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Hypoxia as a barrier to immunotherapy 
in pancreatic adenocarcinoma
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Abstract 

Pancreatic ductal adenocarcinoma (PDA) is a lethal disease with limited response to cytotoxic chemoradiotherapy, as 
well as newer immunotherapies. The PDA tumor microenvironment contains infiltrating immune cells including cyto-
toxic T cells; however, there is an overall immunosuppressive milieu. Hypoxia is a known element of the solid tumor 
microenvironment and may promote tumor survival. Through various mechanisms including, but not limited to, 
those mediated by HIF-1α, hypoxia also leads to increased tumor proliferation and metabolic changes. Furthermore, 
epithelial to mesenchymal transition is promoted through several pathways, including NOTCH and c-MET, regulated 
by hypoxia. Hypoxia-promoted changes also contribute to the immunosuppressive phenotype seen in many differ-
ent cell types within the microenvironment and thereby may inhibit an effective immune system response to PDA. 
Pancreatic stellate cells (PSCs) and myofibroblasts appear to contribute to the recruitment of myeloid derived sup-
pressor cells (MDSCs) and B cells in PDA via cytokines increased due to hypoxia. PSCs also increase collagen secretion 
in response to HIF-1α, which promotes a fibrotic stroma that alters T cell homing and migration. In hypoxic environ-
ments, B cells contribute to cytotoxic T cell exhaustion and produce chemokines to attract more immunosuppressive 
regulatory T cells. MDSCs inhibit T cell metabolism by hoarding key amino acids, modulate T cell homing by cleaving 
L-selectin, and prevent T cell activation by increasing PD-L1 expression. Immunosuppressive M2 phenotype mac-
rophages promote T cell anergy via increased nitric oxide (NO) and decreased arginine in hypoxia. Increased numbers 
of regulatory T cells are seen in hypoxia which prevent effector T cell activation through cytokine production and 
increased CTLA-4. Effective immunotherapy for pancreatic adenocarcinoma and other solid tumors will need to help 
counteract the immunosuppressive nature of hypoxia-induced changes in the tumor microenvironment. Promising 
studies will look at combination therapies involving checkpoint inhibitors, chemokine inhibitors, and possible target-
ing of hypoxia. While no model is perfect, assuring that models incorporate the effects of hypoxia on cancer cells, 
stromal cells, and effector immune cells will be crucial in developing successful therapies.
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Background
Pancreatic ductal adenocarcinoma (PDA) is projected to 
be the second highest cause of death from cancer in the 
United States within the next 10 years [1, 2]. The lethality 
of the disease is in part due to lack of effective screening 
resulting in later stage diagnoses, as well as poor response 
to standard therapies including surgery, systemic chemo-
therapy, and external beam radiation [3–6]. Immunother-
apy has heralded a new era in oncologic treatment that 
may ultimately improve outcomes, while having fewer 

toxic side effects than systemic chemotherapy. The over-
arching goal of immunotherapy is to enhance the body’s 
immune response to tumor cells. The strategy of block-
ing immune checkpoints to potentiate immune-mediated 
tumor cell killing has been successful in several tumors 
such as melanoma and certain phenotypes of lung cancer, 
but has not been successful in many other solid tumors 
such as PDA [7–9].

The reason for the effectiveness of immunotherapy 
in some tumors more than others has been a subject of 
intense focus. Initially, this was thought to be due to a 
paucity of immune cells infiltrating PDA tumors, how-
ever many studies have since shown there is a variable 
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but substantial population of tumor-infiltrating lympho-
cytes (TIL) in PDA [10–12]. Another theory was that 
PDA was not as immunogenic as other tumors, but sev-
eral neoepitopes have been identified as recognizable by 
T cells [13]. PDA in particular has a robust tumor micro-
environment composed of myofibroblasts and immune 
cells that often outnumber carcinoma cells [12]. The 
interactions among these cells are undoubtedly a major 
driving factor of immunotherapy resistance in PDA, but 
hypoxia has an underlying influence that is not yet fully 
understood.

The tumor microenvironments of many solid tumors 
are known to be hypoxic [14–16]. In PDA, there is a 
decrease in tissue partial oxygen pressure in tumors, with 
median pO2 0–5.3 mmHg (0-0.7%) compared to nearby 
normal pancreas at pO2 24.3–92.7  mmHg (3.2–12.3%) 
[17]. For reference, normal pO2 is 160 mmHg (21.1%) in 
air and 100 mmHg (13.2%) in arterial blood [18]. Further 
studies have shown that this hypoxia is heterogeneous 
throughout the tumor and not static [17, 19, 20]. Many 
reviews have summarized in general the pro-survival 
and pro-metastatic changes that a tumor undergoes in a 
hypoxic environment [21–25]. Additionally, hypoxia also 
induces changes in the other cells in the tumor microen-
vironment that encourage immunosuppression, which 
may play a role in diminishing the efficacy of immuno-
therapy in PDA.

Signaling pathways in response to hypoxia
A large number of downstream effects of hypoxia are 
mediated by a transcription factor called hypoxia induc-
ible factor (HIF) [23]. Three variants of the alpha subunit 
of HIF have been discovered, with HIF-1α being the most 
commonly studied. Based on current knowledge, HIF-3α 
primarily acts to promote or inhibit other HIF complexes 
[21]. The HIF variants are constitutively expressed pro-
teins. Primary regulation is achieved by hydroxylation of 
a proline in normoxic conditions by a prolyl hydroxylase 
unique to each HIFα variant [26]. The hydroxyl group 
tags the molecule for degradation via von Hippel-Lindau 
protein (vHL). In hypoxic conditions, the iron atom in 
prolyl hydroxylase stays reduced and the enzyme is una-
ble to add the hydroxyl group to the HIFα unit [26]. This 
allows HIF-1α to bind to the HIF-1β molecule and trans-
locate to the nucleus where it acts as a transcription fac-
tor on many promoter sequences.

Post-translational modifications, such as phosphoryla-
tion and acetylation, of the different variants influence 
binding abilities and therefore transcriptional effects [21]. 
Additionally, owing to their different prolyl hydroxylases, 
HIF-1α and HIF-2α accumulate at different oxygen lev-
els. HIF-2α tends to accumulate at higher oxygen levels 
(2–5%), whereas HIF-1α does not accumulate until lower 

oxygen levels (0–2%) [26]. HIF-1α mRNA also degrades 
very quickly even in hypoxic conditions making its effects 
shorter lived [27]. While HIF-2α has been studied less 
than HIF-1α, there have been data to show that HIF-2α 
uniquely promotes chronic pancreatitis in mouse models, 
as well as mucinous cyst neoplasms in the presence of an 
oncogenic KRAS mutation [28].

Hypoxia promotes tumorigenesis in carcinoma 
cells
Tumor cells in PDA have many advantages under hypoxic 
conditions. KRAS mutations, which are seen in around 
95% of PDA tumors, work to alter the cell metabolism 
to function in hypoxic environments [29]. Glycoly-
sis becomes the primary means of obtaining energy via 
downstream effects of HIF-1α and persists even if nor-
moxic conditions are restored—a phenomenon known 
as the Warburg hypothesis [29, 30]. To increase the glu-
cose supply, HIF-1α mediates increased transcription of 
GLUT1 and GLUT3 transporters, as well as increased 
production of pyruvate and lactate dehydrogenase [31, 
32]. The lactate produced from glycolysis is further 
used as energy for surrounding cells and impairs T cell 
cytokine production [33]. Other metabolic enzymes that 
are upregulated by PDA in hypoxia include carbonic 
anhydrase and indoleamine 2,3 dioxygenase (IDO), which 
also impair immune cell function through the creation of 
acidic and tryptophan-depleted environments, respec-
tively [32, 34–36]. An additional source of energy for 
PDA cells is autophagy, which in tumors with loss of p53 
has been correlated with increased tumor progression 
[37–39]. Hypoxia has been shown to increase autophagy 
via HIF-1α, which promotes survival of PDA tumor cells, 
particularly those that are undifferentiated [40–42].

Mechanisms that promote terminal cell differentiation 
are inhibited via interaction with HIF-1α and NOTCH 
signaling in PDA and other tumor types [43–45]. This 
is thought to promote cancer cell “stemness” in hypoxic 
niches in the PDA microenvironment [46, 47]. The qui-
escent cell is also less affected by systemic chemother-
apy and radiotherapy that acts on rapidly dividing cells, 
therefore promoting tumor recurrence [48–50]. Addi-
tional mechanisms of cell cycle regulation in tumors 
involve the differential expression of HIF-1α and HIF-2α. 
As mentioned earlier, extreme hypoxia promotes HIF-1α 
stabilization and actually decreases cellular proliferation 
by halting the cell cycle via c-MYC in some tumors [51]. 
Molecular inhibitors of c-MYC halt cell cycle progress in 
PDA and may also block hypoxic signaling [52–54]. Evi-
dence supports that, conversely, HIF-2α promotes prolif-
eration with cells entering the cell cycle via stabilization 
of MYC and increased DNA repair enzymes [25, 27].
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Another benefit of a hypoxic environment for PDA is 
an increase in cell migration. There are numerous path-
ways activated by HIF-1α that contribute to the epithelial 
to mesenchymal transition (EMT) [55–57]. EMT involves 
loss of normal cell-to-cell adhesion molecules seen in ter-
minally differentiated epithelial cells and promotes mole-
cules used for cell movement and angioinvasion typically 
seen in less differentiated cells. Well documented mol-
ecules that are increased in hypoxic PDA include matrix 
metalloproteinases (MMPs) via up regulated fascin and 
QSOX1 that subsequently decrease the immediately sur-
rounding extracellular matrix (ECM) to allow tumor cell 
movement [58, 59]. Cadherins are cell adhesion mol-
ecules involved in maintaining epithelial tissue architec-
ture, with increased N-cadherin and loss of E-cadherin 
expression associated with greater invasive potential 
in cancer. Through HIF-1α-mediated NF-κB pathways, 
hypoxia increases N-cadherin to allow transendothelial 
migration into blood vessels [60]. The transcription fac-
tors snail and slug, also HIF-1α promoted, are expressed 
in many pancreatic cancer cell lines and act to decrease 
E-cadherin seen in normal epithelial cell-to-cell adhe-
sion [61]. Twist is another transcription factor that pre-
vents E-cadherin formation as well as increased vascular 
endothelial growth factor (VEGF)-A, but is primarily 
up regulated in PDA after HIF-2α stabilization [61–63]. 
Hedgehog signaling in PDA, which is potentiated by 
hypoxia, also down regulates E-cadherin and up regulates 
vimentin, which promotes invadopodia formation and 
angioinvasion [64].

Tumor cell survival in hypoxia also requires changes 
to avoid internal mechanisms of apoptosis and increase 
resistance to chemotherapy. In PDA cell lines, HIF-2α 
up regulates survivin production, which provides resist-
ance to apoptosis by tumor necrosis factor (TNF) related 
apoptosis inducing ligand (TRAIL) [65]. Hypoglycemia-
mediated apoptosis is also prevented in PDA by hypoxia-
induced up regulation of asparagine synthetase and 
subsequent prevention of c-jun-NH2 terminal kinase/
phospho-stress-activated protein kinase activation, 
which is also a method for cisplatin resistance [66]. Many 
pancreatic cell lines down-regulate expression of BNIP3, 
which is a gene involved in hypoxia-mediated cell-
induced apoptosis [67, 68]. Additionally, loss of BNIP3 
expression in hypoxia has been associated with resist-
ance to gemcitabine and 5-fluorouracil [69]. Gemcitabine 
resistance is also increased in hypoxia via the PI3K/Akt/
NF-κB pathways that increases anti-apoptotic proteins 
such as Bcl-XL, FLIP, and cIAP [4, 46, 70]. Hypoxia also 
promotes resistance to radiotherapy through decreased 
production of DNA free radicals and increased DNA 
repair enzymes as described above [46, 71].

Hypoxia induces several changes on the cell surface of 
tumors to promote cell survival. While not yet shown in 
PDA, hypoxia in prostate cancer encourages tumor cells 
to shed their major histocompatibility complex (MHC) 
class I molecules via decreased nitric oxide (NO) and 
increased matrix metalloproteinases (MMPs) [72]. There 
are increased soluble levels of MHC class I chains A and 
B, suggesting that PDA may use this mechanism to avoid 
recognition by adaptive and innate immune mechanisms 
[73]. Additionally, human leukocyte antigen G (HLA-G) 
is a component of MHC class I expressed in a minority of 
PDA tumors that induces immunosuppression by inter-
acting with receptors on antigen presenting cells [74]. 
The up regulation of HLA-G transcription is also medi-
ated by HIF-1α, however some other types of tumors 
actually have decreased HLA-G expression in hypoxia 
[35]. Hypoxia also promotes increased programmed 
death ligand-1 (PD-L1) cell surface expression in a vari-
ety of solid tumors via the PTEN/PI3K pathway through 
HIF-1α [72]. Increased PD-L1 expression prevents effec-
tor T cells from initiating apoptosis of cancer cells and 
can actually lead to anergy or apoptosis of the T cells 
[72]. A minority of human PDA samples with baseline 
PD-L1 upregulation were also seen to have downregula-
tion of MHC class I [75]. Hypoxia also stimulated CD47 
expression in PDA, which is a co-stimulatory molecule 
that blocks pro-phagocytic signals in myeloid derived 
suppressor cells (MDSCs) and macrophages [76, 77]. 
Tumor cells also increase CD39 and CD73 in response to 
hypoxia, which promotes extracellular adenosine accu-
mulation and can lead to T cell apoptosis [78, 79].

The effects of hypoxia on the tumor 
microenvironment
As discussed above, carcinoma cells themselves respond 
to hypoxia in self-promoting ways and encourage a con-
tinued hypoxic and acidic environment within the tumor 
stroma. The resulting landscape causes non-carcinoma 
tumor cells to shift towards an overall tumor-supportive 
and immunosuppressive milieu. The resulting cell phe-
notypes in the microenvironment have a direct influence 
on effector T cell function and resulting ineffectiveness of 
immunotherapies.

Pancreatic stellate cells and fibroblasts
Major contributors of the tumor microenvironment 
are activated pancreatic stellate cells (PSCs) and myofi-
broblasts. PSCs are identified as having large vitamin 
A droplets in their inactivated state, which they lose 
when they become differentiated in response to pan-
creatic injury or inflammation [80]. Cytokines shown 
to activate PSCs include TGF-β, TNF-α, IL-1, and IL-6; 
however, some suggest they are capable of autocrine 
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signaling [81, 82]. The role and origin of PSCs are still not 
fully elucidated; however, they produce ECM molecules 
such as alpha smooth muscle actin (aSMA), type I col-
lagen, fibronectin, and periostin that lead to pancreatic 
fibrosis [81, 83]. There are differences between PSCs and 
fibroblasts such as cell shape, amount of different ECM 
molecules produced, and scavenger receptors, but often 
they are grouped together in discussions [82]. In pancre-
atic intraductal neoplasms (PanIN), which are precursor 
lesions to PDA, fibroblasts show a CD34+ aSMA− phe-
notype, whereas in PDA, these are reversed to CD34− 
aSMA+, demonstrating an increase in aSMA production 
as the lesion progresses from non-invasive to invasive 
[84]. Activated fibroblasts in PDA can often be identified 
by the serine protease fibroblast activating protein (FAP) 
expression, although this is also seen on some tumor 
cells, and has been associated with increased desmopla-
sia and worse prognosis [85, 86].

PSCs have a significant role as potentiators of immu-
nosuppression in PDA. Increased type I collagen density 
produced in fibrosis interferes with chemokines used in T 
cell homing causing them to become “trapped” away from 
tumor cells. Fibroblasts also produce increased CXCL12 
which is another method of inhibiting T cell homing [84, 
87]. Fibronectin deposition in the ECM encourages more 
rapid migration of tumor cells [86]. Periostin increases 
fibroblast growth factor (FGF) 2 which promotes mac-
rophage differentiation into the M2 phenotype as well as 
encourages PDA proliferation [88]. Cytokines produced 
by PSCs also exert significant influence on the tumor-
infiltrating immune cells. The most impactful of this is 
secretion of IL-6 and M-CSF which recruits MDSCs [89, 
90]. They also secrete IL-1 and TGF-β which work to 
continually activate PSCs to continue forming a fibrotic 
environment in an autocrine fashion [80].

In response to hypoxia, tumor cells produce the sonic 
hedgehog ligand which acts in a paracrine manner on 
myofibroblasts by binding to the Patched-1 receptor. The 
resulting downstream effects of this interaction include 
increased desmoplasia with production of aSMA, type 
I collagen, fibronectin, and periostin [91, 92]. Like in 
tumor cells, hypoxia up regulates carbonic anhydrase and 
GLUT1 and GLUT3 transporters in PSCs to further con-
tribute to the immunosuppressive microenvironment. 
Additionally, hypoxia promotes connective tissue growth 
factor production by PSCs, which helps inhibit apoptosis 
in tumor cells [93]. VEGF production from PSCs is also 
increased in hypoxic conditions, which works in a parac-
rine fashion to encourage PSC migration [91, 94, 95].

Plasma or B cells
Responsible for the humoral immune response, B cells 
were once thought to reside primarily in lymphoid tis-
sue, but studies have recently shown that they also infil-
trate the tumor microenvironment [96]. CXCL13, a 
primary chemokine for B cell migration, is expressed by 
fibroblasts in the PDA stroma [97]. While not as exten-
sively studied as other immune cell populations, there 
have been conflicting data about the role of B cells in 
the anti-tumor response. It has been elucidated that B 
cells, much like the rest of tumor-infiltrating immune 
cells, exist on a spectrum of activation that can encour-
age or inhibit T cell responses [96, 98]. One study 
reported that IL-35-producing B cells stimulate pancre-
atic neoplasia development starting from PanIN in both 
human and mouse models with KRAS mutations [97]. 
Another study looking at B cell distribution in human 
PDA demonstrated that B cells retained in tertiary lym-
phoid tissue gave a survival benefit, which was not seen 
when B cells were infiltrating into the tumor stroma 
[99]. Additionally, there are increased levels of B cell 
activating factor (BAFF) expressed by B cells infiltrat-
ing PDA with a correlation with increased EMT-related 
gene expression in tumor cells [100]. In other solid 
tumors, B cells have been found to increase tumor inva-
siveness through secretion of IL-8 [101].

B cells can produce a variety of cytokines and 
chemokines that have been implicated in immuno-
suppression. Regulatory B cells (Bregs) secrete IL-10 
and TGF-β that induce Treg differentiation via Stat3 
as well as M2 macrophage development in differ-
ent murine cancer models [96, 98, 102]. In other solid 
tumors, B cells have been implicated in programming 
myeloid derived suppressor cells (MDSCs) to increase 
their immunosuppressive activity [98]. Bregs have also 
been shown to express PD-L1 on their cell surfaces, 
which can directly inhibit T cells [98]. In PDA models, 
B cell deficiency has shown to decrease the desmoplas-
tic reaction of tumors [103]. B cells grown in a PDA 
environment were also shown to encourage Th2 differ-
entiation of CD4 + T cells in a manner dependent on 
Bruton’s tyrosine kinase [103].

While not yet shown in PDA, it has been shown in 
other tumors that HIF-1α induces CXCR4 and HIF-2α 
induces CXCL12 production by B cells [104, 105]. This 
recruits MDSCs and regulatory T cells (Tregs) to the 
tumor environment. Interestingly, HIF-1α knockout in 
the pancreas of mouse PDA showed a large increase 
in the number of B cells in the tumor microenviron-
ment [106]. The mechanism for this was thought to be 
increased levels of B cell attractant chemokines such 
as CXCL13 in the HIF-1α knockout mice PDA mod-
els, suggesting that hypoxia helps decrease B cell tumor 
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infiltration [106]. Depletion of B cells via anti-CD20 
antibody in the HIF-1α knockout PDA model allowed T 
cell infiltration into the tumor, but did not change Treg 
percentage [106].

Myeloid derived suppressor cells
MDSCs are a progenitor cell type derived from the bone 
marrow that has recently received increasing attention. 
These cells can give rise to macrophages, dendritic cells, 
and granulocytes, among others, and can have a major 
influence in the immunophenotype of the tumor micro-
environment despite their usual low numbers [107]. 
MDSCs normally circulate in the bloodstream and are 
drawn to areas of inflammation and ischemia through 
chemokine molecules such as CXCL12 produced by 
fibroblasts, as well as growth factors such as granulo-
cyte–macrophage colony stimulating factor (GM-CSF) 
from tumor cells in PDA [108–110]. Both peripheral 
blood, bone marrow, and PDA tumors in humans showed 
MDSC accumulation compared to healthy controls [111, 
112]. MDSCs secrete immunosuppressive cytokines such 
as IL-6, IL-10, and TGF-β, which promote Treg differen-
tiation and inhibit co-stimulatory molecules on antigen 
presenting cells (APCs) [107, 113]. Macrophage differen-
tiation is also heavily influenced by MDSCs via the pro-
duction of IL-4, IL-10, and IL-13, which promote an 
immunosuppressive M2 phenotype via STAT6 [107, 114].

Additional ways that MDSCs exert inhibitory influ-
ences on effector T cells is through cell metabolism, 
although this has primarily been demonstrated in other 
solid tumors. Via STAT3 and NF-κB pathway activation, 
MDSCs decrease essential amino acids for T cells, such as 
tryptophan in breast cancer [115]. l-arginine is depleted 
via cleavage by arginase-1 and cysteine is accumulated in 
the cytoplasm due increase uptake and lack of exporter 
on MDSCs [113, 116]. Metabolites also accumulate to 
inhibit T cells such as adenosine via up regulation of 
CD39 and CD73 that cleave ADP and AMP, respectively 
[79, 107, 117]. MDSCs also nitrate tyrosine residues on T 
cell receptors that prevent them from accurately recog-
nizing antigens. This occurs via peroxynitrate generation 
from NO and reactive oxygen species (ROS). In murine 
PDA models specifically, production of pancreatic 
adenocarcinoma upregulated factor (PAUF) by tumor 
cells resulted in increased levels of arginase, NO, and 
ROS produced by MDSCs [118]. Finally, MDSCs cleave 
L-selectin due to constitutive expression of ADAM17 on 
their cell surface, which impairs T cell homing [119].

Lung cancer models have shown increased CD39 and 
CD73 production by MDSCs in hypoxia [120]. In mouse 
models of liver tumors, hypoxia increased PD-L1 expres-
sion on MDSCs, which had an immunosuppressive effect 
on T cells [121]. Subsequent blockage of this by PD-L1 

inhibition led to decreased IL-10, IL-6, and TGF-β pro-
duction [121]. Additionally, MDSCs have been shown to 
increase in number and remain undifferentiated in hepa-
tocellular carcinoma in hypoxic conditions via up regu-
lation of CCL26 and CD391L [122, 123]. Interestingly, 
HIF-1α stabilization in MDSCs in the lymphoma envi-
ronment, but not the spleen, supported differentiation 
into macrophages with increased arginase and NO syn-
thetase levels [124].

Macrophages
Macrophages are a primary component of the innate 
immune response, and there has been significant inter-
est in the role of tumor-associated macrophages (TAMs) 
in the recent years. Macrophages may differentiate from 
cells in the tumor microenvironment or be recruited via 
CCL2, CCL5, and CXCL12 [108, 125]. As with most cells 
in the immune microenvironment, macrophages exist 
on a spectrum from immunostimulatory to immunosup-
pressive, which is thought to be adaptive to situations like 
chronic infections [126]. The milieu of cells in the tumor 
microenvironment produces cytokines such as IL-4, 
IL-10, IL-13, and M-CSF that encourage M2 or immu-
nosuppressive phenotype differentiation [127]. Many 
studies have looked at models for macrophages in a vari-
ety of tumors and all have shown that increased TAMs 
led to decreased survival through various mechanisms 
[128–131].

Looking at immunosuppressive mechanisms in PDA 
specifically, macrophages isolated from human PDA have 
been shown to induce EMT related changes in various 
cell lines for both M1 and M2 macrophages [132]. Mac-
rophages in PDA also secrete FAP, a serine proteinase, 
which encourages fibroblasts in the tumor environment 
to promote tumor angiogenesis and metastasis [87, 133]. 
Additionally, macrophages are thought to induce PDA 
cells to produce cytidine deaminase, which metabolizes 
gemcitabine to promote resistance [134].

M2 macrophages tend to be found in more hypoxic 
regions of PDA, whereas M1 macrophages tend to be in 
normoxic regions farther from cancer cells [135, 136]. 
This spatial arrangement is thought to be due to mech-
anisms related to IL-6, TGF-β, and M-CSF, as well as 
semaphorin 3A/neuropilin-1 [137–139]. After migration, 
semaphorin is then down regulated by HIF-1α, which 
helps retain M2 macrophages in the hypoxic areas [137, 
140]. Interestingly, in bacterial infections, HIF-1α also 
increases production of IFN-γ which is pro-inflamma-
tory and promotes a more M1 type phenotype, although 
this was not studied in PDA directly [141]. Secretion of 
TGF-β and IL-10 from tumor cells and the surrounding 
environment then promotes macrophage switching to 
M2 phenotype [108].



Page 6 of 17Daniel et al. Clin Trans Med            (2019) 8:10 

TAMs drive significant metabolic changes that influ-
ence the microenvironment. In response to hypoxia in 
a breast cancer model, HIF-1α acts quickly to increase 
NO via inducible nitric oxide synthetase (iNOS) in mac-
rophages which causes T cell suppression [142]. HIF-2α 
acts more slowly via increased arginase which decreases 
the arginine required for NO synthesis and thus coun-
teracts some of the action of HIF-1α; however, the lack 
of arginine causes more long-term anergy of T cells [142, 
143]. Surprisingly, high quantities of NO produced by 
macrophages in response to HIF-1α can actually lead to 
tumor suppression and death in early stages [108]. IL-4 
can counteract this by up regulating HIF-2α to increase 
arginase as well as non-HIF mechanisms to increase argi-
nase via NF-κB [142]. In addition to NO regulation, other 
metabolic pathways such as IDO, which leads to trypto-
phan depletion, are up regulated in hypoxic macrophages 
in hepatocellular carcinoma [144].

There are several other proposed mechanisms through 
which macrophages having an immunosuppressive 
influence in a hypoxic environment. In a study look-
ing at mouse models of breast, colon, and liver tumors, 
knockout of HIF-1α and HIF-2α decreased tumor 
growth, but only HIF-2α knockout lead to decreased 
expression of macrophage colony-stimulating factor 
receptor (M-CSFR) and CXCR4 on tumor-infiltrating 
macrophages [145]. Increased HIF-1α stabilization 
has also been shown to correlate with increased PD-L1 
expression on macrophage cell surfaces [145]. Hypoxia 
also causes macrophages to produce MMP-7 which can 
cleave Fas ligand from neighboring cells and protect 
them from cell-mediated killing [140, 146]. Additionally, 
increased MMP-2 and MMP-9 have been seen in other 
solid tumors in the setting of increased tumor cell inva-
sion [136].

Dendritic cells
Dendritic cells (DCs) are hematopoetic in origin and 
their main functions are phagocytosis and antigen pres-
entation. Based on the presence or absence of co-stim-
ulatory molecules, DCs can induce pro-inflammatory 
responses or immune tolerance in other immune cell 
populations [147]. DCs initially exist in their immature 
forms, and after exposure to different environmental 
stimuli, can become more immunostimulatory or immu-
nosuppressive along a spectrum of myeloid forms, which 
stimulate Th1 response, and plasmacytoid forms, which 
stimulate a Th2 response [108, 148]. Tumors such as PDA 
benefit from immature DCs and prevent maturation via 
production of VEGF, IL-10, IL-6, and GM-CSF, among 
others [149, 150]. IL-8 also influences DC migration in 
colon cancer models [151]. Dendritic cells have CXCR1 
and CXCR2 on their cell surfaces that binds to IL-8, but 

the amount of IL-8 did not affect the expression of MHC 
class II or co-stimulatory molecules such as CD80 and 
CD86 [151]. Prolonged exposure to IL-8 caused internali-
zation of CXCR1 and CXCR2 prevented further migra-
tion towards IL-8 producing tumor cells [151].

In PDA, increased levels of circulating myeloid DCs 
can be predictive of longer survival after surgical resec-
tion [152, 153]. In addition to decreased co-stimulatory 
molecules such as CD40 and CD80 that prevent T cell 
activation, DCs in PDA produce a variety of chemokines 
and cytokines that help support an immunosuppres-
sive environment [148]. DCs can produce CCL22 which 
recruits immunosuppressive Tregs in response to IL1a 
and TGF-β [154, 155]. Looking at miRNA in PDA, stud-
ies have shown that exosomes from tumor cells can alter 
cell surface expression of toll-like receptor (TLR) 4 [156]. 
PAUF is a ligand for TLR4, which can induce the produc-
tion of pro-inflammatory TNF-α and IL-12 by DCs [156, 
157]. Additionally, Smad4, a transcription factor that 
mediates TGF-β transduction, is repressed in DCs in the 
PDA environment through miRNA which prevents their 
antigen presentation and differentiation [158].

There are conflicting reports on the effects of hypoxia 
on DCs. In some reports, hypoxia increases the ability of 
DCs to interact with cytotoxic T cells [159]. Hypoxia has 
been shown to decrease circulating plasmacytoid DCs 
with corresponding increase in TNF-α and IL-6, although 
increase in CXCL12 could signify tissue migration [160]. 
One experiment demonstrated that DCs without HIF-1α 
had less CD278 on their cell surface, and the T cells in 
co-culture produced less granzyme B mRNA [161]. This 
has been shown to be due to the PI3K/Akt pathways 
[162]. It is not certain if DCs have decreased migration 
and phagocytic capabilities in a hypoxic environment 
[163, 164]. There does seem to be increased osteopontin 
secreted by hypoxic DCs in a breast mouse model that 
encourage tumor migration [165]. Hypoxia encourages 
the Th2 phenotype via increase in CD44 as well as adeno-
sine receptor A2b although this has not been verified in 
PDA specifically [166, 167]. Additionally, PD-L1 expres-
sion on DC membranes is increased due to HIF-1α in 
hypoxia [121, 145]. Some immature DCs with prolonged 
exposure to hypoxia can actually be induced to undergo 
apoptosis via up regulation of BNIP3 and BAX [168].

Helper and regulatory T cells
CD4+ T cells have several different subtypes that result 
from terminal differentiation of naive progenitor cells, 
although there is some overlap between these classifi-
cations. The most commonly researched in PDA are T 
helper (Th) 1, Th2, Treg, and Th17 [169]. Th1 cells are 
pro-inflammatory and express IFN-γ to promote APCs 
and prime CD8+ cells, while Th2 cells may encourage 
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tumor growth through IL-5 production, although they 
do recruit eosinophils through IL-4 and IL-13 [170]. 
Tregs are identified by FOXP3 gene expression and 
are predominately immunosuppressive through TGF-β 
production and repression of effector T cell prolifera-
tion [170]. Less clear is the role of Th17 cells that have 
been studied in autoimmune disease and may be asso-
ciated with prolonged survival in some cancers [171, 
172]. In addition to differing roles, CD4+ subtypes are 
also located differently in the PDA microenvironment. 
While the percentage of CD4+ cells that were Th1 
remained stable throughout the tumor, tumor periph-
ery, and healthy pancreas, Th2 and Treg cells were 
more likely to be in the central tumor, whereas Th17 
cells were more likely to be in the healthy pancreas 
[169]. Another study showed that Tregs tend to accu-
mulate early in the malignant process, even in PanIN 
mouse models, but primarily remain in peritumoral 
lymph nodes [173].

Due to poor response of PDA to immunomodulat-
ing therapies such as checkpoint inhibition, a significant 
focus has been placed on the immunosuppressive Tregs. 
CCL5 is produced by PDA which encourages migration 
of Tregs into the tumor microenvironment due to their 
CCR5 expression [174]. Treg migration into PDA is also 
encouraged by L1CAM expression on tumor cells [175]. 
Tregs in PDA express CTLA-4, which competes for co-
stimulatory ligands CD80 and CD86 and prevents CD28 
binding necessary for effector T cell activation [173]. 
Many Tregs also express CD25, which acts as an IL-2 
receptor and contributes to FOXP3 expression in some 
Tregs [173, 176]. Overall, increased ratios of Treg:effector 
T cells is associated with tumor progression and worse 
outcome [12].

Hypoxia influences immunosuppression as well as 
subtype differentiation of CD4+ cells. Activation of the 
T cell receptor actually increases HIF-1α downstream 
effects via PI3K/mTOR and protein kinase C mechanisms 
through stabilization of HIF-1α even in the absence of 
hypoxia [140, 177]. HIF-1α promotes differentiation into 
FOXP3+ cells via increased gene transcription [178]. If 
sufficient TGF-β is also present, then these cells become 
Tregs, but combined IL-6 and HIF-1α instead promotes 
Th17 cells [179, 180]. Addition of IL-6 actually coun-
teracts the effects of hypoxia on Treg proliferation with 
IL-1 having a more moderate counteractive effect [177, 
179]. These mechanisms are thought to be mediated 
by STAT3, which also decreases IFN-γ production and 
decreases Th1 phenotype markers [177, 180]. Interest-
ingly, HIF-1α can also bind to the FOXP3 protein to pro-
mote its degradation which can also promote Th17 and 
other pro-inflammatory phenotypes [178]. HIF-2α, how-
ever, does not promotes FOXP3 transcription in murine 

models of inflammation [179]. Treg numbers are further 
increased in hypoxia due to CCL28 production by tumor 
cells that increases Treg chemotaxis [181]. Hypoxia does 
not appear to affect levels of co-stimulatory molecules 
such as CD23 and CTLA-4 in CD4 + cells [179].

Effector T cells
Effector or CD8+ T cells are the primary cytotoxic agents 
of the adaptive immune systems. Most of the immu-
nosuppressive mechanisms discussed above involve 
preventing effector T cells from undergoing the steps 
required to induce apoptosis in tumor cells: [1] migra-
tion of a naive CD8+ T cell into the area of the tumor, [2] 
antigen-presentation to the CD8+ cell between the T cell 
receptor (TCR) and MHC class I molecule with appro-
priate co-stimulation (via cytokines from CD4+ cells or 
CD28 and CD80/B7-1 or CD86/B7-2 on the APC), [3] 
clonal expansion of CD8+ cells, [4] recognition of the 
antigen again on the tumor cell, and [5] initiation of cyto-
toxic process with production and release of perforin, 
granzyme, and granulysin which trigger the caspase cas-
cade in tumor cells [182, 183]. Alternatively, CD8+ cells 
have Fas ligand/CD95L on their cell surface that can bind 
Fas on target cells, which then promotes procaspases 
in the target cell, but this is rarely expressed in tumor 
cells [182]. The above describes more common protein-
recognizing αβ CD8+ cells; however, there is a separate 
population of γδ CD8+ cells that recognize lipid antigens 
and do not require the same antigen presentation steps to 
become activated. Indeed, γδ CD8+ cells are being stud-
ied as well in immunotherapy for PDA [184].

Among the more common αβ CD8+ cells, there have 
been both stimulatory and inhibitory effects of hypoxia. 
HIF-1α is essential to the expression of the co-stimula-
tory molecule CD137 on effector T cells in several solid 
tumors, although this has not been confirmed in PDA 
[185]. Also, granzyme B production is increased in 
hypoxia, leading to increased lytic capacity of T cells in 
more mildly hypoxic compared to atmospheric oxygen 
[186–188]. Negative effects include decreased effector T 
cell migration into the tumor in hypoxia. Poorly formed 
vasculature forms in the hypoxic PDA environment, and 
in combination with IL-10 down regulating integrins 
such as αLβ2 on the vascular endothelium, T cell extrava-
sation is diminished [140, 189]. HIF-1α also decreases 
production of the pro-inflammatory cytokines IL-2 and 
IFN-γ by CD8+ cells, even when stabilized under nor-
moxic conditions [177, 186]. ROS resulting from hypoxia 
can have immunosuppressive and even lethal effects on 
T cells. Superoxide is an ROS produced in mitochondria 
from activation of STAT3 and NADPH, which can then 
activate the caspase cascade and cause T cell apoptosis 
[188]. Reactive nitrogen species such as peroxynitrite, 
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are generated from ROS, and can prevent the binding of 
molecules to T cell receptors through nitration of recep-
tor amino acids [190].

More recent studies have also been examining the 
changes in metabolism between naive, effector, and 
memory CD8+ cell populations. Upon activation by 
binding at the TCR and the appropriate co-receptors, 
CD8+ cells preferentially use glycolysis similar to APCs 
after binding of TLRs or other pathogen-receptor-rec-
ognition pathways [191, 192]. The focus on glycolysis is 
thought to be maintained in part due to HIF-1α stabiliza-
tion even in the absence of hypoxia [193]. However, when 
glucose becomes scarce in the tumor microenvironment 
due to uptake by cancer cells, CD8+ cells switch to oxi-
dative phosphorylation and have increased PD-1 expres-
sion [193]. The hypoxic tumor environment prevents the 
successful transition to oxidative phosphorylation, which 
can lead to decreased proliferation and increased LAG3 
expression in melanoma mouse models [193]. Multiple 
studies have shown that in hypoxic and glucose defi-
cient states, CD8+ cells switch to fatty acid oxidation via 
PPAR-α pathway signaling, and that this transition is nec-
essary to prevent T cell exhaustion in this environment 
[192, 193]. Interestingly, many are studying PPAR antago-
nists in solid tumors to disrupt similar pathways in can-
cer cells, but may have negative effects on the increase of 
fatty acid oxidation in T cells [194].

Future directions
Remarkable progress has been made in the field of immu-
notherapy. Particularly in melanoma and lung cancers, 
patients enjoy longer survival, and in rare cases, complete 
remission in response to immunotherapy [195, 196]. 
Immunotherapy for pancreatic cancer has not yet shown 
the same degree of success, but many have chronicled the 
progress thus far in detailed reviews [197–200]. Single-
agent immunotherapy clinical trials in human PDA have 
particularly been ineffective, thought in part to be due 
to decreased PD-1/PD-L1 expression compared to other 
tumors, but many ongoing studies are examining combi-
nations, including with cytotoxic chemotherapy and radi-
ation [75, 201]. Novel therapies including DC vaccines, 
chimeric antigen receptor T cells, and miRNA inhibi-
tors are being developed, to name a few [202]. It is likely 
that effective treatment will take a combination of these 
therapies and that the heterogeneity of PDA will prevent 
a one-size-fits-all treatment model.

During the testing of new therapies it is important to 
replicate the conditions inside the human tumor as much 
as possible. Hypoxia, as described above, has a significant 
influence on the immune response to PDA, yet most new 
therapies are tested in cell cultures in atmospheric oxy-
gen environments. Particularly with T cells, atmospheric 

oxygen compared to physiologic oxygen can cause lower 
intracellular NO and decreased CD69, which can cause 
increased T cell proliferation [203]. Further studies also 
need to be done regarding regulation of T cell metabo-
lism in hypoxia, including promotion of fatty acid oxida-
tion in glucose and oxygen poor environments. Mouse 
models, while they do have hypoxic tumor environments, 
also have limitations. Both genetically engineered and 
xenograft PDA mouse models do not have as robust a 
T cell infiltrate as human tumors, despite having more 
circulating lymphocytes [12, 84, 204]. Other differences 
between mice and humans include regulators of iNOS 
in macrophages, induction of Th1 responses in T cells in 
response to IFN-α, and expression of T cell co-stimula-
tory molecules such as CD28 [204]. Trends lately have 
been to “de-sterilize” laboratory animal environments 
to help their immune systems better reflect those in 
humans, but barriers remain [205, 206]. Newer organoid 
models have also been developed that enable a 3-D struc-
ture, heterogeneity, and interactions between cell types 
[207]. Advantages of the organoid model include a longer 
lifespan than a tumor slice culture model and the ability 
to expand and use in xenografts unlike a tumor slice cul-
ture model [208].

Targeting of the hypoxic environment in solid tumors 
has also been attempted (Table  1). The most basic of 
these ideas is to create a tumor microenvironment with 
increased oxygen or ROS to sensitive the cancer cells to 
radiation and other therapies, however others argue that 
anti-oxidants such as N-acetylcysteine that decrease ROS 
may actually decrease ROS and therefore downstream 
effects of EMT and immunosuppression [209]. Other 
methods include pro-drugs that become activated in 
hypoxia or drugs that hone in on HIF-1α active cells are 
being developed [20, 210, 211]. Evofosfamide (TH-302), a 
mustard-based derivative, is a cytotoxic pro-drug that is 
converted to an active metabolite in hypoxic conditions 
[211]. Evofosfamide has been used to decrease resistance 
to radiotherapy in pancreatic cancer, but a recent clini-
cal trial for non-small cell lung cancer using this drug 
in combination with tarloxotonib, a hypoxia-activated 
tyrosine kinase inhibitor, was stopped early due to futil-
ity [211, 212]. Another drug developed over a decade ago 
is POP33, a fusion protein that consists of a transduction 
domain to deliver the drug into cells, a HIF-1α dependent 
stabilization domain, and a cleaved caspase pro-enzyme 
[210]. While this showed promise in a mouse model of 
PDA, there has yet to be a successful human application. 
While no direct HIF inhibitors have been used in clinical 
trials for pancreatic adenocarcinoma, therapies that tar-
get heat shock protein (HSP) 90 have shown to also lead 
to HIF degradation and are currently being tested [213, 
214].
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Major limitations of targeting HIF with inhibitors 
are the rapid degradation of the molecule, as well as 
the highly conserved nature of the transcription path-
ways and potential for negative systemic effects [215, 
216]. Indeed several clinical trials have examined tar-
geting STAT3, Notch, PI3K, and Hh pathways in PDA 
without strongly favorable results [217–222]. Several 
therapies have been developed to target the more down-
stream effects of hypoxia, however. Countering Warburg 
metabolism is one strategy, as is encouraging fatty acid 
oxidation in T cells. CD73 upregulation and subsequent 
accumulation of immunosuppressive adenosine has been 
targeted via anti-CD73 antibodies, as well as anti-A2A 
adenosine receptor inhibition, which is present on T cells 
[78, 120]. Preventing hypoxic upregulation of MMP-9, 
used in cancer cell and MDSC migration, via zoledronic 
acid is also being studied as combination therapy in PDA 
[223, 224]. Cytokine and chemokines that are upregulated 
in hypoxia have also been targeted. Immunosuppressive 
TGF-β and IL-6 are the targets of several clinical trials in 
PDA [225–228]. Increased PD-L1 expression is seen on 
on carcinoma cells in PDA as well as MDSCs and mac-
rophages; this has been targeted with both anti-PD-L1 
antibodies and inhibition of pyruvate kinase M2, another 
molecule that binds in the PD-L1 promoter [229]. Many 
clinical trials treating PDA that are actively recruiting 
involve PD-L1 inhibition (Table 1). The CXCR4-CXCL12 
axis as well as the CCR5 chemokine with its multiple 
receptors are also being targeted in PDA [84, 230]. It is 
possible that combining more developed immunotherapy 
such as checkpoint and/or chemokine inhibitors with 
hypoxia targeting may finally overcome the severe immu-
nosuppressive milieu in PDA.

Conclusions
Hypoxia exists in PDA in a heterogeneous manner, and 
the complex immunosuppressive environment in PDA 
is exacerbated in hypoxic conditions. Immunotherapy 
in PDA is not yet successful, likely due to the numerous 
immunosuppressive pathways upregulated in hypoxia. 
Tumor heterogeneity will prevent a one-size fits all 
approach for traditional chemoradiotherapies as well 
as immunotherapies, but it is important to test in con-
ditions that most resemble the hypoxic human tumor 
microenvironment.
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