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With improved standards of living, the incidence of multiple metabolic disorders has

increased year by year, especially major risk factors for cardiovascular disease such as

hyperglycemia and hyperlipidemia, continues to increase. Emerging epidemiological data

and clinical trials have shown the additional protective effects of some metabolic therapy

drugs against cardiovascular diseases. A series of studies have found that these drugs

may work by modulating the composition of gut microbiota. In this review, we provide

a brief overview of the contribution of the gut microbiota to both metabolic disorders

and cardiovascular diseases, as well as the response of gut microbiota to metabolic

therapy drugs with cardiovascular benefits. In this manner, we link the recent advances

in microbiome studies on metabolic treatment drugs with their cardiovascular protective

effects, suggesting that intestinal microorganisms may play a potential role in reducing

cardiovascular risk factors. We also discuss the potential of microorganism-targeted

therapeutics as treatment strategies for preventing and/or treating cardiovascular disease

and highlight the need to establish causal links between therapeutics for metabolic

diseases, gut microbiota modulation, and cardiovascular protection.

Keywords: metabolic therapy, gut microbiota, cardiovascular diseases, metformin, microbiota-targeted therapies

INTRODUCTION

Human dietary habits and lifestyle have changed greatly over time with the development of
society (Chauveau et al., 2013). At the same time, the number of people suffering from metabolic
diseases such as type 2 diabetes mellitus (T2DM), obesity, and dyslipidemia has also grown
rapidly (Whiting et al., 2011; Loh et al., 2019). These metabolic disorders have proven to be
major risk factors for cardiovascular diseases (CVD) (DeFronzo and Ferrannini, 1991; Barr
et al., 2007). Despite adherence to recommended therapies, especially multi-drug combination
therapy for patients with multiple metabolic disorders, treatment response is individual and
varied. Many individuals remain at a high risk of developing CVD. Although genetic factors
play a role in CVD pathogenesis, large-scale studies have revealed that they may only account
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for 20% of the risk of developing CVD (Ripatti et al.,
2010). Thus, environmental factors play a dominant role in
CVD pathogenesis.

Gut microbiota are an important environmental factor, and
there is increasing evidence that the activity and composition
of the gut microbiota are closely related to human diseases
(Clemente et al., 2012; Sonnenburg and Backhed, 2016). It is
believed that gut microbiota participate in the absorption of
nutrients and energy, engage the innate immune system, and
produce a wide variety of small-molecule metabolites that are
sensed by host receptor systems to regulate host metabolism
and inflammatory pathways relevant to CVD (Tang et al., 2017;
Brown and Hazen, 2018). In the treatment of CVD, lowering
risk factors such as hyperglycemia and hyperlipidemia, has been
shown to reduce cardiovascular events (Grundy et al., 2004;
Mazzone et al., 2008; Mooradian, 2009; Eliasson et al., 2011).
In parallel, many metabolic disease treatments have also been
shown to work through the gut microbiota. With the discovery
of more microbial targets, an improved understanding of the
specific effects of metabolic therapy drugs on gut microbiota is
still required. This may also provide a new treatment strategy for
the control of CVD risk factors.

In this review, we provide a brief overview on the contribution
of the gut microbiota to metabolic disorders as well as CVD, and
the response of gut microbiota to cardiovascular metabolic
therapeutic drugs. In this manner, we link the existing
studies on gut microbiota regulation by metabolic therapy
drugs with their cardiovascular protective effects, suggesting
that intestinal microorganisms may play a potential role
in reducing cardiovascular risk factors. We also discuss
the potential of microbiota-targeted therapeutics as novel
treatment strategies for the preventing and/or treating CVD, and
highlight the need to establish causal links between therapeutics
for metabolic disease, gut microbiota modulation, and
cardiovascular protection.

THE ROLE OF GUT MICROBIOTA
INMETABOLIC DISORDERS AND
CARDIOVASCULAR DISEASE

There are more than 1,000 microbial species in the human
gastrointestinal tract, mainly belonging to five phyla
(Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria,
and Verrucomicrobia). Of these, anaerobic Bacteroidetes and
Firmicutes contribute more than 90% of all bacterial species
(Qin et al., 2010). They constitute 90% of the total number of
cells contained within our bodies, and the number of microbial
genes is over 100 times larger than the human nuclear genome
(Grice and Segre, 2012; Hillman et al., 2017). Gene sequencing
data have indicated that the gut metagenome is involved in host
physiology and pathophysiology processes such as the digestion
and absorption of nutrients, stimulation of the immune system,
and regulation of host metabolic pathways (Costello et al., 2012;
Nicholson et al., 2012; Palm et al., 2015). Harmful alterations
in the gut microbiota composition, a condition referred to
as dysbiosis, have been associated with the development of

metabolic disorders. For instance, it is generally believed that
a rise in the ratio of Firmicutes to Bacteroidetes is related to a
chronic low-grade inflammatory status and an elevated capability
for obtaining more energy from food (Pahwa et al., 2017). The
diversity of gut microbiota in obese patients is visibly lower
than that in the normal weight population (Wolf, 2006) and
this decrease may lead to a higher insulin resistance (Jiao et al.,
2018). In addition, there is a link between the gut microbiota
and different kinds of CVD. The use of broad-spectrum
antibiotics affects analytes produced during the catabolism of
aromatic amino acids with an associated reduction in myocardial
infarct size (Lam et al., 2016). A characteristic change in gut
microbiota has been observed in coronary artery disease patients
in which Lactobacillales increased and phylum Bacteroidetes
(Bacteroides and Prevotella) decreased; this was not observed in a
comparative cohort of patients with diabetes (Emoto et al., 2016).
In another metagenome-wide association study, an increased
abundance of Enterobacteriaceae and Streptococcus spp. and a
relatively depleted abundance of butyrate-producing bacteria
was observed in patients with atherosclerotic CVD compared to
healthy controls (Jie et al., 2017).

Although the unified mechanism behind this kind of
correlation has not yet been established, there are still some
possible explanations for the interplay between gut microbiota
and the host. In some cases, structural components of gut
microbiota such as lipopolysaccharides (LPS) and peptidoglycans
can be used as signaling molecules; these can be recognized as
pattern recognition receptors, such as toll-like receptors (TLRs)
and nucleotide oligomerization domain-containing receptors
(Curtiss and Tobias, 2009; Philpott et al., 2014), which can
stimulate and instruct host immune response both at the
epithelial cell border as well as within the vasculature (Medzhitov,
2007). When gut wall barrier function is impaired, low levels of
gut-derived bacteria can actually enter the bloodstream to elicit
a chronic low grade pro-inflammatory and pro-oxidative stress
status that is commonly referred to as “metabolic endotoxemia”
which may result in several cardiovascular risk factors, such
as obesity, insulin resistance, dyslipidemia, and oxidative stress
(Neves et al., 2013).

Gut microbiota can also produce various metabolites that
can act locally in the gut as well as travel systemically to
directly or indirectly affect distal organs. Here, we provide a
brief introduction to some main classes of gut microorganism-
dependent metabolites that have been linked to CVD risk in
either humans or mouse models.

Short-chain fatty acids (SCFAs) are products of the
fermentation of dietary fibers by gut bacteria (Topping and
Clifton, 2001). A growing body of evidence suggests that SCFAs,
as metabolic targets, have a potential role in preventing and
counteracting obesity and obesity-related diseases (impaired
glucose metabolism and insulin resistance) (Canfora et al., 2015;
Koh et al., 2016). By regulating the release of intestinal hormones,
such as peptide YY and glucagon-like peptide-1 (GLP-1), SCFAs
can suppress appetite, increase energy expenditure, and prevent
diet-induced obesity (Gao et al., 2009; Lin et al., 2012; Chambers
et al., 2015). Therefore, it may be possible to show that SCFAs
are involved in cardiovascular physiological processes mainly by
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establishing links with cardiovascular risk factors (Canfora et al.,
2015; Koh et al., 2016).

Bile acids (BAs) are an important group of metabolites
with a profound effect on human health and microbiota are
involved in the bio-transformation of BAs. For instance, bile
acid deconjugation is carried out by bacteria with bile salt
hydrolase (BSH) activity, this prevents the active absorption
of BAs in small intestine via the apical sodium-dependent bile
acid transporter (ASBT) (Wahlstrom et al., 2016). Besides, gut
microbiota are the sole source of 7α and 7β dehydrogenase
activity, which generates “secondary” bile acids (SBAs) such as
deoxycholic acid (DCA) and lithocholic acid (LCA) (Wahlstrom
et al., 2016). These bacterial modified bile acids regulate a wide
range of metabolic and immune-related processes by acting
as endocrine-like signaling molecules and engaging multiple
bile acid receptors like farnesoid X receptor (FXR), pregnane
X receptor (PXR), and G protein-coupled bile acid receptor
(TGR5) (Wahlstrom et al., 2016; Joyce and Gahan, 2017; Brown
and Hazen, 2018; Schramm, 2018). Importantly, studies have
shown that the deficiency of either FXR or PXR in mice can
cause reduced atherosclerosis, whereas TGR5 knockout mice
are protected against atherosclerosis development (Zhang et al.,
2006; Pols et al., 2011; Sui et al., 2011).

Trimethylamine oxide (TMAO) has gained considerable
attention in recent years as a biomarker for human CVD risk
and a promoter of atherothrombotic diseases (Wang et al., 2011;
Zhu et al., 2016). After high-fat food intake, several distinct gut
microbial enzyme complexes can metabolize nutrients such as
phosphatidylcholine and choline to generate the primary gut
microbial metabolite trimethylamine, which is subsequently
converted by the host flavin monooxygenase enzyme family
to TMAO in the liver (Bennett et al., 2013). TMAO then
increases atherosclerotic CVD, including major adverse
cardiovascular events (MACE) (death, myocardial infarction,
and stroke) by altering cholesterol transport, modulating platelet
hyperresponsiveness, and increasing macrophage activation
(Tang et al., 2013; Koeth et al., 2014; Wang et al., 2015;
Zhu et al., 2016).

In addition, bacterial metabolites originating from amino
acids also play an important role in host physiology. For example,
indole (a tryptophan metabolite) can be produced by many
bacterial species including Escherichia coli, Clostridium spp.,
and Bacteroides spp. and has been shown to induce the release
of GLP-1 in enteroendocrine L-cells. As signaling molecules,
indole and some of its derivatives, such as indolepropionic
acid (IPA) and indoleacrylic acid (IA) can affect mucosal
homeostasis by decreasing intestinal permeability; this is possibly
mediated by the PXR (Roager and Licht, 2018). Furthermore,
IPA and IA also have anti-oxidative and anti-inflammatory effects
(Karbownik et al., 2006; Wlodarska et al., 2017). A recent study
also found that phenylacetylglutamine (PAGln), a new CVD-
promoting gut microbiota-dependent metabolite originating
from phenylalanine, increases the potential for thrombosis via G-
protein-coupled receptors, leading to an increased risk of CVD
and MACE (Nemet et al., 2020).

Collectively, both the structural components and metabolites
of gut microbiota can be sensed by the host receptor system

as signaling molecules, thus establishing direct or indirect
interactions with the host. When dysbiosis occurs, many
downstream signaling pathways are triggered, resulting in
metabolic disorders, and indirectly or directly promoting CVD.

THE EFFECT OF ORAL HYPOGLYCEMIC
DRUGS ON GUT MICROBIOTA

Metformin
As the first-line orally administered drug for T2DM treatment,
metformin is one of the most prescribed compounds on the
market, mainly due to its safety profile, proven efficacy, and
low cost, as well as its high clinical value in reducing the
incidence of cardiovascular events and mortality rates (UKPDS
Group, 1998; Morgan et al., 2014). As far back as 1998, the
UK Protective Diabetes Study (UKPDS) found that, compared
to conventional treatment with diet alone, metformin treatment
led to a lower all-cause mortality and a concurrent lower risk
in the incidence of myocardial infarction in newly diagnosed
T2DM after a median follow-up of 10.7 year (UKPDS Group,
1998). At the time, this phenomenon was explained as the
beneficial effect of tight glycemic control from metformin that
prevented future cardiovascular consequences. However, in a
subsequent follow-up study 10 years after UKPDS, a continuous
risk reduction of myocardial infarction was found in patients
treated with metformin despite there being no changes in
glycated hemoglobin (HbA1c) levels (Holman et al., 2008).
Similar results have also been observed in subsequent clinical
studies (Kooy et al., 2009; Hong et al., 2013; Han et al., 2019),
which suggested the pleiotropic effects of metformin in the heart
and blood vessels, independent of its glucose-lowering activity.

At present, the multiple action mechanisms of metformin are
still debated, and the hypoglycemic effect has been primarily
ascribed to its capacity to inhibit hepatic gluconeogenesis.
However, despite the high accumulation of metformin in the
intestinal wall, concentration in the plasma is up to 300
times lower (Bailey et al., 2008). In addition, intravenous
administration of metformin does not improve glycemia (Bonora
et al., 1984; Stepensky et al., 2002). This suggests that the intestine
is possibly the main target organ of metformin action (Duca
et al., 2015; Buse et al., 2016; Brunkwall and Orho-Melander,
2017). It is known thatmetformin can increase peripheral glucose
uptake and modulate the incretin pathway by improving GLP-
1 receptor expression in the pancreatic islets and increasing
plasma levels of GLP-1 (Viollet et al., 2012; Pernicova and
Korbonits, 2014; Montandon and Jornayvaz, 2017). GLP-1 is
a major metabolic hormone produced by enteroendocrine L
cells. Not only can GLP-1 lower blood glucose by inducing
insulin secretion, inhibiting glucagon release, and slowing gastric
emptying, it also instigates many cardioprotective pathways,
possibly contributing to the cardiovascular protection observed
in metformin users (Monami et al., 2017). The results of a human
clinical study also provide consistent evidence for the intestine
hypothesis. The delivery of delayed-release metformin with 50%
of the bioavailability of extended-release metformin to the lower
bowel results in significant glucose-lowering efficacy but with

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3 October 2020 | Volume 10 | Article 530160

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Ding et al. Gut Microbiota Benefits on Cardiovascular

lower doses and significantly lower systemic exposure than that of
extended-release metformin (Foretz et al., 2019). Although very
little is currently known about the bacterial targets of metformin,
there is convincing evidence that metformin can reshape the
composition of human gut microbiota.

The abundance of Akkermansia muciniphila, a mucin-
degarding bacterium, is reduced in individuals with obesity
and diabetes compared to healthy individuals, as well as in
rodents (Everard et al., 2013; Dao et al., 2016; Plovier et al.,
2017). Furthermore, a higher abundance is associated with a
healthier metabolic status and improvements in the cardiac
metabolic parameters in individuals with obesity (Dao et al.,
2016). Participants with diabetes that were also taking metformin
had a higher relative abundance of this microbe compared
to participants with diabetes that were not taking metformin
and participants without diabetes (de la Cuesta-Zuluaga et al.,
2017; Cani, 2018). This is in agreement with other in vitro
experiments showing that metformin directedly increases the
growth of A. muciniphila (Wu et al., 2017). As Akkermansia
uses mucus as a nutrient source, Metformin is further found
to increase the number of goblet cells. Goblet cells produce
gastrointestinal mucins that protect the underlying epithelium
from pathogens, and the number of it was positively correlated
with the abundance of Akkermansia (Shin et al., 2014). In
addition, one study found that a recombinant protein isolated
by A. muciniphila can improve the intestinal barrier through
interaction with TLR2 (Plovier et al., 2017), even A. muciniphila
derived extracellular vesicles can influence gut permeability
through the regulation of tight junctions (Chelakkot et al., 2018).
Decreased gut permeability limits the release of endotoxins
such as LPS, which in turn improves the chronic low-grade
inflammatory status and reduces vascular inflammation (Tang
et al., 2019). A recent study showed that fecal microbiota
transplantation (FMT) using fecal material from metformin-
treated mice can not only upregulate the expression of GLP-1
and pattern-recognition receptors TLR1 and TLR4 to improve
hyperglycemia caused by a high-fat diet (HFD), but can also
downregulate the expression of the inflammatory cytokine IL-18
(Lee et al., 2019) which has been identified as a possible risk factor
for CVD (Jefferis et al., 2011). However, metformin treatment was
recently found to be associated with an increased concentration
of TMAO (a promoter of atherothrombotic disease) (Brown
and Hazen, 2018; Croyal et al., 2020). Further, results from
another animal study suggested that the plasma TMAO level
were significantly associated with the relative abundance of
Akkermansia within the jejunum and cecum (Koeth et al., 2014).
Therefore, it is difficult to comprehensively determine whether
increased Akkermansia abundance is ultimately beneficial for
cardiovascular disease.

Another therapeutic effect of metformin is its influence
on the interactions between BAs and the microbiota. The
inhibitory effect of biguanides on bile acid absorption has been
acknowledged since the 1970s (Caspary and Creutzfeldt, 1975).
Metformin can reduce active bile acid absorption via ASBT
inhibition (Napolitano et al., 2014). Subsequent modifications
of bile acid-mediated activation of the nuclear FXR and the
cell surface TGR5 might influence GLP-1 secretion from L cells
(Bronden et al., 2017; van Stee et al., 2018). In a recent study,

Sun et al. (2018) performed metagenomic and metabolomic
analyses of samples from individuals with newly diagnosed
T2DM after 3 days of metformin treatment. The BSH activity
of Bacteroides fragilis was strongly reduced after metformin
administration, and glycoursodeoxycholic acid (GUDCA) was
increased in the gut. They further confirmed that GUDCA is
an intestinal FXR antagonist that controls bile acid homeostasis
and glycolipid metabolism (Matsubara et al., 2013). Thus, they
concluded that metformin acts in part through a B. fragilis –
GUDCA–intestinal FXR axis to improve metabolic dysfunction
(Sun et al., 2018). In addition, B. fragilis is involved in the
transformation of primary bile acids to SBAs such as LCA,
which can activate the PXR (Staudinger et al., 2001). Considering
the possible correlation between FXR, PXR and atherosclerosis
(Zhang et al., 2006; Sui et al., 2011), the cardioprotective effect
of metformin may be related to its regulation of B. fragilis.
Moreover, levels of Firmicutes (e.g., Clostridium perfringens) have
been shown to decrease in metformin-treated patients (Karlsson
et al., 2013), which in turn can alter bile acid metabolism by
reducing the circulating levels of pro-inflammatory bile acids
(DCA and TDCA) (Fujisaka et al., 2018).

Metformin can also increase the abundance of SCFA-
producing taxa and species (e.g., Butyrivibrio, Bifidobacterium
bifidum, and Megasphaera) (Forslund et al., 2015; de la Cuesta-
Zuluaga et al., 2017). As mentioned earlier, SCFAs function
as a macronutrient energy source and hormone-like signaling
molecules that enter the portal circulation to signal through
two orphan G protein-coupled receptors, GPR41 (Samuel et al.,
2008) and GPR43 (Kimura et al., 2013), and mediated AMPK
activation in diverse tissues to regulate innate immunity and host
metabolism (den Besten et al., 2015; Brown and Hazen, 2018). In
addition, metformin can increase the enrichment of Lactobacillus
and Bifidobacterium (Wu et al., 2017). Whereas Lactobacillius
promote GLP-1 release from L-cells by increasing the apical
expression of sodium glucose cotransporter-1 (SGLT1) (Bauer
et al., 2018), Bifidobacterium have also proven to be negatively
related to HbA1c.

Although the intestine hypothesis of the metformin action
mechanism provides an explanation for its cardiovascular
benefits, this still requires further validation, especially regarding
the role of metformin in non-diabetic patients with CVD.
Limited by indications, there has been very limited research
on this subject. A small randomized double-blind placebo-
controlled study consisting of 33 non-diabetic women showed
that metformin can improve vascular function and reduce
myocardial ischemia in female patients with angina compared
to a placebo (Jadhav et al., 2006). In addition, the recent proof-
of-concept MET-REMODEL trial (Metformin and its Effects on
Left Ventricular Hypertrophy in Normotensive Patients With
Coronary Artery Disease) in patients with coronary artery disease
(CAD), insulin resistance (IR), and/or pre-diabetes found a
beneficial effect of metformin on left ventricular mass indexed
to height (LVMI), LVM, office systolic blood pressure, and
oxidative stress (Mohan et al., 2019). However, some pilot clinical
studies with other surrogate end-points for cardiovascular events
such as carotid intimal media thickness have not yielded
positive results (Preiss et al., 2014; Kulkarni et al., 2018; Rena
and Lang, 2018). Thus, further evidence is needed before
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metformin can be recommended for non-diabetic patients
with CVD.

Alpha- Glucosidase Inhibitors
Accumulating evidence suggests that post-prandial
hyperglycemia (PPHG) is a powerful predictor of diabetic
cardiovascular events (DECODE Study Group, 2001; Ning
et al., 2010). Studies have found that PPHG can increase
oxidative stress through endothelial dysfunction (Kawano et al.,
1999) and low-grade chronic inflammation (Esposito et al.,
2002), leading to the development of atherosclerosis and the
occurrence of cardiovascular events (Node and Inoue, 2009).
Alpha-glucosidase inhibitors (α-GIs) are microorganism-derived
anti-glycemic drugs that have been proven to reduce PPHG
and are associated with a favorable impact on an array of CVD
surrogate markers (Geng et al., 2011; Standl et al., 2014).

The classic mechanism of α-GIs is believed to act through
the inhibition of the host glucoamylase, delaying carbohydrate
digestion and pushing the carbohydrates to the lower intestinal
tract, where they can be transformed into the food for the
intestinal bacterial community. This makes it possible to
change the gut microbiota composition. Although the specific
mechanism of α-GIs that regulates the gut microbiota is unclear,
there is still evidence that apart from reducing post-prandial
blood glucose, AGIs can also protect the cardiovascular system
by reshaping the gut microbiota composition.

Acarbose, which is derived from the fermentation process
of Actinoplanes utahensis, is the most widely used α-GI
in hyperglycemia treatment (Weng et al., 2015). Previous
studies suggest that acarbose treatment can reduce the risk of
cardiovascular endpoints in patients with diabetes (Hanefeld
et al., 2004; Hanefeld, 2007; Chen et al., 2014). A clinical study
involving 106 patients with newly diagnosed T2DM found that
acarbose treatment can significantly change the gut microbiota
composition compared to glipizide, especially increasing the
abundance of species possessing high BSH activity, such as
Lactobacillus gasseri and Bifidobacterium longum, while depleting
putrefactive species of Bacteroides, Alistipes and Clostridium,
thereby changing the relative abundance of microbial genes
involved in BA metabolism and contributing to beneficial effects
on the host metabolism (Gu et al., 2017). Another study
confirmed this result (Su et al., 2015), which also found that
acarbose can reduce the level of LPS in the blood by increasing
the number of Bifidobacterium and reducing the number of
Enterococcus faecalis (Kikuchi et al., 2018), and thus, alleviate
chronic low-level inflammation in patients. These results indicate
that changes in the gut microbiota after acarbose treatment
can bring greater cardiovascular benefits to diabetic patients.
In addition, the cardiovascular benefits of acarbose can be
explained by new insights into the production of SCFAs and
the release of H2 gas by the gut microbiota. Increasing evidence
supports the view that the use of acarbose increases the number
of colonic bacteria, which in turn promotes the production
of SCFAs and H2 gas through the fermentation of undigested
carbohydrates in the lower digestive tract (Suzuki et al., 2009;
Hai-xia et al., 2011). As mentioned previously, SCFAs can signal
through specialized host receptor systems to regulate innate

immunity and host metabolism. H2 gas can be absorbed from
the intestine into the circulation to mediate the inhibition of
pro-inflammatory cytokines, especially IL-1β, TNF-α, and IL-6
in inflammatory tissues. Moreover, a recent study proposed that
H2 converts the quinone intermediates into the fully reduced
ubiquinol, thereby increasing the antioxidant capacity of the
quinone pool and preventing the generation of reactive oxygen
species (Ishibashi, 2019). Clinical evidence and experimental
results strongly suggest that reactive oxygen species are the
main cause of cardiovascular diseases such as hypertension,
atherosclerosis, angina pectoris, myocardial infarction, and heart
failure (Touyz, 2004; Madamanchi et al., 2005).

Although current microbiota studies support acarbose for its
cardiovascular benefits, its cardioprotective effect in non-diabetic
patients is still controversial. The STOP-NIDDM trial (Study
to Prevent Non-Insulin-Dependent Diabetes Mellitus) showed
that decreasing PPHG with acarbose was not only associated
with a reduction in the incidence of new-onset diabetes as the
primary objective of this study, but also with a relative risk
reduction in the development of cardiovascular events, especially
in the risk of myocardial infarction as assessed by a planned
post hoc analysis of predefined secondary outcomes (Chiasson
et al., 2003). However, the recently completed ACE (Acarbose
Cardiovascular Evaluation) trial on patients with coronary heart
disease and impaired glucose tolerance showed that acarbose
delayed progression to type 2 diabetes, but was neutral with
respect to MACE (Holman et al., 2017).

GLP-1 Receptor Agonists
As mentioned earlier, GLP-1 is an insulinotropic hormone
secreted by gastrointestinal neuroendocrine cells. The body can
help to reduce blood sugar by secreting GLP-1 after eating,
but natural GLP-1 is rapidly degraded by DPP-4 secreted in
the intestine. Due to the relative lack of insulin or insulin
resistance, diabetes patients have high blood glucose levels. At
this time, auxiliary substances such as GLP-1 are particularly
important. GLP-1 receptor agonists (GLP-1RAs), a new type
of hypoglycemic drug, can not only increase insulin secretion,
suppress appetite, and control weight by activating GLP-1
receptors (Vilsboll et al., 2012; McAdam-Marx et al., 2014), they
can also control hyperglycemia by inhibiting glucagon secreted
by islet α cells (Meier, 2012). Of these, liraglutide (Marso et al.,
2016b) and semaglutide (Marso et al., 2016a) have also been
found to have cardioprotective effects. Interestingly, although all
GLP-1RAs currently on the market are subcutaneous injections,
liraglutide can change the composition of microorganism
community (Zhang et al., 2018; Madsen et al., 2019). This
may be due to the GLP-1 level because it influences the gut
transit time and gastric emptying rate, and could therefore
modify the gut lumen internal environment (local pH value and
nutrient composition).

Zhang et al. (2018) found that SCFA-producing bacteria
including Bacteroides, Lachnospiraceae, and probiotic
Bifidobacterium, arec selectively enhanced in liraglutide-treated
diabetic male rats. SCFA can affect intestinal anti-inflammatory
abilities (Boulange et al., 2016) and prevent a low-grade
inflammatory response. In addition, Lachnospiraceae exhibit
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a positive relationship with peak oxygen uptake, the gold
standard measure of cardiorespiratory fitness (Estaki et al.,
2016). Fuerthermore, liraglutide can reduce obesity-associated
bacteria (Erysipelotrichaceae, Marvinbryantia, Roseburia,
Candidatus Arthromitus, Parabacteroides, Romboutsia, and
Ruminiclostridium) in both obese and diabetic obese rats (Wang
et al., 2016; Zhao et al., 2018) and increased the lean-related
phylotypes such as Prevotella, Blautia and Coprococcus. The
Akkermansia genus was significantly reduced in patients with
a long T2DM duration. After comparing the gut microbiota
of subjects receiving GLP-1 RA and metformin, a higher
Akkermansia abundance was found in the liraglutide-treated
patients (Wang et al., 2018b). As mentioned earlier, a higher
abundance of Akkermansia is beneficial for metabolism and the
gut barrier function, it is also related to the plasma concentration
of TMAO. However, it is still unknown whether liraglutide
treatment can result in increased TMAO concentrations.

It has been found that GLP-1 RA can reduce the formation
of atherosclerosis by improving vascular endothelial function,
inhibiting inflammatory response, and reducing myocardial
infarction ischemia, thereby preventing diabetic vascular disease
(Khat and Husain, 2018). Although there are few pilot clinical
studies on using GLP-1RA to prevent CVD, the regulation of gut
microbiota may also become one of the potential cardiovascular
benefit mechanisms of GLP-1RA in the future.

Sodium Glucose Co-transporter 2
Inhibitors (SGLT2i)
SGLT2i are a new class of oral hypoglycemic drugs. The action
mechanism of SGLT2i mainly promotes urine glucose excretion
by inhibiting the reabsorption of sodium glucose in the proximal
renal tubules. Due to its unique glucose excretion mechanism,
the hypoglycemic effect of SGLT2 inhibitors is unaffected by the
function of islet cells and insulin resistance, thus reducing the risk
of hypoglycemia (Whalen et al., 2015). Recently, as the benefits
of SGLT-2i in cardiovascular outcome trials (COVTs) outweigh
those of other anti-diabetic drugs (Zinman et al., 2016; Neal
et al., 2017; Wiviott et al., 2019), they have received increasing
attention in the field of diabetes. Three CVOTs on empagliflozin,
canagliflozin, and dapagliflozin in T2DM patients and either
established CVD or multiple cardiovascular risk factors showed
remarkable positive results and proved the significant role of
these three types of SGLT2i in reducing MACE, cardiovascular
mortality, all-cause mortality, and hospitalization for heart
failure (Zinman et al., 2016; Neal et al., 2017; Wiviott et al., 2019).

Based on our current understanding, the cardiovascular
protection mechanism of SGLT2i mainly lies in their ability
to reduce cardiac inflammation, oxidative stress, cell apoptosis,
mitochondrial dysfunction, and ionic abnormalities (Lahnwong
et al., 2018). As of yet, consistent evidence for their effect on
microbiota is lacking. A pharmacological experimental study
of a dual SGLT1/2 inhibitor complex showed that the relative
abundance of both the bacterial orders and bacteria of interest in
metabolic disease (e.g., Akkermansia spp.) in C57BL/6 mice was
unaltered after drug treatment (1 mg/kg p.o. for 6 consecutive
days) (Lahnwong et al., 2018). Another animal experiment for
dapagliflozin (dapa) (Lee et al., 2018) found that treatment with
dapa had little effect on the gut microbota of control mice, but

did subtly change the richness and diversity of the microbial
community in diabetic Dbmice. On the one hand, the Firmicutes
to Bacteroidetes ratio in the Db+ dapa group was reduced, which
suggests that dapa may reduce the level of inflammation in the
body by adjusting the gut microbiota. The experiment also found
that at the species level, A. muciniphila showed a tendency to
increase in the Db + dapa group compared to the Db group.
A. muciniphila has been shown to improve metabolic outcomes,
including vascular function (Qin et al., 2012; Li et al., 2016), while
participating in the protection of the intestinal mucosal barrier
and controlling low-grade inflammation (Chelakkot et al., 2018;
Lee et al., 2019; Tang et al., 2019).

Dipeptidyl Peptidase-4 Inhibitors (DPP-4i)
DPP-4i are an extensively used class of oral hypoglycemic agents
that target the DPP-4 enzyme and inhibit the degradation of
GLP-1 to reduce blood glucose levels (Holst and Deacon, 1998).
Although the existing CVOTs with DPP-4i showed no difference
in combined MACE outcomes (Scirica et al., 2013; White et al.,
2013; Green et al., 2015), DPP-4i may also positively influence
surrogate vascular end points and other cardiovascular risk
factors, as extensively discussed in previous reviews (Mulvihill
and Drucker, 2014; Scheen, 2018). In parallel, some progress
has been made in identifying the influence of DPP-4i on
gut microbiota, although most of the evidence comes from
animal experiments.

Currently, DPP-4i studies, especially those on sitagliptin and
vildagliptin, have shown similar evidence that DPP-4i treatment
partially reverses HFD-induced dysbiosis, significantly reduces
the Firmicutes to Bacteroidetes ratio, and alters the population
of SCFA-producing bacteria. Vildagliptin also has a potential
effect on inflammation due to the reduction of TLR and cytokine
expression (Yan et al., 2016; Zhang et al., 2017). All these
changes ultimately mediate the beneficial effects of DPP-4i on
the host, especially in terms of glucose homeostasis. Another
animal study found that both sitagliptin and saxagliptin alter
gut microbial composition and promote a functional shift in the
gut microbiome. In particular, succinate production is especially
increased. Succinate is reportedly a key substrate of intestinal
gluconeogenesis in the improvement of glucose metabolism (de
Vadder et al., 2016). And GLP-1 is not the main mediator of the
effect on gut microbiota, a suggestion that is further supported
by the findings of Olivares et al., who proposed the existence
of significant intrinsic DPP-4-like activity in gut microbial
populations (Olivares et al., 2018). Moreover, by transferring
fecal samples from sitagliptin-treated T2DM patients to HFD-fed
germ-free mice, this study further demonstrated that the altered
microbiome contributes to the hypoglycemic effects of sitagliptin,
even in the absence of additional treatments (Liao et al., 2019).

THE EFFECT OF STATIN ON GUT
MICROBIOTA

Hyperlipidemia is an important risk factor for CVD (Isomaa
et al., 2001) and is one of the main results of multiple
metabolic disorders. Statins, as the most widely used drugs
for treating hyperlipidemia, have been recommended by the
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American College of Cardiology/American Heart Association
(ACC/AHA) as first-line treatment for hyperlipidemia (Stone
et al., 2014). Lipid metabolism regulation is mainly achieved
by inhibiting 3-hydroxy-3-methylglutaryl coenzyme-A reductase
in the cholesterol synthesis pathway (Stancu and Sima, 2001).
Although the efficacy of statins has been proven, their
therapeutic effects vary from person to person. A meta-
analysis of a statin intervention trial involving 32,258 patients
in 37 clinical trials showed that the standard deviation of
low-density lipoprotein cholesterol (LDL-C) reduction for all
statins and doses ranged from 12.8 to 17.9% (Karlson et al.,
2016). The percentage of patients experiencing a suboptimal
response (<30% reduction in LDL-C) ranged from 5.3 to
53.3%. The change was not related to the specific statin
dose, but was probably related to the composition of the gut
microbiota. In an observational study involving 64 patients
with hyperlipidemia (Liu et al., 2018), after 4–8 weeks of
rosuvastatin treatment, there was a difference in the microbiota
composition of the two groups that showed the best (group I)
or suboptimal (group II) clinical results. In particular, the higher
abundance of Firmicutes, butyrate-producing bacteria families of
Ruminococcaceae, Lachnospiraceae, and Clostridiaceae, and the
lower abundance of Bacteroidetes are believed to be related to the
best therapeutic effect of rosuvastatin. However, considering the
fact that the study lacked a control group and did not sequence
the bacteria in either group before treatment, microbiome
changes could not be assessed. In another experiment with
atorvastatin in rats (Khan et al., 2018a), atorvastatin-treated HFD
groups showed a relative increase in biodiversity compared to
the HFD control group, and promoted the relative abundance
of Proteobacteria, and reduced the abundance of Firmicutes.
At the same time, several specific dominant groups including
Oscillospira, Parabacteroides, Ruminococcus, unclassified CF231,
YRC22 (Paraprevotellaceae), and SMB53 (Clostridiaceae) were
observed to have a reversed abundance relative to the HFD
group, which was similar to that of the normal rat food control
group. In a cross-sectional study, the gut microbiome of 15
untreated hypercholesterolemia patients, 27 atorvastatin-treated
hypercholesterolemia patients, with 19 healthy subjects were
compared (Khan et al., 2018b). A distinct bacterial signature
with species associated with atherosclerosis and inflammation
(e.g., Collinsella, Streptococcus) was found in the untreated
hypercholesterolemia patients, while an increased abundance
of putative anti-inflammatory species (Akermansia muciniphila,
Faecalibacterium prausnitzii, and genus Oscillospira) was found
in atorvastatin-treated patients.

To investigate the role of gut microbiota in the effect of
statins on lowering blood lipid, Wang et al. (2018a) used
antibiotics to establish a rat model of microbiome imbalance
that lasted for 2 weeks. They found that the abundance of
Lactobacillus and Bifidobacterium was remarkably diminished
upon antibiotic treatment in the antibiotic+rosuvastatin-treated
group compared to that of the rosuvastatin-treated group and
control group. Correspondingly, the efficacy of rosuvastatin
in lowering the blood levels of total cholesterol and LDL-
C was significantly compromised. Studies have shown that
the presence of Bifidobacterium and Lactobacillus can lead to

the alteration of TNFα and IL-6 levels, which results in the
reduction of cholesterol (Veiga et al., 2005). The expression of
a cellular transporter of rosuvastatin (OATP1B1) is regulated
by a variety of factors including TNFα and IL6 (Le Vee
et al., 2009); therefore, it can be speculated that beneficial gut
bacteria mediate the lipid-lowering effect of rosuvastatin by
influencing the expression of inflammatory factors. In a recent
study, Kim et al. (2019) found that atorvastatin and rosuvastatin
significantly increased the abundance of the genera Bacteroides,
Butyricimonas, and Mucispirillum in elderly obese mice. This
change in gut microbiota plays an important role in down-
regulating IL-1β expression and upregulating TGFβ expression
(Winer et al., 2016; Goncalves et al., 2018) (Figure 1).

In addition to the impact of statin on gut microbiota,
there is also evidence that the efficacy of statin medications
is regulated by gut microbiota. A study involving plasma
metabolomic profiling in 100 human subjects found that
baseline concentrations of three secondary bacterial-derived
BAs (LCA, taurolithocholic acid, and glycolithocholic acid),
positively predicted the magnitude of simvastatin-induced LDL-
C lowering (Kaddurah-Daouk et al., 2011). An animal study also
reported that simvastatin treatment increased the abundance of
Bacteroidetes, reduced Firmicutes and Actinobacteria, as well
as altering the serum metabolic and bile acids profiles of HFD
feeding mice. Moreover, it found that gut microbiota modulation
resulting from oral antibiotics attenuated the hypolipidemic
effect of simvastatin and suggested that this might be related
to the suppression on hepatic CYP7A1, CYP7B1, and FXR
proteins that regulate bile acids synthesis from cholesterol by gut
microbiota modulation (He et al., 2017).

DISCUSSION

With the development of gene sequencing technology and
human microbiome research, an increasing amount of evidence
from animal and human studies has revealed that the activity
of gut microbiota is closely related to the occurrence and
development of metabolic and CVD. In parallel, gut microbiota
have been recognized as playing an important role in the
digestion, absorption, metabolism and even the effect of drugs.
Therefore, with an in-depth understanding of gutmicrobiota, it is
possible that microbial pharmacology may become an important
part of modern pharmacology.

In this review, we summarize the advances of research on
several drugs for metabolic diseases with proven cardiovascular
benefits in regulating gut microbiota. This enables the
identification of microbial targets that may help these drugs
to provide their cardiovascular protective effects. At present,
the potential benefits of these drugs in reducing CVD risks
mainly include the reduction of multiple cardiovascular risk
factors such as hyperglycemia, hypertension and hyperlipidemia,
as well as other beneficial effects, including increased insulin
sensitivity, weight loss, reduced of oxidative stress and low-
grade inflammation, restored of endothelial function, and the
inhibition of key platelet activation pathways (Standl et al., 2014;
Boyle et al., 2018; Lahnwong et al., 2018; Zilov et al., 2019).
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FIGURE 1 | Metabolic therapy drugs reshape the gut microbiota composition, modulate the abundance of specific gut bacteria, and then control the release of the

microbial derivative to achieve cardiovascular protection and reduce cardiovascular risk factors. Metformin, liraglutide, and dapalizine have been found to increase the

abundance of Akkermansia muciniphil, which can enhance the function of the intestinal barrier, limit endotoxin leakage. In parallel, the increase in the abundance of

some species (Bacteroides, Butyricimonas, Lactobacilli, and Mucispirillum) after drug treatment has also been found to be significantly related to the decrease in

secretion of pro-inflammatory cytokines (IL-18, IL-1β, IL-16, and TNFα). In turn, the decrease of the low-level inflammatory status has been shown to increase insulin

sensitivity and benefit the vascular function. Similarly, both metformin and acarbose can reduce Bacteroides and Clostridium clusters, and may alter bile acid

metabolism, with a reduction of bile acid reabsorption and secondary bile acids, thereby influencing the excitability of various atherosclerosis-related receptors (PXR,

FXR, and TGR5) and stimulating GLP-1 secretion. Moreover, metformin, acarbose, liraglutide, rosuvastatin, and atorvastatin have also been found to increase

(Continued)
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FIGURE 1 | SCFAs-producing species (Butyrivibrio, Bifidobacterium, Megaspheara, and Butyricimonas Lactobacilli et al.). SCFAs, through the G protein-coupled

receptors GPR-41 and GPR43 mediated AMPK activation in diverse tissues to regulate innate immunity and host metabolism. In addition, Lactobacilli can also

promote GLP-1 secretion by increasing the apical expression of SGLT1 cotransporter. Finally, acarbose increases the release of H2 gas by the gut microbiota as well

as preventing oxygenated stress damage.

The effects of these drugs on the gut microbiota could be one
explanation for most of these benefits.

Despite some exciting findings, few studies provide causal
evidence that drugs are directly involved in cardiovascular
protection through the gut microbiota. On the one hand, gut
microbiota vary greatly from individual to individual. The
genetic background, lifestyle, emotional state, and method of
childbirth of the host all have a great influence on gut microbiota
composition (Wen and Duffy, 2017). On the other hand,
gut microbiota are not homogenous along the digestive tract,
especially between the mucosa (cecum or colon) and stool
(Eckburg et al., 2005). Most of the existing studies have selected
samples from the cecum, colon, and feces for gene sequencing,
and the results are often offset by the location of the selected
tissues. Therefore, more study designs using antibiotics or FMT
should be encouraged to clarify the causal relationship between
microbiome changes and CVD, then to verify these findings
through large-sample prospective clinical trials.

Among the drugs we have discussed, there is no doubt
that metformin is the most studied. Studies in rodents and
humans have generally suggested that metformin can protect the
cardiovascular system by increasing SCFA-producing bacteria,
interfering with the bioconversion of BAs, and promoting the
growth of anti-inflammatory probiotics. Even if the increased
TMAO concentration associated with metformin has a negative
effect on the cardiovascular system, one may hypothesize
that considering the overall effects on the gut microbiota,
metfomin treatment could still result in positive cardiovascular
outcomes. However, there are still few studies on other drugs
mentioned in this manuscript. Current researches speculates
that they may achieve regulate immunity, host metabolism,
and oxidative stress by promoting the growth of beneficial
bacteria and inhibiting the expansion of harmful bacteria,
thereby indirectly providing cardiovascular protection. However,
many studies have analyzed the gut microbiota at the phylum
level. Expressions such as “SCFA-producing bacteria” and
“Firmicutes to Bacteroidetes ratio” may be too simple and
broad, because these bacteria are diverse, widely distributed
and even compete with one another (Becker et al., 2011).
There have been many attempts at treatment, such as probiotic
supplementation and FMT (Brown and Hazen, 2017), we believe
that with the reduction of sequencing costs, metagenomic
sequencing will become more and more popular, and the
refinement of microbiome structure analysis will help people
better understand, screen and utilize the specific functions
of microbiota.

In addition, research on the molecular biological mechanisms
of drug-microbe interactions and microbe-host interactions
are still in progress. Existing studies show that microbial
derivatives play an important role in regulating human
physiological activities and protecting the cardiovascular system.

These derivatives might include new mediators and potential
pharmacological targets for the treatment of cardiometabolic
diseases. Non-lethal small-molecule inhibitors of TMAO
production can protect mice from diet-enhanced atherosclerosis
(Wang et al., 2015). Therefore, additional molecular biology
studies on both drug-microbe interactions and microbe-host
interactions are still needed. The amount of chemicals and
metabolites derived by gut microbiota is staggering. Once a
desired microbial derivative is identified, it may become a new
drug target for cardiometabolic disease.

CONCLUSION

The current microbiome studies on antidiabetic agents and
lipid lowering agents mainly focus on the role of gut
microbiota in regulating metabolic disorders. However, several
metabolic therapy drugs have been proven to have additional
cardiovascular benefits. Simultaneously, the influence of gut
microbiota on the cardiovascular system is being recognized
gradually. In this review, we linked the recent advances in
microbiome studies on metabolic therapy drugs with their
cardiovascular protective effects. Endogenous or exogenous
factors change gut microbiota composition, which affect human
physiological functions by releasing and regulating a variety
of mediators including SBAs, TMAO, SCFAs, inflammatory
factors, endotoxins, and intestinal hormones. Existing metabolic
therapy drugs may regulate metabolism, immunity, oxidation-
reduction balance, and other functions by changing the
abundance of certain bacteria in the intestinal tract, thus
providing cardiovascular protection. However, more detailed
experimental and clinical investigations are needed in order
to better understand the molecular mechanism of these drugs’
regulation of gut microbiota and to identify new targets for
microorganism-targeted therapeutics.
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