from the same ethnic group to be more
homogeneous than those that are more distantly related.
A plausible alternative approach to transethnic meta-
analysis would be to make use of a hierarchical model in
which the allelic effect estimates for each population are
considered as a function of indicator variables that
represent ethnic group. This approach has the advantage
over random-effects meta-analysis of allowing for simi-
larity in allelic effects across populations from the same
ethnic group. However, the assignment of populations to
ethnic groups is prespecified by this prior classification,
and cannot borrow from the observed allelic effect
estimates to inform clustering.

In this article, I have addressed the challenges of allelic
effect heterogeneity posed by transethnic meta-analysis of
GWAS by considering the relatedness between the
populations from which they have been ascertained. The
Bayesian partition model provides a natural framework to
take advantage of the expectation that more closely related
populations are more likely to have similar allelic effects
than those from diverse ethnic groups. The key advantage
of this approach over a purely random effects analysis is
that we can model the allelic heterogeneity between ethnic
groups. Specifically, populations are clustered according to
their ‘‘prior’’ similarity in terms of relatedness, typically
using genomewide data to approximate their shared
ancestry, and their semblance in terms of allelic effects at
a specific variant under investigation. Populations within
the same cluster are assumed to have the same underlying
allelic effects at this variant. However, different clusters
need not have the same underlying allelic effect.
MANTRA can thus be thought of as a hybrid meta-
analysis, incorporating both fixed (i.e. within cluster) and
random (i.e. between clusters) effects.

The application of MANTRA to transethnic association
studies of T2D at 19 variants in established susceptibility
loci highlighted little evidence of heterogeneity in
allelic effects between five diverse populations. However,
there was overwhelming evidence of heterogeneity at
rs7754840 in the CDKAL1 locus. Allelic effects on T2D
were in the same direction in all populations, but were
considerably stronger in the closely related Japanese
Americans and Native Hawaiians than in European
Americans, Latinos, or African Americans. Such hetero-
geneity could arise as a result of multiple causal variants in

CDKAL1, one of which is specific to the Japanese
American and Native Hawaiian populations. However,
this pattern of allelic effects could also arise with a
single causal variant as a result of differences in the
local LD structure between populations. In particular,
rs7754840 may better capture the causal variant in the
Japanese American and Native Hawaiian populations,
which is not implausible given their recent shared
ancestry. Interestingly, the lack of heterogeneity in
allelic effects at the majority of established T2D loci
suggests that the underlying causal variants are the same
across ethnic groups, and hence pre-date any ‘‘out of
Africa’’ population migration, which cannot be well
modeled by ‘‘synthetic association’’ of multiple rare alleles
[Dickson et al., 2010].

The results of the simulation study highlight that the
hybrid meta-analysis implemented in MANTRA outper-
forms fixed-effects, both in terms of power to detect
association, and localization of causal variants, over a
range of models of heterogeneity in allelic effects between
diverse populations. The greatest gains in power are
achieved under a model of heterogeneity in which
the causal variant has opposing effects in different
populations, although it is not clear how realistic
this scenario is likely to be. Under a model of homo-
geneous allelic effects across ethnic groups, there is
no discernible loss in power or fine-mapping accuracy
for the hybrid MANTRA analysis over fixed-effects
meta-analysis. Furthermore, there are noticeable improve-
ments in the localization of causal variants with MANTRA
when applied to meta-analysis of transethnic, rather
than intraethnic GWAS, even under a model of
homogeneous allelic effects across populations. These
improvements in the resolution of fine-mapping
reflect transethnic differences in local LD patterns
which cannot be leveraged from GWAS ascertained
from the same population. The results of the simulation
study also highlight advantages of the hybrid MANTRA
analysis over random-effects meta-analysis, both in terms
of power and localization of causal variants, when
heterogeneity in allelic effects is well represented by
the prior Bayesian partition model. Output from the
MANTRA MCMC algorithm can also be used to represent
the pattern of heterogeneity in allelic effects between
populations, which cannot be achieved with random-
effects meta-analysis.

The use of diverse populations from multiple ethnic
groups will play an essential role in future GWAS.
European-descent populations contain only a subset of
human genetic variation, and thus cannot be used to
identify causal variants across ethnic groups. This is
particularly relevant for lower frequency causal variants,
which are more likely to be population specific, but which
have been hypothesized to contribute substantially to the
missing heritability of complex traits [Frazer et al., 2009].
The reduced bias of GWAS genotyping products toward
European genetic variation, and the increasing availability
of large-scale resequencing reference panels from a wide
range of ethnic groups, greatly improves the prospects of
imputation across diverse populations. Efficient and
powerful statistical methodology for the analysis of
transethnic GWAS, such as the MANTRA software
developed here, thus shows great promise for future
improvements in our understanding of the genetic
architecture of complex human traits.
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Mosley Jr TH, Musk AW, Nieminen MS, O’Donnell CJ, Ohlsson C,

Oostra B, Palmer LJ, Raitakari O, Ridker PM, Rioux JD, Rissanen A,

Rivolta C, Schunkert H, Shuldiner AR, Siscovick DS, Stumvoll M,

Tönjes A, Tuomilehto J, van Ommen GJ, Viikari J, Heath AC,

Martin NG, Montgomery GW, Province MA, Kayser M, Arnold AM,

Atwood LD, Boerwinkle E, Chanock SJ, Deloukas P, Gieger C,

Grönberg H, Hall P, Hattersley AT, Hengstenberg C, Hoffman W,

Lathrop GM, Salomaa V, Schreiber S, Uda M, Waterworth D,

Wright AF, Assimes TL, Barroso I, Hofman A, Mohlke KL,

Boomsma DI, Caulfield MJ, Cupples LA, Erdmann J, Fox CS,

Gudnason V, Gyllensten U, Harris TB, Hayes RB, Jarvelin MR,

Mooser V, Munroe PB, Ouwehand WH, Penninx BW, Pramstaller PP,

Quertermous T, Rudan I, Samani NJ, Spector TD, Völzke H,

Watkins H, Wilson JF, Groop LC, Haritunians T, Hu FB, Kaplan RC,

Metspalu A, North KE, Schlessinger D, Wareham NJ, Hunter DJ,

O’Connell JR, Strachan DP, Wichmann HE, Borecki IB, van Duijn CM,

Schadt EE, Thorsteinsdottir U, Peltonen L, Uitterlinden AG,

Visscher PM, Chatterjee N, Loos RJ, Boehnke M, McCarthy MI,

Ingelsson E, Lindgren CM, Abecasis GR, Stefansson K,

Frayling TM, Hirschhorn JN. 2010. Hundreds of variants clustered

in genomic loci and biological pathways affect human height. Nature

467:832–838.

Magi R, Morris AP. 2010. GWAMA: software for genome-wide

association meta-analysis. BMC Bioinformatics 11:288.
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA,

Hunter DJ, McCarthy MI, Ramos EM, Cardon LR,

Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L,

Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS,

Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL,

Mackay TF, McCarroll SA, Visscher PM. 2009. Finding the missing

heritability of complex diseases. Nature 461:747–753.
Marchini J, Howie B. 2010. Genotype imputation for genome-wide

association studies. Nat Genet 42:436–440.

McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J,

Ioannidis JP, Hirschhorn JN. 2008. Genome-wide association

studies for complex traits: concensus, uncertainty and challenges.

Nat Rev Genet 9:356–369.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E.

1953. Equation of state calculations by fast computing machines.

J Chem Phys 21:1087–1092.

Newton MA, Raftery AE. 1994. Approximate Bayesian inference by

the weighted likelihood bootstrap. J Roy Stat Soc B56:3–48.
Petrovski S, Fellay J, Shianna KV, Carpenetti N, Kumwenda J,

Kamanga G, Kamwendo DD, Letvin NL, McMichael AJ,

Haynes BF, Cohen MS, Goldstein DB, Center for HIV/AIDS

Vaccine Immunology. 2010. Common human genetic variants and

HIV-1 susceptibility: a genome-wide survey in a homogeneous

African population. AIDS (in press).

Rosenberg NA, Huang L, Jewett EM, Szpiech ZA, Jankovic I,

Boehnke M. 2010. Genome-wide association studies in diverse

populations. Nat Rev Genet 11:356–366.

Stephens M, Balding DJ. 2009. Bayesian statistical methods for genetic

association studies. Nat Rev Genet 10:681–690.

Takata R, Akamatsu S, Kubo M, Takahashi A, Hosono N,

Kawaguchi T, Tsunoda T, Inazawa J, Kamatani N, Ogawa O,

Fujioka T, Nakamura Y, Nakagawa H. 2010. Genome-wide

association study identifies five new susceptibility loci for prostate

cancer in the Japanese population. Nat Genet 42:751–754.

The 1000 Genomes Project Consortium. 2010. A map of human

genome variation from population-scale sequencing. Nature

467:1061–1073.

The International HapMap Consortium. 2007. A second generation

human haplotype map of over 3.1 million SNPs. Nature

449:851–861.

821Transethnic Meta-Analysis of GWAS

Genet. Epidemiol.



The International HapMap Consortium. 2010. Integrating common

and rare genetic variation in diverse human populations. Nature

467:52–58.

The Wellcome Trust Case Control Consortium. 2007. Genome-wide

association study of 14,000 cases of seven common diseases and

3,000 shared controls. Nature 447:661–678.

Thye T, Vannberg FO, Wong SH, Owusu-Dabo E, Osei I, Gyapong J,

Sirugo G, Sisay-Joof F, Enimil A, Chinbuah MA, Floyd S,

Warndorff DK, Sichali L, Malema S, Crampin AC, Ngwira B,

Teo YY, Small K, Rockett K, Kwiatkowski D, Fine PE, Hill PC,

Newport M, Lienhardt C, Adegbola RA, Corrah T, Ziegler A,

African TB Genetics Consortium, Wellcome Trust Case Control

Consortium, Morris AP, Meyer CG, Horstmann RD, Hill AV.

2010. Genome-wide association analysis identifies a susceptibility
locus for tuberculosis on chromosome 18q11.2. Nat Genet

42:739–741.

Uno S, Zembutsu H, Hirasawa A, Takahashi A, Kubo M, Akahane T,

Aoki D, Kamatani N, Hirata K, Nakamura Y. 2010. A genome-wide

association study identifies genetic variants in the CDKN2BAS
locus associated with endometriosis in Japanese. Nat Genet

42:707–710.

Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP,

Zeggini E, Huth C, Aulchenko YS, Thorleifsson G, McCulloch LJ,

Ferreira T, Grallert H, Amin N, Wu G, Willer CJ, Raychaudhuri S,

McCarroll SA, Langenberg C, Hofmann OM, Dupuis J, Qi L,

Segrè AV, van Hoek M, Navarro P, Ardlie K, Balkau B,

Benediktsson R, Bennett AJ, Blagieva R, Boerwinkle E,

Bonnycastle LL, Bengtsson Boström K, Bravenboer B,

Bumpstead S, Burtt NP, Charpentier G, Chines PS, Cornelis M,

Couper DJ, Crawford G, Doney AS, Elliott KS, Elliott AL,

Erdos MR, Fox CS, Franklin CS, Ganser M, Gieger C, Grarup N,

Green T, Griffin S, Groves CJ, Guiducci C, Hadjadj S, Hassanali N,
Herder C, Isomaa B, Jackson AU, Johnson PR, Jørgensen T,

Kao WH, Klopp N, Kong A, Kraft P, Kuusisto J, Lauritzen T, Li M,

Lieverse A, Lindgren CM, Lyssenko V, Marre M, Meitinger T,

Midthjell K, Morken MA, Narisu N, Nilsson P, Owen KR, Payne F,

Perry JR, Petersen AK, Platou C, Proenc-a C, Prokopenko I,

Rathmann W, Rayner NW, Robertson NR, Rocheleau G,

Roden M, Sampson MJ, Saxena R, Shields BM, Shrader P,

Sigurdsson G, Sparsø T, Strassburger K, Stringham HM, Sun Q,

Swift AJ, Thorand B, Tichet J, Tuomi T, van Dam RM,

van Haeften TW, van Herpt T, van Vliet-Ostaptchouk JV,

Walters GB, Weedon MN, Wijmenga C, Witteman J,

Bergman RN, Cauchi S, Collins FS, Gloyn AL, Gyllensten U,

Hansen T, Hide WA, Hitman GA, Hofman A, Hunter DJ,

Hveem K, Laakso M, Mohlke KL, Morris AD, Palmer CN,

Pramstaller PP, Rudan I, Sijbrands E, Stein LD, Tuomilehto J,

Uitterlinden A, Walker M, Wareham NJ, Watanabe RM,

Abecasis GR, Boehm BO, Campbell H, Daly MJ, Hattersley AT,

Hu FB, Meigs JB, Pankow JS, Pedersen O, Wichmann HE,
Barroso I, Florez JC, Frayling TM, Groop L, Sladek R,

Thorsteinsdottir U, Wilson JF, Illig T, Froguel P, van Duijn CM,

Stefansson K, Altshuler D, Boehnke M, McCarthy MI, MAGIC

investigators, GIANT Consortium. 2010. Twelve type 2 diabetes

susceptibility loci identified through large-scale association analy-

sis. Nat Genet 42:579–589.

Wakefield J. 2007. A Bayesian measure of the probability of false

discovery in genetic epidemiology studies. Am J Hum Genet

81:208–227.
Wang WYS, Barratt BJ, Clayton DG, Todd JA. 2005. Genome-wide

association studies: theoretical and practical concerns. Nat Rev

Genet 6:109–118.

Wang LD, Zhou FY, Li XM, Sun LD, Song X, Jin Y, Li JM, Kong GQ,

Qi H, Cui J, Zhang LQ, Yang JZ, Li JL, Li XC, Ren JL, Liu ZC,

Gao WJ, Yuan L, Wei W, Zhang YR, Wang WP, Sheyhidin I, Li F,

Chen BP, Ren SW, Liu B, Li D, Ku JW, Fan ZM, Zhou SL, Guo ZG,

Zhao XK, Liu N, Ai YH, Shen FF, Cui WY, Song S, Guo T, Huang J,

Yuan C, Huang J, Wu Y, Yue WB, Feng CW, Li HL, Wang Y, Tian JY,

Lu Y, Yuan Y, Zhu WL, Liu M, Fu WJ, Yang X, Wang HJ, Han SL,

Chen J, Han M, Wang HY, Zhang P, Li XM, Dong JC, Xing GL,

Wang R, Guo M, Chang ZW, Liu HL, Guo L, Yuan ZQ, Liu H, Lu

Q, Yang LQ, Zhu FG, Yang XF, Feng XS, Wang Z, Li Y, Gao SG,

Qige Q, Bai LT, Yang WJ, Lei GY, Shen ZY, Chen LQ, Li EM, Xu LY,

Wu ZY, Cao WK, Wang JP, Bao ZQ, Chen JL, Ding GC, Zhuang X,

Zhou YF, Zheng HF, Zhang Z, Zuo XB, Dong ZM, Fan DM, He X,

Wang J, Zhou Q, Zhang QX, Jiao XY, Lian SY, Ji AF, Lu XM,

Wang JS, Chang FB, Lu CD, Chen ZG, Miao JJ, Fan ZL, Lin RB,

Liu TJ, Wei JC, Kong QP, Lan Y, Fan YJ, Gao FS, Wang TY, Xie D,

Chen SQ, Yang WC, Hong JY, Wang L, Qiu SL, Cai ZM, Zhang XJ.

2010. Genome-wide association study of esophagael squamous cell

carcinoma in Chinese identifies susceptibility loci at PLCE1 and

C20orf54. Nat Genet 42:759–763.

Waters KM, Stram DO, Hassanein MT, Le Marchand L, Wilkens LR,

Maskarinec G, Monroe KR, Kolonel LN, Altshuler D, Henderson BE,

Haiman CA. 2010. Consistent association of type 2 diabetes risk

variants found in Europeans in diverse racial and ethnic groups. PLoS

Genet 6:e1001078.

Weir BS, Cockerham CC. 1984. Estimating F-statistics for the analysis

of population structure. Evolution 28:1358–1370.

Weir BS, Hill WG. 2002. Estimating F-statistics. Annu Rev Genet

36:721–750.

Wright S. 1951. The genetical structure of populations. Ann Eugen

15:323–354.

Yamauchi T, Hara K, Maeda S, Yasuda K, Takahashi A, Horikoshi M,

Nakamura M, Fujita H, Grarup N, Cauchi S, Ng DP, Ma RC,

Tsunoda T, Kubo M, Watada H, Maegawa H, Okada-Iwabu M,

Iwabu M, Shojima N, Shin HD, Andersen G, Witte DR,

Jørgensen T, Lauritzen T, Sandbćk A, Hansen T, Ohshige T,
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