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Abstract

In 1972, J. Woodland Hastings and colleagues predicted the existence of a proton selective

channel (HV1) that opens in response to depolarizing voltage across the vacuole membrane

of bioluminescent dinoflagellates and conducts protons into specialized luminescence com-

partments (scintillons), thereby causing a pH drop that triggers light emission. HV1 channels

were subsequently identified and demonstrated to have important functions in a multitude of

eukaryotic cells. Here we report a predicted protein from Lingulodinium polyedrum that dis-

plays hallmark properties of bona fide HV1, including time-dependent opening with depolariza-

tion, perfect proton selectivity, and characteristic ΔpH dependent gating. Western blotting and

fluorescence confocal microscopy of isolated L. polyedrum scintillons immunostained with

antibody to LpHV1 confirm LpHV1’s predicted organellar location. Proteomics analysis demon-

strates that isolated scintillon preparations contain peptides that map to LpHV1. Finally, Zn2+

inhibits both LpHV1 proton current and the acid-induced flash in isolated scintillons. These

results implicate LpHV1 as the voltage gated proton channel that triggers bioluminescence in

L. polyedrum, confirming Hastings’ hypothesis. The same channel likely mediates the action

potential that communicates the signal along the tonoplast to the scintillon.

Introduction

The first postulation that a depolarization-activated, proton selective channel (HV1) should

exist was published in 1972 by J. Woodland Hastings and colleagues [1]. A decade later,

Thomas and Meech reported the first voltage-gated proton conductance to be identified by

voltage-clamp studies, in snail neurons [2]. Subsequent electrophysiological studies have eluci-

dated the defining characteristics of a family of voltage-gated proton-selective channels, HV1,

which have been found in amphibia [3], rat [4], human [5–8], insects [9], and both multicellu-

lar [10] and unicellular marine species [11,12]. HV1 are exquisitely selective for protons [13],

PLOS ONE | DOI:10.1371/journal.pone.0171594 February 8, 2017 1 / 24

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Rodriguez JD, Haq S, Bachvaroff T,

Nowak KF, Nowak SJ, Morgan D, et al. (2017)

Identification of a vacuolar proton channel that

triggers the bioluminescent flash in dinoflagellates.

PLoS ONE 12(2): e0171594. doi:10.1371/journal.

pone.0171594

Editor: Bernd Sokolowski, University of South

Florida, UNITED STATES

Received: September 26, 2016

Accepted: January 23, 2017

Published: February 8, 2017

Copyright: © 2017 Rodriguez et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data availability statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by NIH grant

GM102336 (https://grants.nih.gov/funding/index.

htm) to TED and SMES, NSF grant MCB-1242985

(http://www.nsf.gov/funding/) to TED and SMES; a

grant from the Kennesaw State University Office of

the Vice President for Research (https://www.

kennesaw.edu/research/ovprgrants.html) to SMES;

a Birla Carbon Scholarship (http://csm.kennesaw.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171594&domain=pdf&date_stamp=2017-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171594&domain=pdf&date_stamp=2017-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171594&domain=pdf&date_stamp=2017-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171594&domain=pdf&date_stamp=2017-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171594&domain=pdf&date_stamp=2017-02-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0171594&domain=pdf&date_stamp=2017-02-08
http://creativecommons.org/licenses/by/4.0/
https://grants.nih.gov/funding/index.htm
https://grants.nih.gov/funding/index.htm
http://www.nsf.gov/funding/
https://www.kennesaw.edu/research/ovprgrants.html
https://www.kennesaw.edu/research/ovprgrants.html
http://csm.kennesaw.edu/research/birla-carbon-scholars.php


resulting from a critical Asp residue in the S1 transmembrane helix [12,14] that is thought to

interact with an arginine in S4 [15,16]. HV1 have a single-channel conductance 103 smaller

than most ion channels [17], reflecting the 106 lower concentration of permeant ions. They

open with depolarization but their voltage-dependence is strongly influenced by both external

and internal pH, pHo and pHi [18], such that a one unit change in either pHo or pHi (or in the

pH gradient ΔpH = pHo—pHi) shifts the gH-V relationship by 40 mV [19]. Predicted HV1

genes are nearly ubiquitous in eukaryotic genomes and the protein has multiple demonstrated

functions in various eukaryotic cells [20].

Dinoflagellate bioluminescence is a striking phenomenon, producing brilliant blue flashes

in the ocean water when the organisms are stimulated mechanically [21] in the form of shear

stress [22,23]. The biochemical basis of dinoflagellate light production was elucidated in semi-

nal work over several decades by Hastings and colleagues, who focused mainly on Lingulodi-
nium polyedrum (formerly Gonyaulax polyedra). This work established that the light originates

in organelles called scintillons arising from evaginations of the central vacuole membrane [24–

28]. Scintillons contain a breakdown product of chlorophyll [29] called luciferin that is bound

to luciferin binding protein (LBP) at pH> 7, while at pH < 7 LBP releases luciferin, thereby

enabling it to interact with the enzyme luciferase (LCF) that catalyzes the reaction with oxygen

and luciferin to produce light [1,24,26,30–32]. Low pH activates the LCF in bioluminescent

dinoflagellates [26,33] providing a second mechanism by which protons trigger the flash.

Fogel and Hastings [1] reasoned that a hypothetical voltage-sensitive proton channel should

respond to a stimulus-induced depolarization of the L. polyedrum vacuole membrane [34],

and that such a channel would transport protons from the acidic vacuole into the scintillons,

thus providing the pH change that triggers bioluminescence. HV1 proton channels have been

reported in several non-bioluminescent unicellular marine species [11,12] where they function

in calcium fixation (coccoliths) and possibly in feeding (dinoflagellates). Here we identify a

bona fide HV1 in the bioluminescent species studied by Hastings and colleagues, L. polyedrum,

and demonstrate its scintillon localization. In addition to confirming a longstanding predic-

tion we authenticate a unique mode for HV1 in the vacuole membrane as the control step in

the signal transduction pathway that leads to dinoflagellate bioluminescence.

Results

Sequence similarity searches of RNA-seq assemblies [35,36] from the bioluminescent organ-

ism L. polyedrum revealed a sequence (gi: 346282507) with the signature sequence pattern [12]

that has proven to be diagnostic of HV1 (longest open reading frame from this assembled tran-

script is shown in S3 Table.) cDNA libraries prepared from L. polyedrum populations sampled

at mid-light and mid-dark and probed with PCR primers designed using the RNA-seq data

produced PCR products with expected sizes from this putative HV1 (S1 Table). qRT-PCR

shows that the RNA for the putative HV1 was expressed in L. polyedrum (data not shown).

LpHV1 is a bona fide voltage-gated proton channel

We ordered the synthesis of a mammalian codon-optimized gene (sequence shown in S3

Table) corresponding to the predicted L. polyedrum HV1 gene. When the gene was expressed

in a human cell line (HEK-293) the gene product produced voltage- and time-dependent cur-

rents in voltage-clamped cells (Fig 1). Non-transfected HEK-293 cells sometimes had small

native proton currents, but otherwise had no significant conductances that exhibited time

dependent activation or tail currents under our recording conditions. The proton current dur-

ing depolarizing voltage pulses turned on more rapidly than in mammalian species in which

activation time constants may be seconds at room temperature [4,5,6]. LpHV1 current also
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differed from most species studied to date in turning on much more rapidly at more positive

voltages (discussed below). Similar to HV1 in all other species, LpHV1 exhibited strong sensi-

tivity to pH. As in the cell in Fig 1A–1C, when pHo was decreased, the voltage range over

which the gH was activated shifted positively.

LpHV1 can produce inward current. In the vacuole or scintillon membrane, the proton

channel is expected to be oriented with its external side facing the vacuole. In order to mediate

the flash-triggering action potential in the vacuole membrane and enable H+ influx into the

scintillon to activate luciferase, the channel in situ must be able to conduct inward current. At

symmetrical pH, activation occurred well positive to 0 mV (e.g., Fig 1B) and thus only outward

current was produced, as in all other species except for K. veneficum [12]. In fact, the average

“threshold” voltage at which LpHV1 was clearly activated was 46 ± 1.8 mV (mean ± SEM,

n = 38; 23 cells and 15 patches), well positive to +23 mV reported for a variety of native proton

currents, mostly in mammalian cells, or to -10 to +10 mV in hHV1 (Table 3 in [20]). However,

Fig 1D shows that when there was a large inward pH gradient (simulating the low pH vacuole

and high pH cytoplasm that exist in L. polyedrum), inward current was activated. In vivo,

LpHV1 is exposed to an enormous inward pH gradient (ΔpH is 3.5), because the flotation vac-

uole has very low pH 4.5 [28], compared with cytoplasmic pH ~8. HEK-293 cells did not toler-

ate such a large gradient, but with a moderate inward gradient (ΔpH 2.0), we observed inward

H+ current (Fig 1D). Inward currents were detected in ten cells with 1.0 to 3.0 U gradients.

Extrapolated to in vivo conditions, LpHV1 should conduct inward current when activated.

LpHV1 is proton selective. Measurement of the reversal potential (Vrev) of the current in

cells expressing LpHV1 over a wide range of pHo and pHi confirmed that these currents were

proton selective, because Vrev was close to the Nernst potential for H+ (EH) (dashed green line

in Fig 2). When tetramethylammonium+ was replaced by other small cations Vrev did not

change, confirming H+ selectivity. The mean change in Vrev when TMA+ in the bath was

exchanged with Na+ or K+, respectively, was 0.4 ± 0.4 mV (mean ± SEM, n = 4) or 1.2 ± 1.8

mV (n = 4), after correction for the measured liquid junction potentials. The expressed gene

product is clearly a highly proton-selective voltage-gated channel, so we named it LpHV1, and

explored its similarities and differences from HV1 in other species.

Fig 1. LpHV1 is a voltage gated proton channel. (A-C) Families of whole-cell proton currents at different pHo in a cell transfected with LpHV1, with

pHi 7.0. Voltage pulses were applied from a holding potential of -60 mV (A, B), or -40 mV (C), in 10 mV increments up to the voltage indicated. (D)

Inward H+ currents can be seen with large inward pH gradients. Currents are shown during pulses to 30, 50, 60, and 70 mV as indicated, in an inside-

out patch with pHo 7 (pipette) and pHi 9 (bath), according to the standard convention in which downward deflections indicate inward current flow. From

the tail currents upon repolarization to the holding potential of -40 mV, it is clear that the gH was already activated detectably by the pulse to 50 mV,

with small inward current evident during the pulse to 60 mV, and larger inward current at 70 mV.

doi:10.1371/journal.pone.0171594.g001
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LpHV1 exhibits ΔpH dependent gating. In all species studied so far, HV1 exhibits ΔpH

dependent gating, in which the voltage range of channel opening is defined by the pH gradient,

ΔpH (pHo - pHi). The position of the proton conductance-voltage, gH-V, relationship generally

shifts 40 mV/unit change in either pHo or pHi (positively for increasing pHi and negatively for

increasing pHo) [13,18,19]. Fig 3 shows gH-V relationships in a cell studied in whole-cell con-

figuration with changes in pHo (A) and in an excised, inside-out patch of membrane in which

pHi was changed (B). It is evident from Fig 3A that increasing pHo shifts the voltage depen-

dence of LpHV1 opening negatively, as observed in HV1 from all species studied to date. It is

further evident that there was little shift between pHo 8 and pHo 9, indicating that this effect

saturates at high pHo, as reported recently in human HV1, hHV1, kHV1, and EhHV1 [37]. The

data in Fig 3B show that changing pHi similarly shifts the gH-V relationship, with decreasing

pHi shifting the curve negatively, as occurs in all other HV1.

Fig 2. LpHV1 is a proton selective channel. The reversal potential (Vrev) was measured, usually by tail currents (as shown in the examples in the insets),

in both whole-cell (n = 10) and excised, inside-out patch configurations (n = 10) over a wide range of pH (pHo 4.5–9.0; pHi 4.5–10.0). Measurements at

multiple pH in individual cells or patches are connected by lines. The heavy dashed green line indicates Vrev = EH, which would indicate perfect proton

selectivity. Whole-cell data are plotted as triangles, diamonds, or hexagons, and pink Xs, connected by solid lines; other symbols are from inside-out

patches, connected by dashed lines. Insets show tail current measurements from the same inside-out patch, with pHo 7 in the pipette, and pHi 8 or 7, as

indicated, in the bath. Vrev shifts from -2 mV at pHi 7 to 53 mV at pHi 8, a change of 55 mV, near the Nernst expectation of 58 mV for perfect H+ selectivity.

doi:10.1371/journal.pone.0171594.g002
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The effects of pHo and pHi on the position of the gH-V relationship were assessed quantita-

tively by plotting the voltage at which the gH was 10% of its maximal value, gH,max, as a function

of pHo or pHi (Fig 4). This parameter was chosen because it is clearly defined, it does not

require forcing data to fit a Boltzmann distribution, and it does not require estimating the

threshold of activation, which has been used for this purpose previously by us and others, but

is imprecise and arbitrary. These considerations are discussed at greater length elsewhere (see

Methods of [37]). When pHo or pHi was varied, the gH-V relationship shifted by ~40 mV/unit

change in pH, matching the reference line showing this slope (Fig 4). For both pHo and pHi

the shift tended to saturate above pH 8, similar to HV1 from rat [19], human, the dinoflagellate

Karlodinium veneficum, and the coccolithophore Emiliania huxleyi [37]. The saturation occurs

above typical environmental pH, and likely reflects the approach of pH to the pKa of one or

more pH sensing sites.

LpHV1 channel opening kinetics. The rising current during a depolarizing pulse was fit-

ted with a single exponential function to determine the time constant of activation, τact. At

symmetrical pH 8 (pHo = pHi = 8), τact ranged 45–600 msec at +60 mV (n = 6); at symmetrical

pH 7, τact ranged 30–470 msec at +80 mV (n = 8). Examples of the dependence of τact on pH are

shown for whole-cell measurements (Fig 5A) in which pHo was varied, and for inside-out

patches of membrane (Fig 5B) in which pHi was varied. In both configurations, changes in pH

appeared to simply shift the τact -V relationship along the voltage axis. As in all species, current

activation (turn-on) became faster with greater depolarization (Fig 1A–1C). However, in LpHV1

this property was markedly exaggerated. Activation became much faster (smaller τact) with larger

depolarizing pulses; typically, τact was 100 times faster at voltages 60 mV more positive.

LpHV1 stains multiple membranes in intact cells

If LpHV1 functions to allow protons across the vacuole into the scintillons as predicted, it

should be localized in scintillon membranes. The other bioluminescence proteins LCF and

LBP were previously demonstrated to localize to scintillons in L. polyedrum [24,27,30]. We

immunostained PFA-fixed, methanol-dehydrated L. polyedrum cells with chicken anti-LCF,

rabbit anti-LBP, or rabbit anti-LpHV1. We visualized their localization with organism-specific

secondary antibodies, each labeled with a different fluorophore. Western blotting of L. polye-
drum whole cell lysates and purified recombinant LCF, LBP, and LpHV1 probed with these

primary antibodies detected proteins of the expected sizes and no cross-reactivity (data not

shown). The confocal microscopy images in Fig 6 demonstrate that LCF and LBP are distrib-

uted in a punctate pattern as previously observed in dark-harvested L. polyedrum [25]. Fluores-

cence intensities of labeled cells were significantly different than both pre-serum and no-

primary-antibody controls (see also S1 Fig for negative control images). As expected from pre-

vious studies [30,38], total fluorescence from antibody-labeled LCF and LBP decreases signifi-

cantly in cells fixed at mid-light phase compared to mid-dark phase (data not shown).

The proposed function of HV1 in bioluminescence requires localization in scintillon mem-

branes (evaginations of the vacuole membrane); nonetheless, no cellular membrane could be

excluded a priori as a potential site for HV1. As seen in Fig 6, a significant fraction of the

LpHV1 localizes around the periphery of the organism, consistent with an additional plasma

membrane location.

Fig 3. LpHV1 exhibits classicalΔpH dependent gating. The gH-V relationships calculated from LpHV1 currents in whole cell

measurements (A) or inside-out patches (B) are strongly affected by pHo or pHi, respectively. The proton conductance, gH, was usually

calculated from the measured reversal potential, Vrev, and the amplitude of a single rising exponential fitted to the current. In some cases, for

example with test pulses near Vrev, the amplitude of the tail current was used, after appropriate scaling.

doi:10.1371/journal.pone.0171594.g003
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LpHV1 co-localizes with LCF and LBP in isolated scintillons

To further explore the cellular localization of HV1, we isolated scintillons from L. polyedrum
using density gradient centrifugation [30,39]. Scintillon isolation was confirmed initially by a

bioluminescence activity assay [30]. Western blots of proteins extracted from isolated scintillons

and probed with antibodies to LBP and LCF demonstrate the presence of these known scintillon

markers and also show no detectable cross-reactivity of these antibodies with recombinant

LpHv1 protein (Fig 7B). As has been described previously, presumed proteolysis products for

LBP and LCF are visible in these Western blots. As seen in Fig 7A, Western blotting of proteins

extracted from isolated scintillon preparations shows that the antibody to LpHV1 detects a scin-

tillon protein with an apparent size of about 30 kDa; this antibody detects purified recombinant

LpHV1 at the expected size of 37 kDa. Many possibilities, including different post-translational

processing in bacteria compared to dinoflagellates, could explain the apparent size difference

between recombinant and native LpHV1. Both in purified recombinant protein preparations

and in preparations of scintillon protein, our antibody to LpHV1 frequently detects protein

bands at ~60 and at ~80 kDa, which are consistent with the size of a truncated (60 kDa) or full

length (80 kDa) LpHV1 dimer. LpHV1 has a strongly predicted coiled-coil region in its C-termi-

nus, so it likely dimerizes like HV1 from several other species [40–43]. Our antibodies to scintil-

lon proteins do not cross react (Fig 7B). Western blotting from separate preparations

consistently shows more LpHV1 (~2 fold) in scintillons isolated during the day phase than the

night phase (as in Fig 7A), although the difference is not statistically significant.

Scintillon isolation was further confirmed by confocal microscopy of fixed scintillon prepa-

rations, using native luciferin fluorescence [44] to positively identify scintillons [25] (Fig 7C).

As previously described [25], we observed a low level of contaminating chlorophyll fluores-

cence. On the slide, chlorophyll fluorescence rarely overlapped with luciferin fluorescence, and

many structures with luciferin fluorescence but no nearby chlorophyll fluorescence were visi-

ble. Immunostaining of fixed scintillon preparations confirms the presence of LBP and LCF

in isolated scintillons (Fig 7C). Immunostaining of fixed scintillon preparations show that

LpHV1 localizes to luciferin-containing structures that also contain LCF (Fig 7C). That both

luciferin and LCF are known markers of the scintillon structure is strong evidence that LpHV1

localizes to scintillon membranes.

Mass spectrometry detects LpHV1 peptides in isolated scintillon

preparations

To further confirm the presence of LpHV1 in scintillons, we subjected proteins from scintillon

preparations to tandem mass spectrometry (MS/MS) analysis. We excised five prominent

bands from an Imperial stained gel: one at 33 kDa, close to the size expected for LpHV1, and

others ranging from ~25 to ~50 kDa. We detected 17 different peptides from the 33 kDa band,

and 2 different peptides from the 50 kDa band, each with more than one independent peptide

spectrum, that met the probability threshold for matching the predicted sequence of LpHV1.

The sequences of these peptides are mapped onto the predicted sequence of LpHV1 in Fig 8.

Many distinct peptides from the excised bands met the probability threshold for scintillon

Fig 4. LpHV1 exhibitsΔpH dependent gating. The position of the gH-V relationship was established from gH-V

relationship plots by measuring the voltage at which gH was 10% of gH,max. Measurements in individual cells or patches

at several pH are connected by lines. Color coding indicates pHi for whole cell measurements (A) or pHo for inside-out

patch measurements (B). As a reference, the arbitrarily positioned dashed line in each panel shows the slope that

corresponds to a shift of 40 mV/unit change in either pHo or pHi. Except at high pHo or pHi, the data are roughly parallel

to the reference lines, indicating a slope of 40 mV/unit pH. The slope decreases at pH>8, indicating saturation of ΔpH

dependence.

doi:10.1371/journal.pone.0171594.g004
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marker proteins LBP and LCF. In addition, a large number of peptides with significant

matches to known chloroplast proteins (e.g., ribulose-bisphosphate carboxylase, glyceral-

dehyde-3-phosphate dehydrogenase, peridinin-chlorophyll a-binding protein, etc.) were

detected, consistent with the known chloroplast contamination of the scintillon prepar-

ation.

Zn2+ inhibits LpHV1 proton currents and the flash induced by acid in

isolated scintillons

Few HV1 inhibitors have been identified; the most potent in many species is Zn2+ [45,46].

Fig 9 shows that Zn2+ inhibited LpHV1 currents detectably at 10 μM, and substantially at

100 μM. At similar concentrations, Zn2+ inhibited luminescence elicited by acid exposure

in scintillons isolated from L. polyedrum (Fig 9B and 9C). No flash was elicited when deter-

gent was present, suggesting that intact scintillons were required for the response. These

results strongly support the hypothesis that LpHV1 is the proton channel that triggers the

bioluminescent flash in L. polyedrum.

Fig 5. Voltage and pH dependence of LpHV1 activation kinetics. A. Voltage and pHo dependence of LpHV1 activation

kinetics. Currents were fitted by single rising exponentials to obtain the time constant of channel opening (activation, τact).

These measurements were made in the same cell with pHi 7.0, studied at three different pHo. B. Voltage and pHi dependence

of LpHV1 activation kinetics. These measurements were made in the same inside-out patch of membrane with pHo 7.0,

studied at six different pHi.

doi:10.1371/journal.pone.0171594.g005

Fig 6. LpHV1 distribution is consistent with scintillon localization. Fixed whole L. polyedrum were probed

with antibodies to LBP, LCF, and LpHV1, stained with fluorescently labeled secondary antibodies to appropriate

IgG, and visualized via confocal microscopy. Maximum projection of a representative Z-stack for each primary

antibody is shown. Scale bars in all panels = 10 μM. Images were analyzed for per area fluorescence from each

secondary antibody using Zen software tools. Bars represent means +/- S.D. of fluorescence from 20–30

individual cells from 2–5 separate preparations; significant differences from no-antibody or pre-serum controls

are indicated with asterisks. Images of negative controls are presented in S1 Fig.

doi:10.1371/journal.pone.0171594.g006
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Discussion

In 1972, J. Woodland “Woody” Hastings predicted the existence of voltage-activated proton-

selective channels that trigger the bioluminescent flash in Gonyaulax polyedra (now Lingulodi-
nium polyedrum) [1]. An action potential in the vacuole membrane was known to initiate the

flash [34]. The scintillon contains luciferase, its substrate luciferin, and luciferin-binding pro-

tein. A drop in pH both activates luciferase [33] and releases luciferin from its binding protein

[47]. Because the vacuole pH was 3.5–4.5 [28,48], a proton-permeable channel that was opened

by depolarization during the action potential would allow rapid proton flux into the scintillon,

releasing luciferin, activating luciferase, and triggering the flash [1]. The present results

strongly support this hypothesis.

Luciferin, LBP, and LCF from several species cross react [26,49] supporting a common role

of pH, and presumably HV1, in the signal transduction pathway. We used RNA-seq data for L.

polyedrum to identify a putative HV1 gene. We confirmed that the organism expresses the

RNA (S1 Table) and protein (Fig 7) predicted from this gene.

Structural comparison of LpHV1 with other proton channels

LpHV1 is the tenth HV1 gene to be identified and confirmed by voltage-clamp studies in a

heterologous expression system. Globally, LpHV1 resembles all other HV1 in having four

Fig 7. LpHV1 localizes to the scintillon. (A) Total protein from isolated L. polyedrum scintillons were Western

blotted and probed with anti-LpHV1. (B) Total protein from isolated L. polyedrum scintillons, and also purified

recombinant LCF, LpHV1, and GST-labeled LBP, were Western blotted and probed with the antibody indicated.

(C) Isolated scintillons were fixed and immunostained as in Fig 6. Scale bars in all panels = 2 μm. Scintillons in

different treatments were identified by their native luciferin fluorescence; the percentage of scintillons in each

treatment that exhibited secondary antibody fluorescence is shown. Number of scintillons scored for each

treatment: LBP-LCF, n = 55; LpHV1-LCF n = 55; LCF preserum, n = 41; LpHV1 pre-serum, n = 15; no primary

antibody, n = 35. Images of negative controls are presented in S2 Fig.

doi:10.1371/journal.pone.0171594.g007
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transmembrane helical segments. Compared with hHV1, it has a short N terminus, ~33 amino

acids vs. ~100 in hHV1. LpHV1 has a very long S1-S2 linker of ~100 residues vs. ~10 in hHV1.

S1-S2 linkers over 70 residues long appear in two electrophysiologically confirmed HV1 from

coccolithophores, and five of the twelve high confidence dinoflagellate HV1 shown in S3 Fig.

These long linkers do not share significant similarity to each other, and BLAST searches of the

linker region reveal little similarity to proteins of known function. A region of about 20 amino

acids (351–373) in the LpHV1 linker is predicted to be helical by several secondary structure

prediction programs. LpHV1 most likely exists as a dimer, because it has a strongly predicted

coiled-coil region in its C-terminus. HV1 from several other species are thought to dimerize, in

large part enforced by C terminal coiled-coil interactions [40–43,50].

The sequence of LpHV1 includes the amino acids thus far identified to play critical roles in

the function of the molecule in other species [51]. LpHV1 shares the “signature sequence” of all

other HV1 that includes an Asp in S1 and the motif RxWRxxR in S4 [12,14]. The Asp in the

middle of the S1 segment is crucial to establishing proton selectivity [9,12,14,16], the Arg in S4

are thought to confer voltage sensing as in other VSDs, and the Trp affects multiple properties

of HV1 [37]. LpHV1 has residues (Phe171, Leu42 and Ile199) that we propose form the hydro-

phobic gasket that has been identified in other voltage gated ion channels [52–55]. These three

hydrophobic residues are aligned horizontally near the middle of the membrane, where they

separate internally and externally accessible aqueous vestibules. The position occupied by

Phe171, identified as a delimiter of the charge transfer center [56], is conserved almost univer-

sally among VSD-containing molecules.

A number of acidic amino acids are thought to stabilize the channel in closed, open, and

intermediate states by electrostatic interactions with the cationic charges in S4. Likely

Fig 8. Isolated scintillon preparations contain peptides matching the LpHV1 sequence. The sequence

and predicted secondary structure acid of LpHV1 is shown (Johns S.J., TOPO2, Transmembrane protein

display software, http://www.sacs.ucsf.edu/TOPO2/). Acidic residues in the transmembrane helices are

shown in red, basic residues in dark blue, and aromatic residues in gray. Brown diamonds indicate the overlap

of peptide sequences found by mass spectrometry analysis of isolated scintillons and the epitope to which the

antibody against LpHV1 was raised; otherwise peptide sequences are shown in orange squares and the

epitope is shown in green stars.

doi:10.1371/journal.pone.0171594.g008
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countercharges in the S1 helix in hHV1 include Asp112, Glu119, Asp123, and possibly Lys125

[51]. The corresponding positions in LpHV1 are Asp45, Ser52, Glu56, and His58. When exter-

nally-accessible acidic groups are neutralized by mutation, the gH-V relationship shifts posi-

tively, because the open state is disfavored [51]. The somewhat more positive activation of

LpHV1 may reflect the absence of Glu119 and Lys125. On the other hand, the other identified

dinoflagellate HV1, kHV1 activates 60 mV more negatively than all other species, despite kHV1

lacking Glu119 (with Gly instead). The important countercharges in S2 and S3, are conserved

in all identified HV1 including LpHV1, with its Glu174 and Asp195. Another acid in S3 unique

to HV1 is Asp185 (hHv1 numbering), which is absent in other VSDs [12,51]. In LpHV1 this

position is occupied by the conservative substitution Glu206. In summary, with the exception

of one acidic residue in S1, the charges in the transmembrane region of LpHV1 are quite simi-

lar to those in other HV1.

Fig 9. Zn2+ inhibits LpHV1 proton currents and scintillon luminescence. (A) Proton currents at +60 mV at pHo 7.0 were reduced by Zn2+. The mean

reduction of current by 100 μM Zn2+ was 63 ± 11% (mean ± SEM, n = 4). (B) Luminescence of L. polyedrum scintillons stimulated by 50 mM acetate and

measured in a plate reader was inhibited by Zn2+. (C) Zn2+ sensitivity of luminescence of L. polyedrum scintillons stimulated by 50 mM acetate and measured

with a photometer generously provided by J. W. Hastings.

doi:10.1371/journal.pone.0171594.g009
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The electrophysiological properties of LpHV1 are consistent with its

proposed function in triggering the flash

We measured several biophysical properties of the LpHV1 channel to determine whether the

LpHV1 gene product has properties consistent with its proposed function of triggering the bio-

luminescent flash. These properties include 1) proton selectivity, 2) activation by depolariza-

tion, 3) opening kinetics comparable to that of the flash, and 4) the ability to conduct inward

current (from vacuole to cytoplasm), all of which should occur in vivo. Our experiments were

done at room temperature (20–25˚C) which is within the range of oceanic temperatures, but

other possible differences between our experimental conditions and those in vivo cannot all be

evaluated so easily. The mammalian cells used as an expression system (HEK-293 cells) may

process proteins differently than dinoflagellates and likely have a different membrane compo-

sition than L. polyedrum. Salt concentrations appropriate for mammalian cells, ~300 mOsm,

are about half those of sea water. A critical factor for the HV1 protein is the pH gradient. The

cytoplasmic pH in dinoflagellates is estimated to be pH 8.0 [1], but the vacuolar pH in biolumi-

nescent species L. polyedrum [28] and Noctiluca [48] is 4.5 and 3.5, respectively. HEK-293 cells

did not survive such a large pH gradient. The membranes of mammalian cells tolerate neither

extreme pH per se, nor extreme pH gradients. Our experiments address the posed questions

with these constraints.

LpHV1 meets the first two requirements: it is clearly highly proton selective (Fig 2) and it

opens with depolarization (Fig 1). The next question is whether the kinetics of LpHV1 match

that of the bioluminescent flash. The flash recorded from individual L. polyedrum had a latency

of 15–22 msec [57] and the flash in individual scintillons isolated from L. polyedrum or from

entire organisms had a time-to-peak of ~100–200 msec [25,58]. LpHV1 opens faster than HV1

of mammalian species (where τact is measured in seconds), but slower than that of snail neu-

rones with τact of a few milliseconds [18]. As in all species, LpHV1 channels open faster with

increasing depolarization. Differing sharply from other species, the activation kinetics of

LpHV1 depends quite steeply on voltage. As evident in Fig 5, τact was ~1 s just above Vthreshold

but became ~100 times faster within 50–60 mV, changing e-fold in just ~10 mV. In contrast,

in several mammalian or amphibian cells, the voltage required to change τact e-fold ranges 40–

80 mV [3,59–63]. As a result of the steep voltage dependence of τact, a large depolarization

could activate LpHV1 within ~10 msec. The kinetics of LpHV1 thus seems consistent with the

kinetics of the bioluminescent response. Density of LpHV1 expression in the native membrane

and the presence of other ion channels would also modulate the response.

We also addressed whether LpHV1 could produce inward H+ current during an action

potential in situ. At symmetrical pH (e.g., pHo 7, pHi 7) inward current was not observed.

With an inward pH gradient of 1–2 units (e.g., pHo 7, pHi 9), however, inward current was

observed. An example is shown in Fig 1D. Once inward H+ current is activated in the tono-

plast, the resulting H+ influx would further depolarize the membrane regeneratively, opening

more channels and driving the membrane potential toward EH, which for pH 4.5//8.0 is in the

vicinity of +200 mV. Correspondingly, action potential peaks of 200 mV have been recorded

in situ in Noctiluca [21]. We were at first surprised that LpHV1 activated relatively positively,

compared with other HV1 [20] and especially when compared with kHV1 that activates well

negative to EH [12]. Perhaps, given the enormous inward H+ gradient across the L. polyedrum
tonoplast, it would be perilous for the cell to allow LpHV1 activation except when triggering a

flash. K. veneficum is not bioluminescent, and the function of kHV1 is uncertain, but is likely

different from that in bioluminescent species.

HV1 proton channel in bioluminescent scintillon
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The cellular localization of LpHV1 is consistent with its proposed role in

bioluminescence

Three lines of evidence demonstrate convincingly that LpHV1 is expressed in the vacuole

membrane surrounding the scintillons, confirming its predicted role in bioluminescence: 1)

Western blots of isolated scintillons show antibody staining of a protein with the predicted size

and no detectable cross-reactivity with LCF or LBP (Fig 7); 2) immunostaining of isolated scin-

tillons with the same antibodies shows that LpHV1 colocalizes with LCF, a marker of the scin-

tillon organelles (Fig 7); and 3) proteomics analysis of proteins extracted from isolated

scintillons shows the expected presence of LBP and LCF proteins (S2 Table) and the presence

of LpHV1 protein (Fig 8) in these structures. Further confirmation that LpHV1 is present in

scintillons is the inhibition of the flash in isolated scintillons by Zn2+ at concentrations that

inhibit LpHV1 proton currents (Fig 9).

Upon stimulation by shear stress, mechanosensor (probably stretch activated) channels at

the surface of L. polyedrum [58,64] are thought to relay a signal through intracellular calcium

signaling via G-proteins [65,66], but the molecular identities of the signaling components that

result in the action potential at the vacuole membrane and subsequent luminescence are

unknown. It is likely that LpHV1 mediates the action potential in the vacuole membrane that

triggers the flash, because H+ is the only ion with a sufficiently positive Nernst potential to gen-

erate an action potential that peaks at +200 mV [21]. Voltage gated Na+ channels have been

reported in the outer membrane of Noctiluca, but their reversal potential in sea water is only

+33 mV [67]. Although Hastings’ original proposal required a proton channel to open only

during the action potential in scintillon membranes, it was later realized that the same channel

could also mediate the action potential in the tonoplast [28,68]. We have identified additional

putative HV1 sequences in RNA-seq data from two other bioluminescent dinoflagellates, Alex-
andrium tamarense and Noctiluca scintillans, excellent evidence that HV1, like LCF and LBP, is

a conserved component of the signal transduction pathway that leads from shear stress at the

organism surface to the light flash.

Immunostaining of whole cells suggests that membranes other than those surrounding the

scintillons may contain LpHV1 (Fig 6). The non-bioluminescent dinoflagellate K. veneficum
expresses a HV1 in feeding populations at night [12]; we have identified putative HV1 genes in

several additional dinoflagellates (S3 Fig) based on the presence of an Asp in the middle of S1

crucial to proton selectivity [9,12,14] and a signature sequence in S4 involved in gating (10). In

other organisms HV1 functions in many processes [20], raising the likelihood that in L. polye-
drum LpHV1 also serves purposes in addition to the control of bioluminescence. The dinofla-

gellates (bioluminescent or not) in which we found HV1 gene sequences span a large fraction

of the dinoflagellate phylogenetic tree [69,70]. Taken together, these data suggest that primor-

dial HV1 functions have been co-opted by the bioluminescent species for light production.

Intriguingly, antibody to LCF stained trichocysts in L. polyedrum [28], a tantalizing hint of

possible non-bioluminescent functions for the bioluminescence enzyme.

Materials and methods

Sequence searching and alignments

The K. veneficum voltage-gated proton channel (kHV1, NCBI accession JN255155) was used as

a BLAST probe with e-value cutoff of 10−2 against the Marine Microbial Eukaryote Transcrip-

tome Sequence Project (MMETSP; [36]) which yielded a single contig (26874) in

MMETSP1032. BLAST searches of the non-redundant database at NCBI using the translation

of this contig yielded HV1 from diatoms and coccolithophores with e-values of 10−11. Using
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various HV1 probes, searches of MMETSP also yielded full and partial sequences for putative

HV1s from Akashiwa sanguinea, Alexandrium monilatum, Alexandrium tamarense, Amphidi-
nium carterae, Azadinium spinosum, Karenia brevis,Noctiluca scintillans, Symbiodinium, and
Scrippsiella trocoida. We included a recently described putative HV1 from Prorocentrum mini-
mum [71]. These sequences were aligned with a set of high confidence animal HV1s using

MSAprobs [72] (S3 Fig). The predicted secondary structure for LpHV1 was drawn using

TOPO2 (Johns S.J., TOPO2, Transmembrane protein display software, http://www.sacs.ucsf.

edu/TOPO2/).

Gene and antibody synthesis

Genes for LpHV1 (based on longest open reading frame of RNA-seq contig 19215 from the L.

polyedrum library) and LCF (NCBI accession AF085332.1), codon-optimized for mammalian

(LpHV1) or E. coli (LCF) expression, were synthesized by Genscript Corp. and subcloned into

pcDNA and pEGFP (LpHv1) or pQE-30 (LCF). Peptides corresponding to chosen epitopes

from LpHV1 (CDAGRQLSSDGDQ) and LCF (CLDYPKKRDGWLEKN) were synthesized by Gen-

script and polyclonal antibodies to these peptides were raised and affinity purified from rabbit

(LpHV1, final protein concentration 1.1 mg/ml) or chicken (LCF, final protein concentration

0.88 mg/ml). Preserum from animals was also provided by Genscript. The native gene for LBP

in pGEX-4T, and rabbit antibody raised to LBP, were the generous gifts of Dr. David Morse

(University of Montreal).

Electrophysiology

HEK-293 cells were grown to ~80% confluence in 35 mm cultures dishes. Cells were trans-

fected with 0.4–0.5 μg of cDNA using Lipofectamine 2000 (Invitrogen) or PEI (polyethyleni-

mine, Sigma). After 6 h at 37˚C in 5% CO2, cells were trypsinized and re-plated onto glass

cover slips at low density for patch clamp recording the following day. We selected green cells

under fluorescence for recording. Whole-cell or excised inside-out patch configurations of the

patch-clamp technique were carried out as described in detail previously [73]. Bath and pipette

solutions were used interchangeably. They contained (in mM) 2 MgCl2, 1 EGTA, 80–100

buffer, 75–120 TMA+ CH3SO3
– (to bring the osmolality to ~300 mOsm), titrated using

TMAOH. Buffers with pKa near the desired pH were used: Homopipes for pH 4.5–5.0, MES

for pH 5.5–6.0, BisTris for pH 6.5, BES for pH 7.0, HEPES for pH 7.5, Tricine for pH 8.0,

CHES for pH 9.0, and CAPS for pH 10. Experiments were done at 21˚C or at room tempera-

ture (20–25˚C). Current records are shown without leak correction.

Reversal potentials (Vrev) in most cases were determined from the direction and amplitude

of tail current relaxation over a range of voltages, following a prepulse that activated the proton

conductance, gH. When the gH activated negative to Vrev the latter could be determined directly

from families of currents. Currents were fitted with a single exponential to obtain the activa-

tion time constant (τact) and the fitted curve was extrapolated to infinite time to obtain the

“steady-state” current amplitude, from which the gH was calculated. The voltage at which gH

was 10% of gH,max (VgH,max/10) was determined after defining gH,max as the largest gH measured.

Cell culture

L. polyedrum (CCMP 1932, obtained from National Center for Marine Algae and Microbiota-

Bigelow Laboratory for Ocean Sciences) cultures were grown in three locations with minor dif-

ferences in conditions. Cultures were grown in L1 minus Si [74] or F/2 minus Si [75] medium

prepared in artificial seawater (Instant Ocean, Blacksburg) and maintained in 12:12 or 14:10

light:dark cycle (photon flux 100 μmoles/m2/s) at 18–20˚C. Cultures were allowed to grow
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until reaching a cell density of 4,000–10,000 cells/ml at which point they were collected at mid-

dark and mid-day time points.

RNA extraction, qPCR analysis, and cDNA cloning

Primer sets covering the entire predicted LpHv1 coding sequence (S1 Table) were used for

qPCR analysis performed on cells harvested at mid-light or mid-dark. Cells from 50 ml ali-

quots of culture were collected by centrifugation. The pellet was used immediately or flash fro-

zen in an ethanol and dry ice bath and stored at -80˚C. Samples from each timepoint were

resuspended and Dounce homogenized in 1 ml TRI reagent (Zymoresearch), and RNA was

extracted according to the manufacturer’s protocol. RNA was reverse transcribed using Super-

script II reverse transcriptase (Invitrogen by Life Technologies) with random primers (Invitro-

gen) according to the manufacturer’s protocol. Quantitative real-time PCR was performed in

triplicate using an Applied Biosystems (Life Technologies) Fast 7500 thermal cycler with prim-

ers listed in S1 Table. Thermal cycling conditions consisted of an initial denaturation at 95˚C

for 2 minutes followed by 40 cycles of denaturation at 95˚C for 15 seconds, annealing and fluo-

rescent data collection at 60˚C for 15 seconds, and extension at 72˚C for 30 seconds. Cycle

thresholds and baselines were determined manually and cycle thresholds were averaged and

compared across time points.

Recombinant protein expression and purification

Recombinant LBP and LpHV1 proteins tagged with glutathione s-transferase (GST) were

expressed in E. coli by induction with isopropyl b-d-1 thiopyranogalactoside (IPTG) at 23˚C

(LBP) or 17˚C (LpHV1) for 8–24 hours. Recombinant LCF protein tagged with 6-His was

expressed in E. coli by induction with IPTG at 17 C for 16–24 hours. Proteins were purified

from E. coli according to the manufacturer’s instructions (GE-Healthcare for LBP and LpHV1,

Qiagen for LCF). GST tag was cleaved from LpHV1 by digestion with Prescission protease

according to the instructions of the vendor. In one experiment, GST tag was cleaved from LBP

by digestion with thrombin for 16 hours; the insoluble LBP precipitate was pelleted by centri-

fugation and solubilized in SDS-PAGE loading buffer.

Scintillon isolation, luminescence assays, and gel analysis

Scintillons were isolated from cultures grown in two different locations and isolated using a

sucrose [39] or a Percoll [30] density gradient. For luminescence assays to test metal sensitivity,

the 0.5 ml fraction from a sucrose gradient with the highest luminescence was kept separate

and considered to comprise “pure scintillons”. This fraction was pelleted, washed with buffer,

resuspended and then diluted to about 1 ml in the extraction buffer. 100 μl of the diluted scin-

tillon preparation was added to wells of a 96 well plate. 50 μl of 5x metal ion/drug solution was

added to the same well. The reaction was started by injecting 150 μl of 0.05 M acetic acid and

luminescence was measured immediately using pClamp software (Molecular Devices). No

flash was detected in the presence of detergents (0.03–0.1% TWEEN-20 or 0.1% SDS).

For gel analysis, total scintillon protein was extracted by heating for 10 min at 95˚C in

SDS-PAGE sample buffer. Total scintillon proteins, and preparations of purified recombinant

proteins, were separated by SDS-PAGE, Western blotted onto PVDF, blocked with 5% milk or

Licor blocking buffer (Licor) and probed with diluted antibodies to LCF (1:1000), LBP

(1:10000), and LpHV1 (1:3000). Blots were visualized with secondary antibodies to appropriate

animal IgG conjugated either to HRP or to Licor fluorescent tags. Western blotting results

from different scintillon sources were directly comparable.
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Fixation and immunostaining of cells and isolated scintillons

We used the procedure of [76] with modifications. Preliminary experiments indicated that low

speed centrifugation was optimum to preserve cell integrity so all centrifugation steps were

performed at 300 x g. Cells were pelleted from 50–100 ml of culture by centrifugation, washed

with seawater, and fixed in 4% Paraformaldehyde in seawater at room temperature. Fixed cells

were washed with phosphate buffered saline (PBS), permeabilized in 100% methanol at 4˚C,

washed at room temperature with PBS supplemented with 0.1% tween and 1% BSA (PBST-

BSA), then blocked by incubation in PBST-BSA at room temperature. Primary antibodies, or

serum controls diluted to the same protein concentrations, or vehicle controls, were added

and incubated overnight at 4˚C. Cells were collected by centrifugation and washed at room

temperature with PBST-BSA. For detection, Alexa555-Fluor-conjugated goat anti-rabbit IgG

(H+L) and/or Alexa555-Fluor-conjugated goat anti-chicken IgG (ThermoFisher, Waltham

MA) was added and incubated in the dark at room temperature. Cells were washed with

PBST-BSA at room temperature, incubated with 4’,6-diamidino-2-phenylindole (DAPI) 5μg/

mL in PBS, and washed again. Cells were incubated in 2 drops of Vectashield overnight at 4˚C

in the dark and 15 to 50 μL were mounted on slides. Fixation and immunostaining of isolated

scintillons were performed as described, but without the methanol permeabilization step. Cells

and scintillons were visualized using a Zeiss LSM 700 confocal microscope, equipped with a

20x (whole cells) and 40x (scintillons) 1.2 NA C-Apochromat objective. For immunofluores-

cent localization, all channel pinholes were set to 1 Airy Unit. Isolated scintillons identified by

luciferin fluorescence were scored for the presence or absence of secondary antibody fluores-

cence. Confocal slices or maximum intensity projections of the Z-stack were rendered using

Zeiss Zen software, and processed using Adobe Photoshop.

Preparation of scintillon proteins for mass spectrometry

Purified scintillon preparations were concentrated by ultra-centrifugation at 4˚C. The pellet

was re-suspended in SDS sample buffer, heated for 5 minutes at 95˚C, and cleared by centrifu-

gation at 10,000 × g. 50 μl of sample was loaded and run on NovexNuPAGE 4–12% bis-tris

gels according to the manufacturer’s protocol. Gel bands corresponding to the location of the

presumptive proteins were excised with a clean scalpel. Samples were processed using the Thermo

Scientific In-Gel Tryptic Digestion Kit according to manufacturer’s protocol. Gel bands were

destained twice with 200 μl destaining solution (~25 mM sodium bicarbonate in 50% acetonitrile)

and incubated at 37˚C with shaking for 30 minutes. Samples were reduced by incubation at 60˚C

for 10 min in 50mM TCEP (tris(2-carboxyethyl)phosphine) in 25 mM ammonium bicarbonate

buffer. Free sulfhydryl groups were alkylated by incubation in 100 mM iodoacetamide at room

temperature for 1 hour in the dark. Gel pieces were shrunk in acetonitrile. For the initial proteo-

mics run samples were treated overnight with 100 ng trypsin at 30˚C. The second proteomics run

samples were treated with 100ng typsin and digestion was performed at 50˚C at high pressure

using the PBI Barocyler (Pressure Biocsciences Inc.) according to manufacturer’s protocol. Sam-

ples were dried in a SpeedVac.

Mass spectrometry analysis and data processing

Scintillon samples were analyzed by electrospray ionization on an Elite tandem orbitrap mass

spectrometer (Thermo Scientific Inc). Nanoflow HPLC was performed by using a Waters

NanoAcquity HPLC system (Waters Corporation). Peptides were trapped on a fused-silica

pre-column (100 μm i.d. 365 μm o.d.) packed with 2 cm of 5 μm (200 Å) Magic C18 reverse-

phase particles (Michrom Bioresources, Inc). Subsequent peptide separation was conducted

on a 75 μm i.d. x 180 mm long analytical column constructed in-house and packed with 5 μm
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(100 Å) Magic C18 particles, using a Sutter Instruments P-2000 CO2 laser puller (Sutter Instru-

ment Company). The mobile phase A was 0.1% formic acid in water and mobile phase B was

0.1% formic acid in acetonitrile. Peptide separation was performed at 250 nL/min in a 95 min

run, in which mobile phase B started at 5%, increased to 35% at 60min, 80% at 65min, followed

by a 5 min wash at 80% and a 25 min re-equilibration at 5%. Ion source conditions were opti-

mized by using the tuning and calibration solution recommended by the instrument provider.

Data were acquired by using Xcalibur (version 2.8, Thermo Scientific Inc.). MS data was col-

lected by top-15 data-dependent acquisition. Full MS scan of range 350–2000 m/z was per-

formed with 60K resolution in the orbitrap followed by collision induced dissociation (CID)

fragmentation of precursors in iontrap at normalized collision energy of 35. The MS/MS spec-

tra of product ions were collected in rapid scan mode.

Acquired tandem mass spectra were searched for sequence matches against UniprotKB

database using COMET. The following modifications were set as search parameters: peptide

mass tolerance at 10 ppm, trypsin digestion cleavage after K or R (except when followed by P),

one allowed missed cleavage site, carboxymethylated cysteines (static modification), and oxi-

dized methionines (variable modification/differential search option). PeptideProphet and Pro-

teinProphet, which compute a probability likelihood of each identification being correct, were

used for statistical analysis of search results. PeptideProphet probability� 0.9 and ProteinPro-

phet probability� 0.95 were used for positive identification at an error rate of less than 1%.

Only proteins identified by more than one unique peptide sequence were included in the

study.

Supporting information

S1 Table. Primers and predicted product sizes for qPCR.

(DOCX)

S2 Table. Assignments of peptides via MS/MS analysis of protein from isolated scintillons

of Lingulodinium polyedrum. Tabs show assignments of proteins from two independent scin-

tillon preparations. Samples shown in ‘MS results 1’ tab were initially treated with 100 ng tryp-

sin at 30˚C; those in ‘MS results 2’ tab were initially treated with 100 ng trypsin at 50˚C at high

pressure using the PBI Barocyler (Pressure Biocsciences Inc.) according to manufacturer’s pro-

tocol.

(XLSX)

S3 Table. Sequence of longest open reading frame of contig 26784 in MMETSP1032 assem-

bly, and sequence of codon-optimized gene of LpHV1.

(DOCX)

S1 Fig. Fluorescence images from pre-serum or no-antibody control treatments of fixed

whole cells. Cells and images were prepared as for Fig 6.

(TIF)

S2 Fig. Fluorescence images from pre-serum or no-antibody control treatments of fixed

isolated scintillons. Scintillons and images were prepared as for Fig 7.

(TIF)

S3 Fig. Alignment of predicted amino acid sequences of putative dinoflagellate HV1s.

Sequences were found by BLAST searches of RNA-seq projects [35,36] and were aligned with

MSA-Probs [72]. Dinoflagellate sequences are shown aligned with sequence logos of individual

transmembrane helices obtained from an alignment of animal HV1s [12]. The sequence logos

are numbered for hHV1. Overlapping partial sequences from Alexandrium monilatum are not
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shown.

(TIF)
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