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ABSTRACT
Comprehensive understanding of human cancer mechanisms requires the 

identification of a thorough list of cancer-associated genes, which could serve as 
biomarkers for diagnoses and therapies in various types of cancer. Although substantial 
progress has been made in functional studies to uncover genes involved in cancer, 
these efforts are often time-consuming and costly. Therefore, it remains challenging 
to comprehensively identify cancer candidate genes. Network-based methods have 
accelerated this process through the analysis of complex molecular interactions in the 
cell. However, the extent to which various interactome networks can contribute to 
prediction of candidate genes responsible for cancer is still enigmatic. In this study, we 
evaluated different human protein-protein interactome networks and compared their 
application to cancer gene prioritization. Our results indicate that network analyses 
can increase the power to identify novel cancer genes. In particular, such predictive 
power can be enhanced with the use of unbiased systematic protein interaction maps for 
cancer gene prioritization. Functional analysis reveals that the top ranked genes from 
network predictions co-occur often with cancer-related terms in literature, and further, 
these candidate genes are indeed frequently mutated across cancers. Finally, our study 
suggests that integrating interactome networks with other omics datasets could provide 
novel insights into cancer-associated genes and underlying molecular mechanisms.

INTRODUCTION

Over the past few decades, cancer related genes have 
generally been identified using genome wide association 
studies [1–3]. Although large numbers of cancer related 
gene candidates have been discovered [4, 5], it is still 
difficult to understand the mechanisms underlying cancer. 
Given the functional interdependencies among genes 
in a human cell, it is well known that cancer is rarely a 
consequence of an abnormality in a single gene but the 
perturbation of complex molecular networks [6].

With the release of large-scale protein-protein 
interaction (PPI) networks in human, the emerging 
of network medicine offers a platform to explore the 
molecular mechanisms in cancer [7–10]. Network 

analyses have indicated that highly connected nodes in 
protein interaction networks, called hubs, have a special 
biological role. It has been demonstrated that genes 
encoding hubs are often conserved and essential [11]. 
These results have led to the hypothesis that, in humans, 
hub genes could be associated with cancer [12]. Based 
on this hypothesis, an increasing number of studies have 
begun to use interactome networks to prioritize cancer 
related genes [13–16]. The topological features of degree 
and other centrality are demonstrated to be valuable 
measures for predicting disease genes [17]. Using a 
phenomic ranking of protein complexes linked to human 
disease, Lage et al. (2007) have developed a Bayesian 
predictor to identify disease related genes by pooling 
human interaction data from several large databases [18]. 
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Xu and Li (2006) have used a classifier based on several 
topological features, including degree, to identify cancer 
genes. In their study, Online Predicted Human Interaction 
Database (OPID) was used [14]. Although these studies 
have already provided network-based methods to identify 
cancer genes, the networks used in these studies remain 
incomplete and insufficient quality to derive accurate 
global prioritization. 

With the development of high-throughput 
experimental and large-scale computational methods, 
systematic interactome datasets in human were generated. 
Zhang et al. (2013) generated proteome-scale interactions 
among genes based on computational predictions 
(PrePPI) [19]. However, this interactome dataset might be 
inherently limited by biases of current knowledge used in 
prediction models. In addition, by applying an integrative 
global proteomic profiling approach, Havugimana et al. 
identified a network (Co-Frac) of 13,993 high-confidence 
physical interactions among 3,006 human proteins [20]. 
Recently, Huttlin et al. generated a proteome-scale 
interactome dataset in human using high-throughput 
affinity-purification mass spectrometry (AP-MS), resulting 
in 23,744 interactions among 7,688 proteins [21]. In 
addition, Rolland et al. reported a systematic unbiased map 
of about 14,000 high-quality human binary PPIs (HI-II-14) 
as well as an interactome dataset composed of curated PPIs 
with at least two pieces of supporting evidence in literature 
(Lit-BM) [22]. These proteome-scale interactome datasets 
will enable deeper insights into understanding genotype-
phenotype relationships in human disease.

Given that the majority of existing cancer gene 
prioritization studies are based on literature knowledge, 
the comprehensive list of cancer genes remains to be 
discovered. With the emergence of systematic proteome-
scale interactome mapping technologies, it provides a 
unique opportunity not only to identify novel cancer 
candidate genes, but also to comparatively evaluate the 
power of each interactome network map for prioritization 
of cancer genes. Here, we systematically analyzed multiple 
PPI network datasets and compared their predictive power 
for cancer candidate gene identification. 

RESULTS

Comparative analysis of interactome network 
datasets for prioritization of cancer genes

Human PPI networks have been widely used in 
prioritizing cancer related genes. To investigate the 
power of different interactome datasets for prioritizing 
cancer genes, we assembled five types of human PPI 
networks from previous studies (see methods). We then 
ranked each gene based on their topological features in 
each network. Using the genes obtained from Sanger 
Cancer Gene Census (CGC) as gold standard for 
known cancer genes, we found that the literature-based 

network (Lit-BM) exhibited the highest power to recover 
known cancer genes when genes were ranked by degree 
(Figure 1A and 1B). In addition, the PrePPI network 
also recovered known cancer genes effectively. It was 
expected that Lit-BM and PrePPI had higher recovery 
than the other three types of systematic experimental 
networks, since the former two were both based on the 
literature. Use of these two networks for prioritizing 
cancer genes might be restricted to genes with multiple 
pieces of evidence in the literature.

Recently, several lines of evidence have 
demonstrated that high-throughput systematic networks 
can generate novel interactions not found in literature. In 
terms of the systematic networks, HI-II-14, co-Frac and 
AP-MS all provide us a chance to identify cancer related 
genes in an unbiased manner. For these three types of 
systematic networks, it seemed that HI-II-14 exhibited a 
better performance than the other two (Figure 1A and 1B) 
in its predictive power. Next, we investigated whether 
“topological features” based method could effectively 
recover known cancer genes in each network context. 
Genes in each network were randomly ranked and then we 
computed the recovery for the top ranked 10% genes. This 
procedure was repeated 1,000 times. The fold enrichment 
was defined as the proportion of recovered genes based 
on network centrality ranking versus the mean proportion 
in random networks. As a result, we found that Lit-BM, 
PrePPI and HI-II-14 exhibited a strong tendency to recover 
known cancer genes (Figure 1A and 1B). However, the 
other two networks presented less power to recover these 
genes. Next, we also compared the accuracy of each 
network in predicting cancer genes, and found that HI-
II-14 exhibited the highest accuracy compared to the other 
networks (Figure 2). Together, results from our comparative 
analyses suggest that HI-II-14 provides a high-quality and 
unique predictive power for prioritizing cancer genes from 
genome-wide studies.

High-throughput systematic networks are robust 
for prioritization of cancer genes

Despite advances in high-throughput systematic 
interactome mapping, the human interactome maps 
remain incomplete. Next, we investigated whether the 
incompleteness could affect the prediction of cancer 
genes. The results above indicate that HI-II-14 provided 
the best context for prioritizing cancer genes among 
systematic unbiased networks. Therefore, we focused on 
this network for further analysis. Increasing fractions of 
interactions were randomly removed from the original 
HI-II-14 network, and then we re-computed the degree of 
each gene. Genes were ranked by their newly computed 
degree and the recall, accuracy and specificity were 
obtained at different percentages of random interaction 
loss. By this down-sampling analysis, we found 
negligible effect on cancer gene prediction over a broad 
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range of network sizes (Figure 3). These measurements, 
such as accuracy and specificity, remained steady over 
a wide range of HI-II-14 network sizes. These results 
suggest that despite the incompleteness of current high-
throughput systematic networks, they have reached 
sufficient coverage to allow for accurate prioritization of 
cancer genes. 

Top ranked genes are involved in cancer related 
functions 

Next, we focused on the top-100 ranked candidate 
cancer genes in HI-II-14 network. Of these genes, we 
first computed the relative rank in each network, which is 
defined as the degree rank divided by the total number of 
genes in the corresponding network. We observed that the 
majority of these 100 genes are with relatively lower rank 
in the HI-II-14 network (Figure 4A). There were 71 genes 
that were also observed in one of the other networks. 
However, only three genes (C19orf46, HOXA1 and 
NCK2) were with relatively lower rank in other networks 
(Figure 4B). 

In addition, we investigated what functions these 
top ranked genes might play in cellular signaling. 
Functional enrichment analysis indicated that the majority 
of these genes were involved in regulation of enzyme 
activity functions (Figure 4C–4E), such as regulation of 
ligase activity and regulation of protein ubiquitination. 
Protein ubiquitination has been demonstrated in many 
cellular functions, such as cell proliferation, apoptosis, 
cell cycle regulation and DNA repair. It has become 
apparent that dys-regulation of ubiquitination pathways 
results in the development of many human diseases, 
including cancer [23].

Top ranked genes are with higher mutation 
frequency across cancers

In order to further explore whether the top ranked 
genes were related to cancer, we searched PubMed and 
counted the number of publications in which the gene and 
“cancer” or “tumor” co-occurred. We found that the top 
ranked genes more frequently co-occurred with cancer 
or tumor than the bottom ranked genes (Figure 5A, 
p-values < 0.01). In addition, we also computed the 
mutation frequency of the top ranked genes across 17 
types of cancer in TCGA. We found that these genes 
were with higher mutation frequency in the majority 
of cancers (Figure 5B). All of the 100 top ranked genes 
were frequently mutated in at least one cancer sample 
(Figure 5C). These results suggested that the top ranked 
genes could be putative cancer drivers. Next, we 
performed pathway enrichment analysis for these genes 
using ConsensusPathDB [24, 25]. These genes were 
mainly involved in TNF signaling pathway (Figure 5D). 
TNF (Tumor Necrosis Factor) has been shown to be a 
multifunctional pro-inflammatory cytokine, with effects 
on lipid metabolism, coagulation, insulin resistance, as 
well as endothelial function [26–28]. Several lines of 
evidence have shown that TNF can be considered as an 
anti-cancer agent. Together, all these results strongly 
suggest that our prioritized candidates are likely to be 
cancer-associated genes.

DISCUSSION

The identification of candidate driver cancer genes 
is important to researchers and clinicians for diagnosing 
and treating cancer. However, comprehensively identifying 

Figure 1: Comparative analysis of different interactome datasets for prioritizing cancer genes. (A) The recall rate of 
different interactome datasets based on degree. (B) The recall rate of different interactome datasets based on betweenness. The figures on 
the bottom right are fold enrichment of each network at the cutoff of 10%. P-values are computed based on the frequencies of occurrence 
in randomized networks.
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candidate cancer genes is time consuming and costly. 
Network based methods have accelerated the understanding 
of the mechanism underlying cancer. However, it is difficult 
to decide the optimal and appropriate network to use in this 
process. The purpose of this study was to evaluate different 
human interactome networks for their application to cancer 
gene prioritization. In order to evaluate the power of 
different interactome datasets, we used network centrality 
to rank genes in this study. Although other well-established 

disease gene prioritization methods like DAPPLE [29], 
Metaranker [30], PRINCE [31] and some random walk 
methods [32, 33] have been demonstrated to be valuable 
methods for predicting disease related genes, it is complex 
to compare these different methods in multiple network 
contexts.

A comparative analysis of five human interactome 
datasets, including Lit-BM, PrePPI, HI-II-14, co-Frac and 
AP-MS was performed. Our comparative analysis results 

Figure 2: The accuracy of different interactome networks in prioritizing cancer genes.

Figure 3: The accuracy, recall and specificity remain steady over a wide range of network sizes in the systematic 
unbiased HI-II-14 interactome.
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indicate that these networks can be used to identify cancer 
related genes. In addition, Lit-BM, PrePPI and HI-II-14 
may be good choices for this purpose. It is not surprising 
that Lit-BM and PrePPI network have higher power for 
the prioritization of cancer genes, because these two 
networks may have bias for the genes that are well studied. 
As shown in our previous study, interactions between 
highly studied genes formed a striking “dense zone” in 
contrast to a large sparse zone involving poorly studied 
genes [22]. These results emphasize a need for unbiased 
systematic PPI mapping for cancer gene prioritization. 
HI-II-14, co-Frac and AP-MS networks provide proteome-
wide interactome datasets for cancer gene identification. 
Our comparative analysis indicates that HI-II-14 exhibits 
higher power for cancer gene prioritization than the other 
two systematic interactome networks. 

Although most of these networks are currently 
incomplete, our network sampling analysis indicates that 
HI-II-14 network is robust to identify cancer related genes. 
In addition, we found that different networks only cover a 

subset of genes in the genome. However, for the top 100 
ranked genes in HI-II-14, there are 71 genes also covered 
by other networks. Only three genes are with relatively 
lower rank in other networks, indicating the greater power 
of HI-II-14. Based on the HI-II-14 network, we ranked 
the genes by their degree. Functional analysis indicates 
that the top ranked genes co-occurred with cancer related 
terms frequently in literature. Furthermore, these genes 
were frequently mutated across cancers. Together, these 
results demonstrate the key roles of these top ranked genes 
in cancer. 

Integration of multiple omics datasets, such as gene 
expression, mutation, functional annotation as well as 
molecular interaction datasets will lead to more accurate 
prediction of cancer genes. Our analysis indicates that 
high-throughput systematic networks such as HI-II-14 are 
valuable for cancer gene prioritization, and integrating 
such interaction networks with other omics datasets 
will undoubtedly provide novel insights into molecular 
mechanisms underlying cancer.  

Figure 4: Functional enrichment of top ranked candidate genes in the systematic HI-II-14 network. (A) Relative rank 
of top genes in each network. (B) Overlap of the top ranked genes between HI-II-14 network and other networks. (C–E) GO function 
enrichment for the top ranked 100 genes. Red points indicated the ratio of selected genes for each functional term. 
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Figure 5: Top ranked predicted cancer candidate genes exhibit higher mutation frequency across cancers. (A) Top ranked 
genes tend to co-occur with the key words “cancer” and “tumor” in literature. (B) Top ranked genes are with higher mutation frequency.(C) The 
circos plot shows the mutation landscape of the top ranked genes across 17 types of cancer. (D) The enriched pathways of top ranked genes.
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MATERIALS AND METHODS

Human interactome datasets

Here, five types of human protein-protein interaction 
(PPI) datasets were assembled from different databases and 
references. The following PPI networks were included for 
our analysis: the largest experimentally determined binary 
interaction map (HI-II-14) [22], a set of protein interactions 
with multiple pieces of evidence in the literature (Lit-BM) 
[22], a collection of predicted PPIs of high confidence 
(PrePPI) [3] and a systematic co-fractionation map (co-
Frac) [24]. We also obtained the BioPlex (biophysical 
interactions of ORFeome-based complexes) network from 
the study of Huttlin et al., including 23,744 interactions 
among 7,668 genes [23]. All these interactions were 
mapped to NCBI Entrez gene ID and excluded self-loop 
and redundant interactions. The resulting statistics of 
interactions was summarized in Table 1. 

Cancer genes

The known human cancer genes were obtained from 
the Sanger Cancer Gene Census (CGC) [34] which is a 
comprehensive catalogue of genes implicated in cancer. 
In total, we obtained 570 genes from CGC for analyses. 

Topological features of genes in protein-protein 
interaction networks

Here, we considered two types of topological 
features of genes in human protein-protein interaction 
networks. The first one is degree which is defined as the 
number of partners in the network. And the second one is 
betweenness centrality, which indicates how central a gene 
is in interaction networks. The betweenness is defined as 
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where gjk(i) is the number of shortest paths 
between gene j and k across gene i, and is the total 
number of shortest paths that connect genes j and k. 
The higher of these two topological features, the more 
important the gene is in the network. 

Comparative analysis of different interactome 
networks

In order to compare the power of different 
interactome datasets in prioritizing cancer genes, we 
obtained known cancer genes from CGC. These genes 
were used as positive controls. The remaining genes in 
each network were considered as negative controls. 
Then the genes in each network were ranked based on 
the topological features (such as degree). For a selected 
threshold (for example top 10% genes ranked by 
topological features), we considered these top ranked 
genes as predicted cancer genes, and then the following 
measures were calculated:
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Then, we computed these measures for all thresholds 
and compared the power of each network.

Effect of network completeness

To evaluate the effect of network completeness 
on the prediction of cancer genes, we randomly 
removed increasing percentage of interactions from the 
PPI network, and re-predicted the cancer genes based 
on their topological features in the remaining network. 
We recalculated the recall, accuracy, and specificity for 
the performance as a function of fractions of random 
PPI loss.

Genome-wide mutation datasets across cancers

The genome-wide mutation datasets across 17 
types of cancer were downloaded from TCGA as maf 
files [35, 36]. Only the Hi-Seq platform datasets were 
considered in our analysis. For each gene, we obtained 

Table 1: The statistics of different PPI resources
Network #genes #interactions #cancer genes
Lit-BM 5,545 11,045 131
PrePPI 4,989 25,403 95
HI-II-14 4,303 13,944 45
Co-Frac 2,898 13,571 35
AP-MS 7,668 23,744 102
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the mutation frequency which is defined as the number of 
mutated samples divided by the total number of samples 
in each cancer. The frequency of the top 100 ranked genes 
and the bottom 100 ranked genes were compared by 
Wilcox rank sum test. 
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