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Recombinant COVID-19 vaccine
based on recombinant RBD/
Nucleoprotein and saponin
adjuvant induces long-lasting
neutralizing antibodies and
cellular immunity

Amir Ghaemi1, Parisa Roshani Asl1, Hedieh Zargaran2,
Delaram Ahmadi1, Asim Ali Hashimi3, Elahe Abdolalipour2,
Sahar Bathaeian1 and Seyed Mohammad Miri2*

1Department of Influenza and other respiratory viruses, Pasteur Institute of Iran, Tehran, Iran, 2TRS
Biotech Company, Tehran, Iran, 3TRS Biotech Company, Auckland, New Zealand
SARS-CoV-2 has caused a global pandemic, infecting millions of people. An

effective preventive vaccine against this virus is urgently needed. Here, we

designed and developed a novel formulated recombinant receptor-binding

domain (RBD) nucleocapsid (N) recombinant vaccine candidates. The RBD and

N were separately expressed in E. coli and purified using column

chromatography. The female Balb/c mice were immunized subcutaneously

with the combination of purified RBD and N alone or formulated with saponin

adjuvant in a two-week interval in three doses. Neutralization antibody (Nabs)

titers against the SARS-CoV-2 were detected by a Surrogate Virus

Neutralization (sVNT) Test. Also, total IgG and IgG1, and IgG2a isotypes and

the balance of cytokines in the spleen (IFN-g, Granzyme B, IL-4, and IL-12) were

measured by ELISA. The percentages of CD4+ and CD8+ T cells were

quantified by flow cytometry. The lymphoproliferative activity of restimulated

spleen cells was also determined. The findings showed that the combination of

RBD and N proteins formulated with saponin significantly promoted specific

total IgG and neutral ization antibodies, el icited robust specific

lymphoprol i ferat ive and T cel l response responses. Moreover ,

marked increase in CD4+ and CD8+ T cells were observed in the adjuvanted

RBD and N vaccine group compared with other groups. The results suggest

that the formulations are able to elicit a specific long-lasting mixed Th1/Th2

balanced immune response. Our data indicate the significance of the saponin-

adjuvanted RBD/N vaccine in the design of SARS-CoV-2 vaccines and provide a

rationale for the development of a protective long-lasting and strong vaccine.

KEYWORDS
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Introduction

The current disastrous pandemic of COVID-19, caused by

the severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), has led to millions of infections and deaths worldwide

(1). SARS-CoV-2 is an enveloped positive sense RNA virus and

member of the betacoronavirus genus. More than any other

pandemic has highlighted the importance of vaccines and

vaccination in human well-being. The time restrictions for

producing efficient vaccines, especially when no competent

drugs are available for treatment, opened new challenges to

vaccine developers to rattle through developing potent COVID-

19 vaccines with limited prescience and resources. Another

challenge for vaccinologists is virus mutations over time,

which give rise to new variants (2). Therefore, there is a need

to develop vaccines with the potential to protect against all the

variants of SARS-CoV-2 (3).

More than 200 COVID-19 vaccines have been announced by

now. Some have been approved for emergency use and

administered in a limited or wide range of population, while

the others are under preclinical and clinical investigations (4).

Most of the approved vaccines are categorized as inactivated,

adenovirus-delivered, mRNA-based, and recombinant proteins

vaccines (5).

The chief SARS-CoV-2 structural proteins are spike (S),

nucleocapsid (N), membrane (M), and envelope (E). The

trimeric aggregate of the spike protein of SARS-CoV-2 plays a

key role in the virus entry into the host cell by employing the

host angiotensin-converting enzyme 2 (hACE2) present at the

surface of many human cells. Therefore, research groups have

focused on studying the S protein or its fragments as the antigen

for vaccine development. This type of vaccines is categorized

among the most immunogenic in combination with

adjuvants (6).

It has been demonstrated that the spike protein binds to the

hACE2 receptor through the receptor-binding domain (RBD),

which is necessary for virus entry. Moreover, the C-terminal S2

subunit of spike protein, using heptad repeat 1 (HR1) and

heptad repeat 2 (HR2), mediates the connection between the

viral envelope and cellular membrane (4). In this regard, it has

been observed that following infection with SARS-CoV-2 or

COVID-19 vaccination, the most important neutralizing

antibodies are against RBD, suggesting this region as a well-

suited candidate for vaccine design and thereby directly blocking

the virus entry into the host cell (7, 8). This observation is

explained by the fact that the RBD fragment is less glycosylated

than other parts of spike protein and more accessible to antigens

(9). Accordingly, some studies have incorporated RBD, whether

as a single monomer antigen or in dimeric or trimeric form with

or without other antigen(s) and adjuvants, to construct

recombinant COVID-19 vaccines (10–14). A recombinant

vaccine comprised of residues 319 to 545 of RBD adjuvanted

with aluminium hydroxide gel potently evoked antiviral
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antibody in animal and non-human primates models. Some

important benefits of this candidate vaccine are eliciting strong

functional antibodies 1 or 2 weeks after immunization, blockade

of RBD-ACE2 binding, protection against SARS-CoV-2 live and

pseudovirus, involvement of lymphocytes with the ability to

stimulate IFN-g and IL-4 production, rise in the level of

serological neutralizing antibodies specific of RBD, and

recruitment of both CD4 and CD8 memory T cells without

any detectable histopathological alterations (15).

However, despite all advantages attributed to RBD-based

vaccines, its small molecular size may result in poor

immunogenicity. In this respect, incorporation of more than

one antigen, whether in the form of multimers or distinct

antigens administered in fused or separate forms, has shown a

synergistic role by eliciting stronger antiviral antibody responses.

Besides, using immunopotentiator adjuvants to increase the titer

and durability of antibody responses is of great importance and

has been widely reported. One such example is a trimeric RBD

vaccine adjuvanted with toll-like receptor 7/8 (TLR-7/8) agonist

adsorbed to alum (alum-3M-052). This vaccine showed potency

in inducing anti-SARS-CoV-2 antibody responses against the

live virus and in protecting the mice against virus challenge,

highly more than that of non-adjuvanted monomer antigen (16).

Also, a comparative study between the adjuvant capacity of three

lipophilic adjuvants in the vaccines comprised of SARS-CoV-2

spike protein or its fragments reported monophosphoryl lipid A

as a potent adjuvant in eliciting high levels of humoral and

cellular immune responses (17).

In addition to spike protein, some studies have employed

nucleocapsid protein as an immunogen for vaccine design.

Moreover, it has been very recently reported that co-

immunization with spike and nucleocapsid protein of SARS-

CoV-2 provides protection both in proximal and distal organs.

This protection has not been observed in their individual

administration, introducing N protein as a suitable antigen

candidate for COVID-19 vaccine development (18). The new

variants of the virus may find ways to escape neutralizing

antibodies. Accordingly, the capability of vaccines to induce

sufficient T cell-mediated cellular and humoral immune

responses is of high importance. In this regard, previous

studies have introduced some of the SARS-CoV-2 N and S

protein fragments as an inducer of potent T cell responses,

highlighting their valuable capacity for vaccine production (19).

As coronavirus’most abundant structural protein, Nucleocapsid

protein, as the most abundant structural protein of coronavirus,

harnesses the cross-reactive T cell epitopes, justifying its impact

on augmentation of T cell responses. While this protein has a

slight effect against initial virus infection of the respiratory

system, its role in controlling the further progress of infection

to distal parts by eliciting N-specific T cells and thereby killing

infected cells seems pivotal (18).

Moreover, many types of adjuvants can be used to enhance the

immunogenicity of vaccines. Among these adjuvants, saponins (as
frontiersin.org
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natural glycosides of steroid or triterpene) have the potential to elicit

the immune system of mammals, especially by enhancing both Th1

immune response and the production of cytotoxic T-lymphocytes

(CTLs) against exogenous antigens. Therefore, they can be

considered among ideal vaccine adjuvants (20).

In thepresent study,we evaluate the safety, immunogenicity, and

protective efficacy of our developed RBD/Nucleoprotein vaccine

adjuvanted with saponin. This candidate vaccine harnesses specific

neutralizing antibodies and T cell responses provoked by both RBD

andNproteins. Therefore, it has the synergistic effect of N protein in

designing and constructing recombinant vaccines based on spike

protein. Mouse studies demonstrated that the adjuvanted RBD/

Nucleoprotein vaccine elicits a higher neutralizing antibody

response against the SARS-CoV-2 virus than other individual or

combinatorial formulations. These data support the utility of

adjuvanted RBD/Nucleoprotein as a potential vaccine candidate

against SARS-CoV-2 infection.
Materials and methods

Expression of N and RBD proteins
in E. coli

The genes codon-optimized encoding SARS-CoV-2 S

protein RBD and Nucleoprotein were artificially synthesized

(Biomatik, Canada) and sub-cloned into pET22b (+) and

pET28a vectors using restriction endonucleases. The design,

expression, and purification of the RBD construct was

conducted according to the previous publication (21).

The recombinant protein was expressed by transforming the

recombinant plasmid pET22b-RBD and pET28a-N into E. coli

strain BL21(DE3) using a heat shock method and cultured in an

LB agar plate containing 100 mg/mL ampicillin and 50mg/ml

kanamycin. Then, the selected colonies harboring recombinant

plasmids were grown in LB broth at 37°C with shaking at 180

rpm. The expression of proteins was induced by 1 mM

isopropyl-b-d-thiogalactoside (IPTG, Sigma, St. Louis, MO) at

optical density (OD)= 0.6 - 0.8 and 18 h incubation at 37°C while

shaking at 190 rpm. The induced cells were harvested by

centrifugation at 9000 rpm for 20 min at 4°C. Protein

expression was determined by sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE) using the

method of Laemmli. Also, the molecular weights of RBD and

N proteins were estimated with a standard marker. Finally, the

gels were stained with Coomassie blue R-250.
Extraction and purification of the
recombinant proteins

After harvesting the bacteria by centrifugation, for cell lysis

and extraction of the recombinant proteins, the bacterial pellets
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were lysed in the lysis-equilibration-wash (LEW) (50mM

NaH2PO4, 300mM NaCl, 8M Urea, pH = 8) buffer. Next, they

were incubated at 4°C for 30 min and sonicated. This process

was repeated two more times to extract all the proteins. The final

supernatant containing the desired protein was collected for

purification with a Ni-NTA column. For this purpose, the

extracted lysate was loaded on the Ni-NTA column (Sigma).

Bound polyhistidine-tagged proteins were eluted by a gradient of

imidazole with an Elution Buffer containing 50mM NaH2PO4,

300mM NaCl, 8M urea, and 2.5-250 mM imidazole, pH 8.

Afterward, they were refolded by dialysis from 6 M, 4 M, and

2 M to 0 M urea in buffer (20 mM NaH2PO4, 300 mM NaCl, 2

mM b-mercaptoethanol, 0.4% arginine, 10% glycerol, pH 7.5).

SDS-PAGE was performed to analyze the fractions collected

from different steps of purification. Finally, the purified protein

was dialyzed in Phosphate Buffer Saline (pH 8.5). Also, low-

weight substances such as urea and salt were removed by a

dialysis membrane bag, as demonstrated in Figure 1. Finally, the

amount of purified proteins was measured by colorimetric

bicinchoninic acid assay (BCA) (Pierce™ BCA Protein Assay

Kit, ThermoFisher Scientific) according to the manufacturer’s

protocol and stored at −80°C until use.
Endotoxin removal and quantitation

Endotoxins were removed from the purified protein by

porous cellulose bead surface-modified with covalently attached

poly(ϵ-lysine) chains (Pierce High Capacity Endotoxin Removal

Spin Column, 1 ml, Thermo Fisher Scientific, Inc., USA) with high

affinity for endotoxins. After endotoxin binding to the cellulose

beads, the beads were equilibrated with an endotoxin-free buffer

containing 10-50 mM Tris-HCl buffer containing 0.1-0.2 M NaCl

(pH 7) according to the manufacturer’s instructions.

According to the manufacturer’s directions, endotoxin levels

in the purified protein were calculated using Pierce™ LAL

Chromogenic Endotoxin Quantitation Kit (Thermo Fisher

Scientific, Waltham, MA, USA).

Endotoxin concentration in the sample was determined in

duplicate by using the standard curve provided by the kit, and

results were expressed as EU/ml.
Western blot analysis for the
recombinant proteins

Recombinant protein samples were electrophoresed on 12%

polyacrylamide gel and then transferred to a nitrocellulose

membrane (Sartorius, Germany). The expected N and RBD

proteins were detected using monoclonal antibody SARS-CoV-

2 Nucleocapsid Protein (HL344) and SARS-CoV-2 Spike Protein

(RBD) (E2T6M) as primary antibody and convalescent serum of

COVID-19 patients, respectively. Moreover, an anti-mouse IgG
frontiersin.org

https://doi.org/10.3389/fimmu.2022.974364
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ghaemi et al. 10.3389/fimmu.2022.974364
HRP-linked antibody was applied as the secondary antibody. In

addition, regarding the presence of a polyhistidine sequence in

the recombinant proteins, the proteins were monitored using an

Anti-His tag antibody (His-Tag (27E8) Mouse mAb #2366).

F ina l ly , the prote ins band were v i sua l i zed us ing

Diabimabenzidine (DAB, Sigma, UK) substrate. Cell lysate

before induction was used as the negative control.
Balb/c mice immunization

A total of 70 female mature Balb/c mice were housed in the

animal facility at the Pasteur Institute of Iran, Tehran, Iran, and

randomly assigned into seven groups. Two groups were injected

with 15 mg RBD alone or supplemented with saponin adjuvant.

Two groups received N protein with or without saponin

adjuvant. The other two groups were injected with the mixture

of RBD and N with or without saponin adjuvant.

As a control, mice were given 15 mg saponin alone. The

saponin was supplied by In vivoGen and was dissolved in Milli-

Q water. Mice were injected subcutaneously at two-week

intervals in three doses. The recombinant protein dose used in

all groups was equal to 15 mg per injection in a total volume of

100 ml. All these procedures were performed based on the
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protocols approved by the Ethics Committee. Different aspects

of immunity (i.e., lymphocyte proliferation (MTT), cytokine

levels (ELISA), and CD4/CD8 population (flow cytometry)

were studied two and nine weeks af ter the third

administration. Serum samples were collected 10 days post

each vaccination to detect IgG and neutralize antibody

responses. Results are representative of three independent

experiments (three mice per group). Statistical analysis was

done using Student’s t-test. The final data represent the

mean ± standard deviation (S.D.) of three measurements. The

schematic overview of all experimental procedures is depicted

in Figure 2.
Specific IgG responses

Blood samples were collected from individual mice of each

group (n=5) via orbital sinus bleeding two and nine weeks post-

last vaccination. Next, serum levels of SARS-CoV-2 anti-RBD

and anti-N total IgG, IgG1, and IgG2a were assayed by enzyme-

linked immunosorbent assay (ELISA) for total specific anti-RBD

and anti-N IgG using ELISA technique, as previously described

(22, 23). Briefly, ELISA plates were coated with 100 ng/well RBD

synthetic peptide (Biomatik) and N synthetic peptide (Biomatik)
FIGURE 1

A simplified schematic diagram of protein expression system including extraction and purification
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(in coating buffer) with a final concentration of 10-4 mg/ml.

Afterward, they were sequentially incubated with diluted serum

samples (1:1000 dilutions) and horse radish peroxidase (HRP)-

conjugated goat anti-mouse IgG, IgG1, or IgG2a (Sigma-

Aldrich) for 2 h at room temperature. Next, HRP substrate

was added to the mix to develop the colorimetric assay. After

stopping the reaction with 2 M H2SO4, the values were

determined by measuring the optical density (OD) of ELISA

plate wells at 450 nm. The endpoint ELISA titers were

determined as the highest serum dilution generating a stronger

signal (at least 3 times) compared to OD values of samples from

control mice at equivalent dilutions. Serum dilutions of 102 to

108 were used to determine IgG titers. Moreover, ELISA

endpoint titers were determined as the highest reciprocal

serum dilution that yielded an absorbance >2-times over more

than the background values.
SARS-CoV-2 surrogate virus
neutralization test

The neutralization antibody titers against the SARS-CoV-2

were detected by a Surrogate Virus Neutralization (sVNT) Test.

The competitive ELISA assay measures the relative amount of

neutralizing antibodies against a calibrator using a standard

curve (Figure 5). The results are then displayed as titer according

to the manufacturer’s instructions.

An ELISA plate (Nunc) was pre-coated with 100 ng human

ACE2 protein (GenScript) in carbonate-bicarbonate coating

buffer (pH 9.6) overnight at 4°C, followed by blocking. For the

direct binding assay, HRP-conjugated SARS-CoV-2 RBD

(GenScript) was added to the hACE2-coated plate at different

concentrations for 1 h at room temperature. A colorimetric

signal was developed on the enzymatic reaction of HRP with a
Frontiers in Immunology 05
chromogenic substrate, 3,3’,5,5’-tetramethylbenzidine (TMB)

(Sigma). After stopping the reaction with 2 M H2SO4, the

values were determined by measuring the optical density (OD)

of ELISA plate wells at 450 nm.

For the sVNT assay, 3 ng of HRP-RBD (from either virus)

was pre-incubated with test serum for 1 h at 37°C (final volume

of 50 ml), followed by addition into an ELISA plate coated with

hACE2 for 1 h at room temperature. Unbound HRP-conjugated

antigens were removed through five PBST washes. Eventually,

the inhibition percentage was determined as follows:

Inhibition = (1 −
OD   value   of   sample

OD   value   of   negative   control
)� 100%
Lymphocyte proliferation assay

Lymphocyte proliferation of splenocytes was evaluated (three

mice/group) one week after the last vaccination. The splenocytes

at a concentration of 2 × 105 cells/well were propagated in the 96

well plates containing RPMI-1640 supplemented with 10% FBS,

1% L-glutamine, 1% HEPES, and 0.1% penicillin/streptomycin in

the presence of 1mg of synthetic RBD (366-374aa)/N (223-231aa)-

specific CTL epitope (Biomatik, Canada) (24–27) or culture media

as mock stimulated control.

Lymphocyte proliferation was evaluated using the MTT (3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) kit

(Sigma), based on a colorimetric reaction. After 72 hours of

incubation at 37°C and 5% CO2, 10 mg/ml of the MTT solution

was added to each well. Then, they were incubated under the same

conditions for five hours. At the end of incubation, the

supernatant was removed, and 100 ml of the solution buffer was

added to wells to make purple soluble formazan crystals. The plate

was read using an ELISA reader (BIOTEK) at 540 nm, and the OD
FIGURE 2

Schematic overview of Mouse immunization and analysis schedule.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.974364
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ghaemi et al. 10.3389/fimmu.2022.974364
was recorded to calculate the stimulation index (SI). The SI was

calculated by subtracting the relative cell numbers of unstimulated

cells (Cu) from the OD of stimulated cells (Cs) divided by relative

OD values of unstimulated cells; SI = (Cs _ Cu) / Cu (28).
Cytokine secretion assay

One week after the last immunization, splenocytes of

immunized mice were cultured in 24-well plates for 3 days in

phenol red-free RPMI 1640 (Thermo Fisher, USA) supplemented

with 10% FBS, 2 mM L-glutamine, 25 mM HEPES, and 0.1%

penicillin/streptomycin. Next, the mix was pulsed with 1 mg/ml

RBD/N-specific CTL epitope or culture media as mock stimulated

control at 37°C in 5% CO2. The supernatants were assayed for the

presence of IFN-g, IL-4, and IL-12 using commercially available

sandwich-based ELISA kits (R&D systems, San Diego, USA),

according to the manufacturer’s instructions.
Analysis of CD4/CD8 population by
flow cytometric

The CD4/CD8 population in the spleens of immunized mice

was evaluated by analyzing the freshly prepared splenocytes were

analyzed by flow cytometry using the eBioscience

Mouse Regulatory T Cell Staining Kit. Briefly, splenocytes

(1×106/well) were cultured for 5 h in complete RPMI-1640

alone (negative control) or co-cultured with RBD/N-specific

CTL epitope antigens. The antibodies and reagents used for

staining were FITC-conjugated anti-CD4, APC-conjugated anti-

CD8 and PE -labeled CD3 antibody. The samples were analyzed

using a BD FaxCalibur flow cytometry device.
Analysis of granzyme B activity

The influenza-specific cytolytic activity was investigated by

measuring the amount of granzyme B (GrB) protein, as a marker

of activated cytotoxic T cells, in the supernatants of RBD/N-

stimulated mononuclear cells from spleens of three mice in each

group. The measurements were performed two and nine weeks

after the last administration, according to the instructions from

the commercially available granzyme B sandwich-based ELISA

kit (R&D, USA). Samples and standards were evaluated at an

optical density of 450 nm. All tests were carried out in triplicate

for each mouse (22).
Statistical analysis

Data were expressed as means ± SD. Results between the

different groups were compared using the one-way ANOVA test.
Frontiers in Immunology 06
The statistical significance level was set at P-value ≤ 0.05. In this

study, the statistical analyses were performed using the statistical

software SPSS ver. 16.0 (SPSS Inc., Chicago, IL, USA) was used

for statistical analysis. Correlation analysis was performed by log

transforming of the endpoint ELISA or neutralization titers,

followed by linear regression analysis.
Results

Expression and confirmation of
recombinant N and RBD proteins

Recombinant pET22b-RBD was transferred into E. coli

host strain BL21 (DE3). The cells were harvested at 3.5 hours

after 0.5 mM IPTG induction and disrupted by lysis buffer.

Recombinant pET28a-N transferred into E. coli host strain

BL21 (DE3) samples were collected 18 hours after 1mM IPTG

induction. The bacterial pellets were disrupted by lysis buffer to

obtain the cell-free extract for SDS-PAGE analysis and protein

bands were visualized on 12% polyacrylamide gel. As shown in

Figure 3A, a major electrophoresis band corresponding to ∼29
kDa appeared at the culture with IPTG induction (Lane 4 and

5). This band was absent in the culture without IPTG induction

(Lane 3). Thus, RBD was expressed in E. coli upon induction

with IPTG. Expression analysis of N protein by SDS page

demonstrated an approximately ∼46 KDa band as expected

(Figure 3E). Recombinant proteins expressed in E. coli were

extracted according to the procedure described in Section 2.2

(Figures 3B, F). Moreover, the recombinant proteins in the cell

lysate supernatants were purified with Ni-NTA column

chromatography and electrophoresed on 12% SDS-PAGE.

The results of SDS-PAGE showed the high specificity of the

purification of RBD and N proteins using this system. The

purified proteins were finally dialyzed in Phosphate Buffer

Saline by a gradient of urea (Figures 3C, G). The

concentration of RBD and N proteins determined by

Bradford and BCA methods were 0.8 mg/mL and 0.5 mg/ml,

respectively. The expressed recombinant proteins were

confirmed by western blot using anti-RBD (E2T6M)

(Figure 3D) and anti-N (HL344) (Figure 3H) antibodies.

Probing with convalescent serum of COVID-19 patients also

showed bands at the same size for the recombinant proteins

(data not shown).

These results suggest that the recombinant proteins

maintain intact spatial conformation and authentic antigenicity.
Endotoxin removal and quantitation

After being concentrated with protein concentrators,

endotoxin was removed and its content was quantified by P

Pierce™ LAL Chromogenic Endotoxin Quantitation Kit.
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Endotoxin quantitation showed that the endotoxin content in

the purified protein was at the normal level (<0.1 EU/ml). The

results indicated that most of the impurities had been removed

during the purification process.
Specific IgG responses

Humoral responses induced by the recombinant candidate

vaccine were evaluated by immunizing the BALB/c mice with

different combinations of RBD and nucleocapsid proteins and

saponin as the adjuvant three times at two-week intervals. Blood

samples were collected two and nine weeks after the last

immunization and analyzed for total IgG antibodies specific to

RBD and N proteins. Moreover, to determine the Th1/Th2

polarization, the efficacy of each formulation in inducing the

IgG subclasses response in mice was evaluated. The levels of

IgG1 and IgG2a, as representatives of Th2 and Th1 immunity,

respectively, were measured at both weeks. As shown in Figure 4,

compared to the saponin control, mice immunized with either

RBD, N, RBD/N, RBD/saponin, N/saponin, or RBD/N/saponin

induced higher levels of total specific IgG, IgG1, and IgG2a both
Frontiers in Immunology 07
2 and 9 weeks post-last immunization. In all groups and at both

weeks, RBD/N/saponin generated the highest level of specific

total IgG compared to all other groups (P<0.001). Concerning

other groups, RBD/saponin induced higher (p<0.001) levels of

antibody compared to the remaining groups, and no significant

difference was observed within other non-control groups at both

measurement weeks (Figure 4B). However, no significant

difference in specific total IgG was observed among RBD, N/

saponin, and RBD/N groups.

For IgG1 and IgG2a titer, the following results were

observed for both weeks 2 and 9 after the last immunization.

Blood analysis demonstrated that while RBD/N/saponin and

RBD/saponin groups could elicit comparable levels of

antibodies, both induced significantly more IgG1 levels

(p<0.001) compared to all other groups (Figure 4C).

Moreover, a significantly higher level of IgG2a was observed

in RBD/N/saponin group compared to all other study and

control groups (p<0.001). Combining N protein with either

RBD or saponin resulted in a significantly higher level of IgG2a

than its individual administration (p<0.001). Furthermore,

saponin-supplemented RBD elicited a higher (p<0.001) level

of IgG2a compared to RBD alone (Figure 4D).
B C D

E F G H

A

FIGURE 3

(A) Expression of RBD protein, (B) Extraction of RBD protein, (C) Purification and dialysis of RBD, (D) Western blot analysis of RBD. (E) Expression
of N protein, (F) Extraction of N protein, (G) Purification of N protein, (H) Western blot analysis of N protein.
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Furthermore, as evident in Figure 4A, the endpoint titer of

the N/RBD/saponin group was ~107 in this study at week 2 of

post-last immunization. More importantly, no significant

decrease in endpoint total IgG level was observed at week 9.

The total endpoint IgG trend among other groups remained

constant from week 2 to 9. The RBD/saponin compared to RBD,

and N/saponin compared to N group showed a significantly

higher endpoint total IgG (p<0.001). However, no significant

difference in endpoint titer was observed among RBD/saponin,

N/saponin, and RBD/N groups.

Together, the IgG response results of the saponin-adjuvanted

RBD/N vaccine suggest that the adjuvanted formulation of our

recombinant protein-based vaccine could effectively induce long-

lasting virus-specific IgG against SARS-CoV-2 in vaccinated mice.
RBD/N/saponin induced noticeable titer
of virus-neutralizing antibodies against
SARS-CoV-2

In the sVNT, anti-SARS-CoV-2 neutralizing antibodies block

HRP-conjugated RBD protein from binding to the hACE2 protein

coated on an ELISA plate. The sVNT results indicated
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significantly higher sVNT inhibition in the mice vaccinated with

RBD/N/saponin (45.7 ± 1.6) compared to all control and study

groups, suggesting its potent neutralizing effect. The results also

showed that both saponin-adjuvanted RBD and N proteins

elicited considerably higher levels of sVNT inhibition than their

analogous individual forms (p<0.001) (Figure 5). Although RBD

and N groups were reported as positive (PI ≥ 20%) in sVNT test,

their score was highly near the assessment threshold, especially for

the N group. Altogether, the sVNT result demonstrates the ability

of RBD/N/saponin in eliciting neutralizing antibodies against

SARS-CoV-2, emphasizing the enhancement effect of both N

protein and saponin adjuvant on RBD in providing humoral

immunity after vaccination.

In addition, a moderate decrease was observed in NAbs level

at week 9 post-last immunization compared to the one measured

at week 2 in all study groups except RBD/N/saponin. However,

the results showed no noticeable change in NAbs level for the

RBD/N/saponin group, highlighting the efficiency of this

combinatorial formula in providing sufficient persistency and

protective durability as a potent vaccine candidate.

Correlation analysis using a linear regression model was

performed in GraphPad Prism, and Pearson’s correlation

coefficient was calculated to understand the relationship
frontiersin.org
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FIGURE 4

Endpoint total IgG (A), total IgG (B), IgG1 (C) and IgG2a (D) titers of mice immunized with different combinations of RBD and nucleocapsid proteins
were determined by ELISA from sera collected on the two and nine weeks after last immunization. Data are expressed as means ± SD of three mice per
group and difference among individual groups is determined by One way ANOVA and shown as *** for P< 0.001, and ns for a nonstatistical difference.
Compared to different formulations or control groups, saponin-adjuvanted RBD/N vaccine significantly induced the highest level of endpoint total IgG
and IgG2a isotype.
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between viral neutralization response and specific total IgG

antibody titers. The mean titer of SARS-CoV-2 anti-RBD and

anti-N total IgG for 3 mice per group was calculated, and the

results were analyzed against the mean percentage of inhibition

(PI), as representative of neutralization capacity. As shown in

Figure 5B, there is a strong positive correlation between

neutralization (PI) and total IgG titer with Spearman

rho=0.758 (p< 0.005). These results suggest that the subset of

antibodies has high potency in neutralizing the virus and

protecting against upcoming infection and disease. Moreover,

it can be inferred that the chief portion of anti-SARS-CoV-2

neutralization antibodies is against RBD and N proteins.
Saponin-adjuvanted RBD/N candidate
vaccine highly enhanced the stimulation
of T lymphocyte proliferation

The ability of recombinant RBD/N to induce SARS-CoV-2-

specific cellular immune responses was evaluated by analyzing

the splenocytes of vaccinated animals for antigen-specific

lymphoproliferative response by LPA assay. Spleens of three

mice in each group were collected 2 and 9 weeks following the

last immunization, and the impact of spleen lymphocyte

proliferation was analyzed by MTT assay. The results revealed

that the stimulating effect of the RBD/N/saponin group was

significantly more than that of all other groups (p<0.001) at both

weeks. Moreover, higher stimulation index was observed in

RBD/saponin group compared to RBD one (p<0.001) and in

the N/saponin group compared to the N one (p<0.01) at both

weeks (Figure 6). Despite a non-significant difference between

RBD/saponin and N/saponin at week 2, a higher SI was observed

in RBD/saponin group compared to N/saponin group (p<0.05).
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Except for the control saponin group, comparing the results of

those two weeks for each group indicated a decline in SI from

week 2 to week 9. However, the decrease in RBD or RBD/N/

saponin groups was less than that of the other groups (Figure 6).
Saponin-adjuvanted RBD/N candidate
vaccine significantly stimulates the CD4+
and CD8+ induction

To obtain more detailed information on the quality of the

observed T cell responses, we further characterized the

responsive T cell populations and changes of CD4+ and CD8+

T lymphocytes by flow cytometry.

According to Figure 7, immunization with the RBD/N/

saponin induced more CD4+ and CD8+ T lymphocytes in the

spleen compared to other groups (p<0.001). The flow cytometry

results also revealed that compared to the RBD and N groups,

the RBD/saponin and N/saponin groups showed higher levels of

lymphocytes, respectively.
RBD/N/saponin induced higher levels of
IFN- g, IL-12, and IL-4

The balance of protective immunity was assessed by

analyzing T cell responses using the ELISA assay. Splenocytes

were stimulated with synthetic epitopes that spanned the SARS-

CoV-2 RBD and N proteins. Cytokine assay was conducted to

monitor the balance of the cellular immunity induced by

adjuvanted vaccine and to compare it with other groups. As

shown in Figure 8A, the IFN-g production following RBD/N/

saponin vaccination was significantly (p<0.001) higher than that
BA

FIGURE 5

Mean percentages of SARS-CoV-2 neutralizing inhibition. The yellow line represents the sVNT cut-off. PI results < 20% are reported as
“negative”, and PI = 20% are reported as “positive” (A). Comparison of specific IgG endpoint titers with SARS-CoV-2-specific neutralizing
inhibition (B). Correlation analysis was performed by log transformation of the endpoint ELISA or NAbs titers followed by linear regression
analysis *** for P< 0.001.
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of all other study groups at week 2. In the same week, a higher

IFN-g level was observed in RBD/N than N/saponin (p<0.001),

in N/saponin than N (p<0.001), and in RBD/saponin than RBD

(p<0.001) (Figure 8A). Furthermore, the results showed a

dramatic decrease in IFN-g concentration at week 9 compared

to week 2 among all non-control groups. Nevertheless, the IFN-g
level remained at high values for more than 2 months following

the last immunization. Moreover, while the difference in IFN-g
level was negligible between RBD/N and RBD/saponin groups at

week 2, we observed a significantly higher IFN-g in RBD/

saponin compared to RBD/N at week 9, highlighting the role

of saponin in preserving long-term cellular immunity. The trend

within other groups in week 9 was the same as in week 2.

Concerning the IL-4 level, RBD/N/saponin had the highest

level of this cytokine compared to other groups at both weeks 2

and 9. After that, RBD/saponin elicited significantly higher levels

of IL-4 compared to other study groups (p<0.001) at week 2. It

was the same for week 9, except that RBD/saponin and RBD/N

groups showed comparable levels of IL-4. Moreover, RBD/N

versus N/saponin and N/saponin versus N group induced higher

levels of IL-4 (both p<0.001) at both weeks 2 and 9. While a

moderate decrease in IL-4 concentration within all non-control

groups was observed at week 9 compared to week 2, the RBD/N/

saponin showed about 8 times more IL-4 levels than control at

week 9 (Figure 8B).

Regarding IL-12, the RBD/N/saponin group showed the

highest level of this cytokine (p<0.001). Among other groups,
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RBD/saponin induced higher levels of IL-12 (p<0.001) at both

weeks 2 and 9. Moreover, N/saponin had better performance in

eliciting IL-12 (p<0.001) compared to RBD/N and N groups at

both measuring weeks (Figure 8C). From week 2 to week 9, there

was a dramatic decline in IL-12 concentration, especially for

RBD/N/saponin and RBD/saponin groups. However, similar to

the case of IL-4, the IL-12 concentration of RBD/N/saponin

remained 8 times higher than the control.

Overall, the results indicate the efficient induction of both Th1

(according to IFN-g and IL-12 levels) and Th2 (based on IL-4

level) responses by RBD/N/saponin formula. More importantly,

The results showed a noticeable level of the cellular immune

responses at longer periods, adding to the long-term protection

efficacy of our developed candidate vaccine.
RBD/N/saponin is efficient in inducing
cytotoxic T cell responses as indicated
by granzyme B level

The antigen-specific cytotoxic CD8+ T cell responses elicited

upon vaccination were evaluated by measuring the level of

granzyme B, as the mediator of target cell death, in

immunized mice 2 and 9 weeks after the last immunization.

The administration of RBD/N/saponin resulted in a significantly

higher granzyme B level than all study and control groups

(p<0.001) at both weeks (Figure 9). All other study groups had
FIGURE 6

Proliferation of immunized BALB/c mice splenocytes after in vitro re-stimulation with synthetic RBD/N specific epitope. Splenocytes from mice
were harvested two and nine weeks after the last immunization and lymphocyte proliferation was evaluated by the MTT assay. Results represent
the mean ± SD of 3 mice per groups. *** Indicates statistically significant differences between the RBD/N plus saponin adjuvant compared with
other groups as determined by one-way ANOVA (P < 0.001). * for P <0.05, and ns for a nonstatistical difference.
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a more granzyme B level than the control saponin group.

Furthermore, RBD/saponin compared to RBD, N/saponin

compared to N, and RBD/N compared to N/saponin showed a

higher level of granzyme B (p<0.001) (Figure 9). Moreover,

RBD/saponin induced a higher level of granzyme B compared to

the RBD/N group (P<0.01 and P<0.001 for week 2 and week 9,

respectively), suggesting the potent role of saponin in evoking

and long-term preserving of the cytotoxic T cell responses.
Discussion

This research investigates the immune-stimulating effect of

subcutaneously injected different formulations containing
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recombinant SARS-CoV-2 RBD and N adjuvanted with

saponin. Next, the results were compared with the

immunostimulating effect of recombinant proteins alone.

Based on the obtained results, the mice immunized with

saponin-adjuvanted recombinant SARS-CoV-2 RBD+N harbor

a high level of total IgG, IgG1, and IgG2a isotypes. Isotype

switching of antibodies is influenced by cytokines, especially

IFN-g that promotes IgG2a production by Th1 and IL-4 that

induces IgG1 secretion (29). We also observed that with an

increase in total IgG, the neutralization capacity of the candidate

vaccine increased as well. In other words, the immunized

animals could produce high NAb levels just two weeks after

the third immunization, suggesting the efficiency of this

candidate vaccine for emergency vaccination. In addition, we
B C D
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FIGURE 7

Flow cytometry analysis of levels of CD3 + CD4+ and CD3 + CD8+ T cells in immunized mice. Mouse spleen mononuclear cells were isolated
by density gradient centrifugation on Ficoll-Paque. Three different colors were used for CD3+, CD4+ and CD8+ membrane markers. Gated
CD3 positive events were analyzed for CD4 and CD8 production (A-G). The graph of flow cytometry represents data of five experiments with
similar results (H, I). The data represent the means ± standard deviation (SD). Statistical analysis between the four groups were analyzed by one-
way ANOVA (*p < 0.05, ***p < 0.001).
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studied the durability of immune responses, both humoral and

cellular, for 9 weeks after the last immunization. After 9 weeks,

our recombinant RBD/N/saponin candidate vaccine

promisingly preserved the total IgG and IgG subclass titer at a

level highly near week 2, indicating that the vaccine can achieve

long-term humoral protection. This study also showed that the

RBD/N/saponin candidate vaccine induced robust and long-

lasting cellular immune responses. These responses were

characterized by the proliferation of CD8+ and CD4+ T cells

and IFN-g production upon splenocyte stimulation with SARS-

CoV-2 peptides.

Developing safe and effective vaccines to prevent SARS-CoV-2

and its variants has become the most vital priority. In this regard,

producing of recombinant protein-based subunit vaccines is

considered a safe approach due to the inability of these vaccines to

replicate in the host (30), ensuring that the expected immune

response is restricted only to the target antigen alone (31).

Moreover, since there is no need to deal with a live virus during

the production process of such vaccines, they are considered safe,

easy-to-handle, and cost-effective vaccines (32). Some studies have

employed the full-length S protein of SARS-CoV-2 as the leading

antigen for this purpose. However, within the whole S protein, many
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non-neutralizing-epitope regions may increase the rate of antibody-

dependent enhancement (ADE) of infection, regardless of non-

constructive interactions. Therefore, they facilitate virus entry into

thehost cells that containcomplementorFcreceptors andexacerbate

the viral infection (33), a phenomenon also observed for some other

viruses such as SARS-CoV and HIV-1 (34).

Moreover, it has been proven that the RBD fragment of

SARS-CoV-2 S protein is composed of several conformational

epitopes that can stimulate high titers of neutralizing antibodies

and long-lasting B cell-based protective immunity (35, 36).

Hence, substituting full-length S with SARS-CoV-2 RBD as

the antigen not only enhances the immunogenicity of the

candidate vaccine but also minimizes the risk of ADE (37, 38).

However, subunit vaccines are not potent immunogens since

they are not easily recognized by immune cells and are

susceptible to degradation. Thus, recombinant protein vaccines

often require the inclusion of adjuvants or immune stimulators

to ensure long-term protective immunity (39).

As a result, many investigations have been conducted to

construct COVID-19 vaccines based on RBD and by incorporating

immunostimulants and adjuvants. To develop a recombinant

COVID-19 subunit vaccine, RBD was fused to IgG1 Fc to enhance
B
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FIGURE 8

Levels of Th1/Th2 cytokine balance secreted by splenocytes in immunized mice. The supernatants of splenocytes re-stimulated with RBD/N
specific epitope, collected two and nine weeks after the last immunization. ELISA method was performed to determine the level of IFN-g (A), IL-
4 (B) and IL-12 (C) in splenocyte cultures. Results are representative of three independent experiments and are expressed as the mean ± SD.
The RBD/N adjuvanted with Saponin induced strong levels of IFN-g, IL-4 and IL-12 when compared to the other groups. **P < 0.01; ***P <
0.001. ns, nonstatistical difference.
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the candidate vaccine’s humoral and cellular immunity, maybe

through facilitation of antigen presentation. Finally, it was

adjuvanted with MF59, which has been shown to act as a booster

in producingneutralizing antibodies andbothTh1andTh2 immune

responses. This candidate vaccine could elicit high titers of

neutralizing antibodies against SARS-CoV-2 (40). More

interestingly, recently a self-adjuvanting RBD-based vaccine with

cross-neutralization efficiency against all major known variants of

SARS-CoV-2 has been developed. For this purpose, the N-terminus

ofRBDwaschemically taggedwitha-Galactosylceramide (aGalCer)
and the resultant compoundwas assembled on the liposome surface.

This conjugated candidate vaccine could induce higher level of

immune responses when compared to the unconjugated version,

in which the aGalCer incorporated as an adjuvant separately (41).

Using synthetic Th2-skewed iNKT cell agonist (a-
galactosylceramide) as the adjuvant for the RBD-Fc candidate

vaccine, a highly stronger humoral immune response in the form

of neutralizing antibodies was observed compared to previously

reported analogous alum-adjuvanted vaccine, highlighting the

importance of adjuvant in eliciting efficient immune responses

(11). A candidate recombinant dimer protein COVID-19 vaccine

constructed from the fusionof Interferon-a, a panHLA-DR-binding
epitope as the Th cell inducer, and Fc, for increasing the longevity of

immune responses, to RBD adjuvanted with alum, showed

promising immunization in the phase-I clinical trial. Sufficient

immunogenicity and robust immune responses were reported as

the trial’s outcome (42).
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Beside S,N protein as a structural compartment of SARS-CoV-2

has shown potent immunogenic signs (43, 44). N is more conserved

and stable thanS.Hence, recombinant vaccines that incorporateNas

the main or supplementary antigen may be more trustworthy to be

efficient in providing immunity over time when new variants of the

virus emerge (45, 46). Furthermore, the N protein of SARS-CoV-2

harnesses the densest epitopic region targeted by memory CD8+ T

cells.Meanwhile, the shareofS isvery low,highlighting thekey roleof

N in inducing long-lasting immunity (47).

Moreover, the serological evaluation of virus-specific T cells

and their impact on neutralizing antibodies in convalescent

COVID-19 patients showed a tight correlation between the

level of neutralizing antibodies and the number of T cells

specific to N protein. These results suggest the involvement of

both T and B cells in immunity against SARS-CoV-2 (48). The

accumulation of N-specific T cells also has been reported in the

lung of mice immunized with recombinant adenovirus type‐5

expressing SARS‐CoV‐2 N protein (49). Here, we incorporated

N into the recipe of our candidate vaccine to simultaneously

harness neutralizing antibody responses generated against both

RBD and N antigens and T cell-mediated immunity, thereby

promoting the longevity and quality of protection against SARS-

CoV-2 infection.

A mixture of antigens composed of SARS-CoV-2 RBD and N

proteins co-expressed in Nicotiana benthamiana plant recently

indicated potential in inducing high titer of antibodies. To our

knowledge, no study has been conducted on potential cellular
FIGURE 9

Levels of Granzyme B secreted by splenocytes in immunized mice. The supernatants of splenocytes re-stimulated with RBD/N specific epitope,
collected two and nine weeks after the last immunization. ELISA method was performed to determine the level of Granzyme B in splenocyte
cultures. Results are representative of three independent experiments and are expressed as the mean ± SD. The RBD/N adjuvanted with
Saponin induced strong levels of Granzyme B when compared to the other groups. **P < 0.01; ***P < 0.001.
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immunity mediated by that candidate vaccine. However, the authors

hypothesized thatwhile noneutralizing activitywas observedwhenN

protein was administered separately, its presence adds long-lasting

and more efficient protective properties to the recombinant vaccine

rather than RBD alone (50). In the present study, we employed a

robust bacterial expression system to develop a newly formulated

recombinantRBD/Nvaccine.We further equipped it with saponin as

an immunopotentiator adjuvant. The purified proteins were detected

by Western blot using monoclonal antibodies containing different

conformational and linear epitopes in RBD (51). The results suggest

that the recombinant proteins maintain intact spatial conformation

and authentic antigenicity. Also, our findings showed that the

combination of RBD and N proteins with saponin significantly

promoted specific neutralization antibodies, eliciting robust specific

lymphoproliferative and T-cell responses. In addition, a remarkable

increase in multifunctional CD4+ and CD8+ T cells was observed

following vaccination with adjuvanted RBD/N vaccine. The results

suggest thatour formulation isable toelicit amixedTh1/Th2balanced

immune response.

In a recent study, the bacterial RBD was structurally

characterized and compared with the RBD expressed by

HEK293 cells. The results showed that the secondary and

tertiary structure of prokaryotic proteins are highly conserved

and could strongly bind ACE2 (21). The findings suggest that the

absence of glycosylation could partially affect ACE2 binding in

vitro (52). In another study and in parallel with HEK-293 and

insect cells, the E. coli-expressed RBD characterization showed

the ability of the bacterial expression system in producing high-

quality and antibody-recognizable proteins (53).

Regarding the virus-host interaction, glycans on the surface of

viral proteins can play contradictory dual roles. On one hand, they

may facilitate the antibody recognition and act like epitopes. On

the other hand, they may shield the epitopic regions on viral

proteins and thereby hamper efficient antibody production (54–

56). In this regard, lack of glycosylation in E. coli-expressed

proteins can be considered as a drawback of this expression

system for the development of recombinant vaccines. However,

our data clarify that the production of antibodies specific to the

SARS-CoV-2 RBD and N fragments is at a level that seemingly

still justifies the use of bacterial expression system. A detailed

comparative study can better elucidate if, and to what extent,

the type of expression system may affect the level of

antibody production.

To present recombinant protein vaccines to CD8+ T cells

by dendritic cells and stimulate sufficient and effective

immune responses, they need to be supplemented with

immunopotentiator adjuvants. Adjuvants developed based on

saponins lead immune responses toward Th1 and CTL

responses mediated by augmentation in release of IFN-g by

dendritic cells, thereby resulting in efficient humoral and cellular

immune responses (20). In support, the saponin-adjuvanted

recombinant RBD/N vaccine reported in this study showed

robust immunogenicity and efficacy in mice. Hence, it is a
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potent COVID-19 vaccine candidate and worth further

development. It has been shown that saponin can motivate

cellular immunity and stimulate antibody induction (57). The

adjuvant also could increase the duration of the immune

response and allow a major dose reduction for the vaccine

antigen (58). The present study showed that saponin had a

significant adjuvant effect and induced a strong humoral and

cellular immune response against the RBD. During the 9-week

follow-up, the titer of virus-NAb did not significantly decrease.

These results provide immunogenicity data for a vaccine using

RBD expressed by a bacterial host as the immunogen.
Conclusion

Subunit vaccines, constructed based on recombinant antigen

proteins with promising immunogenicity, can stimulate host

immunity. Our recombinant bacterially-expressed RBD/N vaccine

adjuvanted with saponin demonstrated immunogenicity in the

BALB-c mouse model. If reproduced in humans in ongoing

studies, the vaccine could potentially be administered in humans

for protection against COVID-19. Regarding the ease of production,

robust and efficient antiviral responses, and durability of immune

responses, the RBD/N/saponin candidate vaccine is highly worth

investigating in clinical trials. However, as the candidate vaccine

investigated here is a newly formulated SARS-CoV-2 recombinant

vaccine produced in E. coli, it will be beneficial to compare the results

of this study with a similar approach using a distinct expression

system and balance the advantages and disadvantages of both

systems and then decide on further course of action.
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