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Abstract: New severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, Omicron,
contains 32 mutations that have caused a high incidence of breakthrough infections or re-infections.
These mutations have reduced vaccine protection against Omicron and other new emerging variants.
This highlights the need to find effective treatment, which is suggested to be stem cell-based therapy.
Stem cells could support respiratory epithelial cells and they could restore alveolar bioenergetics. In
addition, they can increase the secretion of immunomodulatory cytokines. However, after transplan-
tation, cell survival and growth rate are low because of an inappropriate microenvironment, and stem
cells face ischemia, inflammation, and oxidative stress in the transplantation niche which reduces
the cells’ survival and growth. Exercise-training can upregulate antioxidant, anti-inflammatory, and
anti-apoptotic defense mechanisms and increase growth signaling, thereby improving transplanted
cells’ survival and growth. Hence, using athletes’ stem cells may increase stem-cell therapy outcomes
in Omicron-affected patients.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been transmitting
worldwide and has become a global pandemic [1]. In addition to pneumonia, SARS-CoV-2
has the potential to harm other organs such as the heart, liver, and kidneys, as well as the
blood and immune systems, which may lead to multiorgan failure and death [1,2]. The
emerging new variants have worsened this situation because they are more resistant to the
vaccination and have high transmissibility. Discovering a new variant (i.e., B.1.1.529/BA.1)
on 24 November 2021, caused widespread panic worldwide [3].

The World Health Organization (WHO) Technical Advisory Group on SARS-CoV-2
Virus Evolution classified B.1.1.529 as the fifth variation of concern (VOC) and called it
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Omicron, on November 26th [4]. The primary viral component that affects the virus’s
infectivity and antigenicity, the spike protein, contains 32 mutations in this variant [4]. The
intricate mutations in the spike have been postulated as a possible reason for immunity
escape and a high incidence of Omicron breakthrough infections or re-infections [4]. As a
result, researchers suggest that vaccine protection against Omicron or the new emerging
variants may be reduced [5]. Despite emerging newer variants such as XE, the number
of Omicron infection per day is by far the highest among all variants [6]. The very high
rate of transmissibility and mortality as well as its vaccine-resistant properties have made
Omicron the first priority in the COVID19 studies. After uncovering the main mutations in
Omicron, as described earlier, researchers have suggested that stem-cell therapy could be
one of the most effective treatments [7,8]. However, the effectiveness of stem-cell therapy is
limited by the low survival rate of transplanted cells [9]. We believe that exercise training
could positively affect stem cells in the athlete’s body, increasing their survival rates after
transplantation. Therefore, we suggest using athletes’ stem cells in treating Omicron-
affected patients. We will explain the rationale behind this suggestion in this article.

2. Cell Therapy as a New Approach to Treatment of Omicron-Infected Patients

According to previous studies, cell-based treatment may be a promising therapeutic
option for lung injury such as acute respiratory distress syndrome (ARDS) [10,11]. Stem
cells can self-renew and differentiate into multiple cell types, making them an appeal-
ing option for cell therapy. Many studies have promoted stem-cell therapy as one of
the emerging treatments for refractory diseases with no recognized treatments, including
viral infections such as COVID-19 [12,13]. Particular attention has been placed on mes-
enchymal stem cells (MSCs) because of the ethical and legal limitations associated with
other stem cells [14,15]. The majority of registered stem-cell therapy clinical trials have
proposed using MSCs as a treatment modality for COVID-19 patients [16–18]. Effects of
MSC therapy in the lung are associated with the secretion of anti-microbial peptides and
proteins, immunomodulatory and antiapoptotic cytokines, and several growth factors and
extracellular vesicles [19–21]. In addition, the protective effects of MSCs also include direct
cell–cell interaction with respiratory epithelial cells, restoring alveolar bioenergetics [22].
Furthermore, keratinocyte growth factor and angiopoietin-1 secreted by MSCs have been
demonstrated to repair alveolar-capillary walls in ARDS caused by viral infection [23–25].
Leng et al. [26] reported that MSC transplantation reduced levels of C-reactive protein
10-fold, increased oxygen saturation by 89–98% with a reduction in fever, and reduced
shortness of breath and pneumonia infiltration, with COVID-19 patients testing negative on
the 13th day after MSC transplantation and the immune profile improved with a decrease in
pro-inflammatory and an increase anti-inflammatory cytokines. Furthermore, there was an
absence of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2
(TMPRSS2), with high expression of certain trophic factors suggested as other possible
immunomodulatory mechanisms of MSCs. Added to this, Orleans et al. [27] and Liang
et al. [28] considered immunomodulatory properties of MSCs as the primary mechanism of
action in COVID-19 patients with no known adverse or hypersensitivity reactions.

3. The Factors That Make Cell Therapy Less Effective

Experimental and clinical studies have demonstrated that the main obstacles in cell
therapy results are low cell survival and low cell growth rate [29,30]. After transplantation,
cells are exposed to a hostile and inappropriate microenvironment that includes ischemia
(a lack of oxygen and nutrients), inflammation, and oxidative stress (superoxide anions
and hydrogen peroxide) [31].

Evidence has shown that MSCs have become apoptotic following transplantation
and that fewer than 1% of transplanted cells survive four days after injection. Several
methods, including cell preconditioning and tissue engineering, have been used to increase
transplanted cells’ survival [32]. Cellular preconditioning has been suggested as the most
effective method [33,34]. Different preconditioning methods, such as sub-lethal exposure to
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hypoxia, heat shock, and cytokines have been used to strengthen MSCs [35,36]. Exposure
to a stressful environment can make the cells more resistant, helping them to survive in
an inappropriate niche after transplantation [37]. Cell survival can also be enhanced by
application of a supportive scaffold to deliver therapeutic cells safely to the wound site
and to shield the delivered cells from immune system attack while retaining permeability
to therapeutic, signaling, and metabolic factors. Scaffolds facilitate connection between
hostile vasculature and promote cells survival. However, studies have shown that using the
preconditioning method could enhance regenerative function of stem cells by controlling
the fate and function of stem cells [32,38].

4. Exercise Training Could Increase Stem-Cell Therapy Outcomes

Exercise training is considered a helpful preconditioning method in which MSC
donors participate in a structured, purposeful exercise training program, or, MSC donors
are themselves athletes [39–41]. It has been shown that four weeks of low- and high-
intensity exercise training can increase the number of stem cells and increase newly formed
cardiomyocytes by 4% to 7% [42,43]. Exercise training could upregulate specific growth
factors and cytokines such as the insulin-like growth factor-1 (IGF-1) and the transforming
growth factor-beta1 (TGF-β1), neuregulin-1 (NRG-1), periostin (POSTN), and platelet-
derived growth factor (PDGF), and their associated signaling pathways in cardiac stem
cells [42]. Among these, the IGF-1-phosphoinositide 3-kinase (PI3K)/serine/threonine
kinase Akt (protein kinase B) signaling pathway is considered the most well-known cascade,
and may explain the positive effect of exercise on MSC therapy, not only in the heart but
also in other tissues, because it can regulate several cellular processes including metabolism,
apoptosis, autophagy, aging, and growth, which all contribute to increasing MSC survival
and growth [44,45].

Exercise training can play an important role in the function and fate of stem cells [39].
First, irisin secretion, induced by exercise, could facilitates MCS homing in the target
tissue [40,41]. Furthermore, irisin provides antiapoptotic effect on MSCs by the extracellular-
signal-regulated kinase1/2–superoxide dismutase 2 (ERK1/2-SOD2) pathway because
ERK1/2 inactivation and SOD2 knockdown abolish the antiapoptotic effect [40].

Second, exercise preconditioning reduces cells apoptosis and promotes cell survival
and growth by improving mitochondrial repair and biogenesis, consequently ameliorating
cellular respiration [39,46]. Studies have shown that MSC potency for proliferation and
differentiation enhances after exercise training [41].

Third, exercise training can increase the expression of proangiogenic factors thereby
promoting angiogenesis in MCSs.

Fourth, paracrine function of MSCs is reinforced with exercise [40]. Strong evidence
suggests that higher levels of physical activity elicit anti-inflammatory effects, thereby
lowering the levels of inflammatory cytokines such as IL-6, TNF-α, IL-1β, and CRP [47–51],
which, in turn, increase MSCs survival.

Fifth, exercise training is shown to increase nitric oxide (NO) production by over-
expression of nitric oxidase synthase. NO has anti-apoptotic effects, and can increase
MSC paracrine activity and MSC immunomodulatory properties, thereby improving MSC
survival [45].

Sixth, studies have shown that regular light to moderate intensity exercise training
could gradually strengthen endogenic antioxidant defense mechanisms, diminishing ox-
idative stress [52–55]. When reactive oxygen species (ROS) production exceeds cellular
antioxidant capability, oxidative stress could trigger apoptosis [56] It is well documented
that high levels of physical activity are associated with reduced accumulation and produc-
tion of ROS and decreased levels of apoptosis [57,58]. In addition, exercise decreases the
expression of caspase-3 and -7 and inhibits apoptosis in stem cells [59].

Seventh, c-Kit, a type III receptor tyrosine kinase (RTK), is involved in multiple
intracellular signaling. It is mainly considered a stem-cell receptor that participates in vital
functions of the mammalian (including human) bodies [60]. c-kit activation plays a critical
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role in the differentiation, proliferation, and survival of stem cells [46,61,62]. Recent data
illustrated that exercise training increases c-Kit expression in stem cells [45,63].

It should be noted that the adaptations induced by exercise training could main-
tain/increase until 2–6 after weeks detraining [61,64]. In addition, as mentioned earlier,
MSCs can be obtained from bone marrow, muscle, fat, brain, and skin [65]. While fat tissue
has been used more than other tissues, as it is the most abundant [65], we suggest, instead,
using bone marrow from athletes because of the low body fat. We should also keep in
mind that cells obtained from younger donors are less susceptible to oxidative damage, age
considerably more slowly in culture, and have a higher proliferation rate [62]. Therefore,
MSCs obtaining from the bone marrow of young athletes would be the best choice for cell
therapy in Omicron-infected patients.

5. Conclusions

Current evidence shows that several mechanisms, including ischemia, inflammation,
oxidative stress, and cell apoptosis contribute to a low cell-survival rate in MSC therapy.
Given the modulatory effects of exercise training on MSCs (e.g., potential anti-inflammatory
effects, strengthening endogenic antioxidant defense, and protective effects against apop-
tosis) in addition to more advantages associated with using bone marrow from young
people, using young athletes’ bone marrow could be the best choice for cell therapy in
Omicron-infected patients.
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