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Nanozymes own striking merits, including high enzyme-mimicking activity, good stability,
and low cost. Due to the powerful and distinguished functions, nanozymes exhibit
widespread applications in the field of biosensing and immunoassay, attracting
researchers in various fields to design and engineer nanozymes. Recently, nanozymes
have been innovatively used to bridge nanotechnology with analytical techniques to
achieve the high sensitivity, specificity, and reproducibility. However, the applications of
nanozymes in food applications are seldom reviewed. In this review, we summarize several
typical nanozymes and provide a comprehensive description of the history, principles,
designs, and applications of nanozyme-based analytical techniques in food contaminants
detection. Based on engineering and modification of nanozymes, the food contaminants
are classified and then discussed in detail via discriminating the roles of nanozymes in
various analytical methods, including fluorescence, colorimetric and electrochemical
assay, surface-enhanced Raman scattering, magnetic relaxing sensing, and
electrochemiluminescence. Further, representative examples of nanozymes-based
methods are highlighted for contaminants analysis and inhibition. Finally, the current
challenges and prospects of nanozymes are discussed.
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INTRODUCTION

Nanomaterials have received widespread attention in fields like chemistry, biology, environment,
medicine and health, aerospace, resources and energy, and so on (Huang et al., 2019d; Wu et al.,
2019a; Sun et al., 2018). Regarding their specific properties on mechanical, electrical, magnetic,
optical, and catalytic activities, all kind of nanomaterials have been prepared and studied.
Nanozyme, a kind of specific nanomaterials with enzyme-mimicking activity, is more and
more favored by researchers. Nanozymes have shown a broad range of applications in vitro
detection and living systems (Liang and Yan 2019). They hold a promise to serve as direct
surrogates of natural enzymes in the analytical methods, especially the immunoassays (Wu et al.,
2019b).

Compared with natural enzymes, nanozymes are easier to be modified and purified. Besides, the
size, morphology (e.g., nanospheres, nanosheet, nanorods, nanowires, etc.), and surface groups can
contribute to the enzyme-like activity of nanozymes (Wang et al., 2019; Gao et al., 2020). In this
regard, nanozymes could thus be flexibly used as an effective medium in the construction of
analytical methods. As a particular kind of nanomaterials, nanozymes are usually conjugated with
antibody or DNA sequences to construct signal amplification strategy (Zhu et al., 2017; Tao et al.,
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2020). When combined with traditional concepts of optical,
electrochemical, or colorimetric assays, the analytical methods
with lower detection limits can be developed.

On the other hand, food contaminants, a kind of toxic
substances that is harmful to human, have increasingly grown
in complexity and followed up on new public health issues, novel
safety emergencies, and emerging consumer demands (Huang
et al., 2019a). The complexity of the pollutants and food matrices
brings great challenge to the analytical methods. For instance,
Alternaria can generate several toxic secondary metabolites, like
alternariol, alternariol monomethyl ether, altenuene, tentoxin,
and tenuazonic acid, which are widely found in sorghum,
sunflower seeds, cereals, tomatoes, wine, beers, apple juices,
and beverages (Pinto and Patriarca 2017). Various analytical
strategies have been developed to monitor their occurrence in
foods or food production chain. Obviously, those wet-chemistry-
based analytical methods have been gradually replaced by
powerful techniques that enable high enhancements in
accuracy, precision, and detection limits. The new technologies
can get over difficulties of conventional methods, such as time-
consuming analysis, laborious procedures, and high cost.

The development of novel “rapid” detection methods has
decreased detection time dramatically and thus could solve the
main concerns of most of the analytical methods. Hence, a new
frontier of nanozymes in food contaminants detection gives a
glimpse of insight in this concept (Figure 1). In this review, an
overview of emerging methods based on nanozymes is provided,
with a focus on their varieties, surface modifications, and
applications in food contaminants analysis.

HISTORY AND DEVELOPMENT

Looking back at the first term “enzyme” coined by Wilhelm
Kuhne in 1877, enzymes have gone for more than 120 years.
Manea et al. described the transphosphorylation reactivity of
triazacyclononane-functionalized Au NP, and the new term
“nanozyme” was coined (Manea et al., 2004). Since then, the
nanozymes have become a new member in field of enzyme
mimics. Later, Gao et al. discovered that Fe3O4 NP has good
enzyme-mimicking activity, which opens up a broad range of
applications (Gao et al., 2007). Now, it is known that nanozymes
are nanomaterials with intrinsic enzyme-like characteristics. The
development and evidence of nanozymes behaving peroxide
activity are shown in Figure 2. Given advantages like low cost,
recyclable utilization, high catalytic activity, and stability,

FIGURE 1 | The schematic presentation of nanozymes-based analytical
techniques for the detection of different food contaminants (MRS, magnetic
relaxing sensing; SERS, surface enhanced Raman scattering; ECL,
electrochemiluminescence).

FIGURE 2 | The history of nanozyme in enzymemimics and the evidence
of Fe3O4 NP behaving peroxide activity (inset).

FIGURE 3 | Number of published papers on nanozyme research by the
end of 2020. The data is based on the Web of Science.
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nanozymes are expected to be the next-generation artificial
enzymes (Ⅱ).

In recent decades, more than 200 research groups around the
world have been studying nanozymes (Liang and Yan 2019).
However, the activity descriptors of the nanozymes still remain
largely unknown. Enormous efforts have been devoted to
exploring nanozymes covering hundreds of nanomaterials.
Dramatic growth has been witnessed for nanozymes research
in catalysis, analytical techniques, environmental science,
biomedical diagnosis, bioimaging, and antibacterial agents,
suggesting their scientific significance and application
prospects (Figure 3).

CLASSIFICATION

Classification
Generally, nanozymes can be classified as four groups according
to the components, that is, metallic-based, metal oxide-based,
carbon-based, and other nanozymes (Figure 4). Metallic-based
nanozymes include metal nanoparticles, such as gold
nanoparticles (Au NP), platinum nanoparticles (Pt NP), and
palladium nanoparticles (Pd NP). To enhance their catalase
activity, some bimetallic nanozymes include Au@Pt, Pt@Pd,
and Au@Ag that are developed (Nandhakumar et al., 2020).
Even ternary metallic nanozymes like AgAuPt NP and PtPdAu
NP were explored. Despite their advantages like being easy to be
prepared and modified, metallic-based nanozymes may suffer
from disadvantages including metal toxicity and spontaneous
aggregations.

Unlike metal-based nanozymes, metal oxide-based ones
possess abundant groups with different functions. For
example, Fe3O4 nanozymes can be used as peroxidase-,
catalase-, or oxidase-like enzyme, and CeO2 nanozymes can
act as superoxide dismutase, catalase-, and oxidase-like
enzymes (Nicolini et al., 2015). In addition, there are many
other metal oxide-based nanozymes, such as CuO NP, MnO2

NP, V2O5 NP (Yang F. et al., 2018), and so on. With the aid of
surface functional groups, metal oxide-based nanozymes are
more stable and easier to be modified.

Carbon-based nanozymes mainly include carbon nanotubes
(CNT), graphene oxide (GO), and carbon nanodots, which were
known as carbon-based nanozymes (Garg and Bisht 2016). For
example, Cui has developed a combined hydrothermal/hydrogen
reduction method for mass production of spiral carbon
nanotubes by pyrolysis of acetylene (Cui et al., 2011). Early in
2009, Wang et al. described an electrochemiluminescence (ECL)
sensor based on CdS nanocrystals formed on the surface of
multiwalled carbon nanotubes (CdS/MWCNT) (Wang et al.,
2009). With the peroxidase-like activity of MWCNT, CdS/
MWCNT can react with H2O2 to generate strong and stable
ECL signals. Such examples can be found in many other
applications like environmental engineering or even synthetic
chemistry (Sun et al., 2018).

Recently, a variety of new nanomaterials have been found to
mimic the activity of enzymes, such as metal–organic frameworks
(MOFs), covalent organic frameworks COFs, and Prussian blue
(PB) (Zhou et al., 2020). Because of its porosity and large specific
surface area and the diversity of structures and functions, MOFs
have been widely concerned and applied in a number of crucial
sensing, energy, and catalysts domains, including toxins
detection, gas storage and separation, and electrocatalysis
(Lustig et al., 2017; Li et al., 2018). For example, Zhou et al.
report the first chiral nanozyme based on mimicking a natural
enzyme and the superior structure of COFs, which showed higher
activity than the natural enzyme (Zhou et al., 2020). Li et al.
developed a new kind of microelectrode for in vivomonitoring of
H2O2 by electrodeposition of PB onto CNTs assembled carbon
fiber microelectrodes (Li et al., 2016). All the methods are based
on the excellent properties of the newly developed nanozymes.

Functions and Performances
As a specific kind of artificial enzymes (Ⅱ), nanozymes behave
desirable functions beyond catalysis. For example, from metal to
metal oxides, then to carbon, a variety of sources can be provided
to synthesize nanozymes, which make them readily available.
Many nanozymes exhibit multienzymes functions by mimicking
different kinds of natural enzymes. For example, depending on
pH, CeO2 NP and Au NP can exhibit superoxide dismutase,
peroxidase, and catalase activities, which is mainly dependent on
their kinetic characterization (Wu et al., 2019c). Usually,
Michaelis−Menten kinetics experiments are carried out to
compare with those natural enzymes. By this means, the
standards in terms of the substrate specificity (Km), catalytic
rate constant (kcat), and catalytic efficiency (kcat/Km) can be
united.

FIGURE 4 | Schematic presentation of nanozymes classifications
(metal-, metal oxide-, and carbon-based nanozymes and other nanozymes
like MOF, COF, etc.).
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In general, nanozymes have the oxidase-, hydrolase-,
superoxide dismutase-, and catalase-mimicking activity
(Figure 5). The catalytic mechanisms and kinetics have been
widely discussed regarding conditions like pH, temperature, or
even dissolved oxygen. However, as mentioned above, several
different functions can be found in one type of nanomaterial,
which are pH dependent or related to structural properties (size,
morphology, surface groups, defects, etc.). Due to the complex
interdependence between physicochemical properties and
catalytic characteristics, a guide is needed to engineer and
design nanozymes.

ENGINEERING AND MODIFICATION

Many studies have revealed that the structural properties like size,
morphology, and surface groups are vital contributors to the
catalytic activity of nanozymes (Liu and Liu 2017; Jiao et al.,
2019). Typically, the specific surface area of nanoparticles
increases as their size decreases, which result in a serious
shortage of coordination number of surface atoms. Therefore,
the surface active sites increased, and the catalytic efficiency is
enhanced. That is, the smaller the nanozymes are, the higher their
catalytic activity is. In this regard, the enzyme activity can be
adjusted by controlling the size.

Besides, during the reaction process, the morphology and
interface structure of nanozymes may change with different
reaction conditions and thus have effects on the catalytic
performance (Vernekar et al., 2016). By selectively exposing
the crystal surface with high activity or specific energy, the
catalytic activity of nanoparticles can be improved a lot
(Kuang et al., 2014). The morphology-dependent nanozymes
can be ascribed to the different lattice arrangement of atoms
with different appearance structures, which lead to different
surface activity and catalytic performances.

What is more, the functions of nanozymes can be reformed via
a variety of surface modification means (charges, coatings,
functionalization, and loadings). Based on this, both target
recognition and target-dependent catalytic activities can be
achieved by surface engineering strategies. Such successful
modification examples include ions (Huang et al., 2019c),
small molecules (Chang et al., 2016), nucleotides and nucleic

acids (Huang et al., 2018a), amino acids and peptides (Fan et al.,
2017), proteins (Su et al., 2019), and polymers (Wu Y. et al., 2019)
(Figure 6). The operation can strengthen the functions of
nanozymes and extend their applications. Specifically, those
nanozymes with unique surface can realize sensitive and
specific recognition and detection of analytes.

APPLICATION IN FOOD CONTAMINANTS
DETECTION

Since food contaminants have posed great threat to human health
and also show huge risks in food safety, it is essential to develop
analytical methods for analyzing food contaminants for food
safety supervision and risk assessment. Nevertheless, it remains
great challenge to achieve rapid detection of food contaminants,
and there are still some technical limitations to be solved. The
development of cost-effective, rapid response, high sensitivity,
and selectivity detection method for toxins has significant market
prospects and huge social benefits. Taking advantage of the
physiochemical properties of nanozymes, they are supposed be
a potential candidate in improving the performance of analytical
methods.

In this section, different classes of food contaminants are first
introduced, including toxins, pesticide residues, food additives
abuse, and microorganism, as well as their application and
properties. Next, nanozymes-based analytical methods are
carefully discussed to prove the good detection performance,
especially for food contaminants with certain limit quantity.
Immunoassays, a system based on biochemical recognition
that can sensitively convert concentrations of analytes into
signals, are introduced in food contaminants detection.

Toxins
A toxin can be something produced by an organism that
interferes with the action of other lives and cause poisoning in
human body (Harms et al., 2018). Trace amount of the toxins in
human body can cause biological damage, even resulting in death.
For example, mycotoxins are secondary metabolites produced by
some fungi (mainly Aspergillus, Penicillium, and Fusarium)
during the growth, which can easily cause physiological
abnormalities in humans and animals (Zain 2011). The
mycotoxins can enter the food chain through contaminated
grains or the products of animals (e.g., milk, meat, and eggs)
that were fed with mycotoxin-contaminated feed. To ensure food
safety and guarantee the human health, it is of great significance
to develop powerful methods to monitoring the trace level of
toxins in food samples (Figure 7).

Detection of Mycotoxins
The most common mycotoxins are aflatoxin, ochratoxin,
fumonisin, zearalenone patulin, and deoxynivalenol. Due to
their toxicological effects, the presence of mycotoxins in foods
has severe implications on human and animal health even at very
low concentration level (Cimbalo et al., 2020). Thus, it is essential
to develop rapid methods for the detection of these mycotoxins in
food products. For instance, based on CdTe/CdS/ZnS quantum

FIGURE 5 | Functions and catalytic mechanisms of nanozymes (S,
substrate).
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dots, luminol, and HRP-modified gold nanorods, Wu et al.
designed a ratiometric ECL aptasensor for AFB1 detection
(Wu et al., 2017). The ratiometric aptasensors exhibited
accurate and sensitive analytical performance for AFB1 with a
good linear range from 5.0 pM to 10 nM with a LOD of 0.12 pM.
The nanozymes-based immunosorbent assay has proved the
superior performance of nanozymes in enhancing the
detection sensitivity. Based on mesoporous SiO2/Au-Pt
(m-SAP), an aptamer, and Fe3O4 magnetic nanoparticles
(MNP), a nanozyme and aptamer-based immunosorbent assay

(NAISA) was constructed for AFB1 detection (Wu et al., 2020a).
In the work, m-SAP were prepared to act as signal labels, aptamer
was adopted to recognize AFB1, and MNP facilitated to realize
magnetic separation. The NAISA method showed a LOD of 5 pg
ml−1, which is 600-fold lower than that of traditional ELISA
method. Further, based on Au NPs-assisted triple cascade signal
amplification, Hong et al. proposed a magnetic relaxing sensing
method for the detection of AFB1 with a LOD of 0.453 pg ml−1

(Hong et al., 2021). Xu et al. reported an indirect competitive
MOF-linked immunosorbent assay for AFB1, which overcome
the low catalytic activity and poor stability of natural enzymes
with 20-fold enhancement in sensitivity (Xu et al., 2021).
Obviously, nanozyme-based detection techniques can greatly
improve the sensitivity with specific structural properties and
excellent catalytic activity.

Detection of Bacterial Toxins
Besides, the detection of bacterial toxins like Escherichia coli
toxin, enterotoxins, and botulinum neurotoxins is discussed. For
example, Ching et al. described the use of Au NP in a single lateral
flow device for detection of botulinum neurotoxins A and B
(Ching et al., 2012). If toxin is present, it binds with the gold-
conjugated antibody and together flow to the test capture line,
resulting in the resolution of a red line. This is a typical lateral
flow immunoassay that can be extended to nanozymes-based
analytical techniques. Shlyapnikov et al. reported a microarray-
based immunoassay for the simultaneous detection of five
bacterial toxins, including cholera toxin, E. coli heat-labile
toxin, enterotoxins, and the toxic shock syndrome toxin
(Shlyapnikov et al., 2012). The assay can be completed in less
than 10 min with the LOD low to 0.1–1 pg ml−1 for water and to
1 pg ml−1 for food samples. Few nanozymes-based analytical
techniques have been fabricated for the detection of bacterial
toxins. However, nearly all the immunoassays involve the

FIGURE 6 |Modification of nanozymes and their application in constructing analytical techniques ((a): Huang et al., 2019b; (b) Huang et al., 2018a; (c) Kim et al.,
2015; (d) Huang et al., 2018b).

FIGURE 7 | Representative illustration of nanozyme-based method for
the detection of all kinds of toxins in food samples (EC, electrochemistry) ((A)
Nilam et al., 2017; (B) Yang et al., 2021; (C) Lu et al., 2018; (D) Savas and
Altintas 2019).
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reaction of enzyme and H2O2, so it can be a creative way to apply
nanozymes in the previously reported immunoassay by replacing
the enzyme conjugated antibody.

Detection of Marine Toxins
Marine biotoxin is a kind of highly active special metabolic
component in marine organisms, which can severely affect
human health, economy, wildlife, and ultimately the ecosystem
(Bano et al., 2020). By immobilizing BTX-2–bovine serum
albumin conjugate on Au NP-decorated poly(amidoamine)
dendrimers, Tang et al. developed an electrochemical assay for
the fast screening of brevetoxin B (BTX-2) in food samples (Tang
et al., 2011). The application of Au NP can improve the
conductivity of dendrimers on the electrode. The BTX-2 assay
was conducted with a competitive immunoassay using HRP-
labeled anti-BTX antibodies and H2O2–o-phenylenediamine
(OPD) reaction system. The method behaved a wide linear
range of 0.03–8 ng ml−1 with a LOD of 0.01 ng ml−1. Based on
a double-integrated mimic enzyme formed by Cu(OH)2
nanozyme and G-quadruplex/hemin DNAzyme, Liu et al.
established an immunosensor for detection of microcystin-LR
(Liu T. et al., 2019). In the strategy, Cu(OH)2 nanozyme acted as
labels to capture the secondary antibody as well as a substrate for
loading DNAzymes. The method had high activity for the ABTS
chromogenic reaction, which realized the visual detection of
microcystin-LR in the range from 0.007 to 75 μg L−1 with a
LOD of 6 ng ml−1. Such double-integrated artificial enzyme
showed a stable and catalytic ability to H2O2 and ABTS,
further revealing the superiority of functional nanozymes.

Detection of Plant Toxins
Plant toxins, also known as phytotoxins, are secondary plant
metabolites that have acute or chronic toxicity or pose
antinutritional effects on people. The commonly detected that
plant toxins include pyrrolizidine alkaloids, grayanotoxins,
opium alkaloids, strychnine, ricinine, aconitine, aristolochic
acid, and cardiac glycosides (e.g., digitoxin, digoxin). For
example, Hu et al. proposed a sensitive colorimetric aptasensor
for the quantitative detection of abrin using Au NP nanozyme
(Hu J. et al., 2015). Au NP possesses the peroxidase-like activity
that can catalyze TMB in the presence of H2O2 with color
variations. The method behaved a linear range from 0.2 to
17.5 nM, with a LOD of 0.05 nM for abrin. Velmurugan et al.
reported the fabrication of Co(OH)2-enfolded Cu2O nanocubes
on reduced graphene oxide (rGO) to develop an electrochemical
caffeine sensor (Velmurugan et al., 2016). The nanozymes had a
good electrocatalytic activity towards the determination of
caffeine in beverage samples. The sensor showed a linear
range from 0.83 to 1,200 μM with a LOD of 0.4 μM.
Furthermore, based on chitosan functionalized magnetic
graphene oxide, Tang et al. developed an extraction method
for efficient extraction and determination of alkaloids in
hotpot (Tang et al., 2020). The study was carried out without
using nanozymes. However, the detection was successfully
conducted by the pretreatment of nanocomposites, which
posed good guiding sense towards the nanozyme-based
analytical techniques.

Pesticide Residues
Pesticides are one of the major inputs used in agriculture to
protect crops and seeds before and after harvesting (Bajwa and
Sandhu 2014). Though they have contributed huge economic
benefits to society, the pesticide residues left in the food materials
can have deleterious effect on human health (Jiang et al., 2008).
Moreover, widespread use of pesticides has caused serious
concerns in food safety, because the residues are easily
exposed to primary and derived agricultural products. Thus, in
order to ensure food safety for consumers, many countries and
organizations around the world have established maximum
residue limits (MRL) for pesticides in foods (Jallow et al., 2017).

On the other hand, due to the large amounts of pesticides
currently being used, an increasing interest has been attracted for
developing rapid screening systems to monitor their level in the
food products (Liu W. et al., 2019). In this section, three kinds of
pesticides include organophosphates (OPPs), neonicotinoids
(NNOs), and triazines (TAs) that are introduced as analytes
(Figure 8). To achieve robust detection of pesticides, several
analytical techniques based on nanozymes are developed and
highlighted.

Analysis of Organophosphates Pesticides
Among the toxic pesticides, organophosphorus pesticides (OPPs)
have been reported as the major contaminants in the water, fruit,
or medicinal plants (Yang Q. et al., 2018). For example, Wei et al.
proposed a dual-mode strategy using nanoceria as nanozyme for
methyl-paraoxon (MP) analysis (Wei et al., 2019). Based on the
enzyme-like activity of nanoceria, MP could be hydrolyzed to
para-nitrophenol (p-NP) with bright yellow color and
characteristic absorption peak, which can be easily analyzed by
the colorimetric and spectroscopic techniques. Both strategies
showed LODs of 0.42 μM. To detect omethoate and dichlorvos
and, at the same time, evaluate the activity of acetylcholinesterase
(AChE), Huang et al. proposed a colorimetric paper sensor using
γ-MnOOH nanowires (NWs) as nanozyme and 3,3′,5,5′-
tetramethylbenzidine (TMB) as a chromogenic indicator
(Huang et al., 2019a). The concentration of pesticides and
AChE activity can be measured by the changes in absorbance
at 652 nm or blue color of oxidized TMB products. The paper-
based test had LODs of 0.1 mU mL−1 for AChE, 10 ng ml−1 for
omethoate, and 3 ng ml−1 for dichlorvos.

Analysis of Neonicotinoid Pesticides
Neonicotinoid pesticide is a relatively new group of active
ingredients with broad spectrum systemic action, low toxicity,
and high insecticidal efficiency to mammals (Wu et al., 2020b).
Weerathunge et al. reported a colorimetric assay for rapid
detection of acetamiprid with acetamiprid-specific aptamer
and Au NP nanozyme (Weerathunge et al., 2014). This
approach can realize detection of 0.1 ppm acetamiprid within
10 min. Based on an aptamer against acetamiprid, multiple
complementary strands (CSs), and gold nanoparticles (Au
NP), a fluorometric assay was developed for the selective
detection of acetamiprid (Bahreyni et al., 2018). The method
can realize the detection of acetamiprid in a range of 5–50 nM
with a LOD of 2.8 nM. In this work, apart from the nanozyme

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org August 2021 | Volume 9 | Article 7278866

Wu et al. Nanozymes in Food Safety Analysis

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


activity of Au NP, their quenching effect toward specific
fluorescent materials was applied in analytical methods.

Analysis of Triazine and Other Pesticides
Once introduced into the crops, triazine pesticides can cause
long-term negative effects due to their persistence. Another issue
is their easy distribution into other parts of the environment,
especially from soil into groundwater, one of the main sources of
drinking water. Thus, it is a vital subject to develop analytical
techniques of triazine pesticides by easy and cost-effective
techniques in environmental chemistry.

Boruah and Das prepared Fe3O4-TiO2/reduced graphene
oxide (Fe3O4-TiO2/rGO) nanocomposite with hydrogen
peroxide activity and photocatalytic efficiency (Boruah and
Das 2020). The colorimetric detection technique is applied for
the sensing of atrazine using TMB as substrate molecules, which
showed a LOD of 2.98 μg L−1 and a linear range of 2–20 μg L−1.
Based on a competitive ELISA, Kwon et al. developed peroxidase-
like mesoporous core-shell palladium@platinum (Pd@Pt)
nanoparticle conjugated primary antibody as enzyme labels to
detect atrazine (Kwon et al., 2020). The method leads to a high
sensitivity with a LOD of 0.5 ng ml−1 and recoveries of 99–115%,
demonstrating that atrazine and other herbicides and pesticides
can be detected using this immunoassay. With the help of
heteroatom-doped grapheme, Zhu et al. fabricated a
colorimetric nanozyme sensor arrays for detection of the
aromatic pesticides via the TMB/H2O2 system (Zhu et al.,
2020a). Five different pesticides like fluroxypyr-meptyl,
lactofen, diafenthiuron, bensulfuron-methyl, and fomesafen
were successfully detected from 5 to 500 μM. Obviously, the
inhibition effect of pesticides toward natural enzyme is also
suitable for nanozyme, which can be effectively used to
indicate the quantity of pesticides combining with TMB/H2O2

coloring system.

Veterinary Drug Residues
Veterinary drugs are a kind of substances, including
pharmaceutical feed additives, which are often used to prevent,
treat, and diagnose animal diseases or to purposely regulate
animal physiological functions (Stolker and Brinkman 2005;
Rocca et al., 2017). All veterinary drugs used in edible animals

may cause residues in eggs, milk, and meat, which may contain
parent compounds and metabolites or/and conjugates, and enter
the human body via the food chain to produce direct toxic effects
(Figure 9). Based on their functions, veterinary drugs can be
classified as different groups such as antibiotics, anthelmintics,
growth promoters, antiprotozoal drugs, trypanosomiasis drugs,
sedatives, β-adrenergic receptor blockers, and so on (Winckler
and Grafe 2001). The abuse of veterinary drugs can both cause
direct harm to human health and the development of animal
husbandry and the ecological environment (Masia et al., 2016).
Therefore, it is critical to develop effective and rapid detection
methods to screen food samples with veterinary drug residues.

FIGURE 8 | Representative illustration of nanozyme-based method for the detection of all kinds of pesticide residues in food samples (Yan et al., 2019).

FIGURE 9 | Schematic illustration of nanozymes in the design of
detection platforms for veterinary drug residues as multifunctional sensing
elements.
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Analysis of Antibiotics
Based on the peroxidase-like activity of gold nanoclusters (Au
NC), Zhang et al. established a TMB/H2O2 colorimetric sensing
method for tetracycline antibiotics (TCs) via TCs-specific
aptamers (Apt) (Zhang et al., 2020). The sensor can accurately
and reproducibly detect tetracycline in drugs and milk in the
range from 1 to 16 μM with a LOD of 46 nM. In addition, Tian
et al. established a ratio electrochemical biosensor for the
quantitative detection of kanamycin based on signal
amplification elements of planar VS2/AuNPs nanocomposites
and CoFe2O4 nanozyme (Tian et al., 2020). The
electrochemical aptasensor revealed a detection range from 1
pM to 1 μM with a LOD of 0.5 pM. Two main nanozyme-based
analytical methods were introduced here. The first method is the
colorimetric assay, which uses enzyme-mimic activity of
nanozyme to produce color variations that can qualitatively
determine analyte concentrations or adopt an instrument to
quantitatively detect analytes. The other one is electrochemical
assay, and nanozymes were used to catalyze TMB and generate
oxidized species like oxidized TMB (oxTMB), behaving obvious
characteristic signals for further analysis.

Analysis of Antibacterial
Antibacterial drugs are a class of drugs that can treat or prevent
infectious animal diseases by inhibiting or killing the pathogenic
bacteria. However, the abuse of such drugs can pose harmful
effects on human health and the environment (Devasahayam,
Scheld, and Hoffman 2010). Thus, various analytical methods
have been developed for antibacterial drugs analysis. For instance,
based on gold nanoclusters, Song et al. proposed a peroxidase-like
activity enhancement assay for norfloxacin (Song et al., 2020).
The linear relationship of norfloxacin monitoring was gained in
the range of 1.25–8.0 μM with a LOD of 0.2 μM. In addition, He
et al. constructed a biomimetic nano-enzyme-linked
immunosorbent assay for sulfadiazine detection using Au@
SiO2 nanoparticles labeling as markers (He J. et al., 2020). The
method showed good stability with a LOD of 0.2 mg L−1 and
recoveries from 78.00 to 90.96% in beef samples. Moreover, based
on molecularly imprinted polymers and Cu(II) anchored
unzipped covalent triazine framework, Ma et al. described an
ECL assay for sulfa quinoxaline (SQX) using the luminol/H2O2

system (Ma et al., 2018). The method achieved good performance
with a detection range of 1.0–20 pM and a LOD of 0.76 pM.

Analysis of Other Drugs
Other types of veterinary drugs like antiviral drugs and hormones
are also easy to contaminate animal foods. Excessive use of these
antiviral drugs will inevitably lead to drug residues in animals and
eventually enter the human body via the food chain. Therefore, it
is very meaningful to construct rapid method for detection of
veterinary drug residues. For example, Ma et al. developed a
colorimetric immunoassay for the detection of amantadine by
introducing nanocube Pt as nanozyme labels (Ma et al., 2018).
According to this protocol, antiviral drugs like amantadine can be
detected with the sensitivity of 0.195 ng ml−1 for naked eyes and
0.134 ng ml−1 for optical detection. The proposed method not

only outcompeted reported methods, but greatly improved the
naked-eye and optical measurements as compared with
conventional signal-off immunoassays.

Pathogens
Foodborne pathogenic microorganisms have attracted intensive
attention in food safety, which canmake bacteria in foodmultiply
and even produce a large number of toxic metabolites. Poisoning
accidents caused by mistakenly eating polluted foodstuff
frequently occur. Traditional techniques suffered from
limitation of low sensitivity, complex procedures, and time-
consuming operations. Emerging analytical methods based on
nanozymes have been widely developed, which make pathogens
easier to be detected. In this section, various nanozyme-based
assays for foodborne pathogens are described, involving
colorimetric assay, lateral flow immunoassay, electrochemical
assay, and so on (Figure 10).

Bacteria
Bacteria are the main categories of foodborne pathogens,
including E. coli, Salmonella, Listeria, S. aureus, Shigella, S.
haemolyticus, and V. parahaemolyticus. Among them, E. coli
O157:H7 (E. coli) is a highly infectious pathogen that spreads
widely in food and water and poses a major challenge to public
health. Therefore, there is an urgent need to develop a new rapid
method for detection of foodborne pathogens.

For example, Fu et al. proposed a two-step cascade signal
amplification strategy for detection of E. coli, which combines
in situ gold growth with nanozyme-catalyzed deposition and
greatly improves the sensitivity of conventional gold lateral
flow assay (Au NP-LFA) (Fu et al., 2020). The in situ
engineering of nanozyme method achieved an ultrahigh
LOD of 12.5 CFU ml−1, 400-fold enhancement compared
with that of traditional Au NP-ICA. Han et al. prepared
palladium-platinum (Pd-Pt) nanoparticles as enzyme probes
to establish a sensitive LFA for detection of E. coli (Han et al.,
2018). By using TMB substrate onto the test line, the assay
exhibited an enhanced sensitivity of 9.0 × 102 CFU ml−1 in
milk, which was 111-fold higher than that of traditional Au NP-
ICA. To get over the shackles of traditional LFA and build a
flexible model, increasing studies have been carried out to
develop a label-free and low-cost LFA, in which functional
nanozymes are widely adopted to replace enzyme labeled
antibodies and act as effective recognition agents to generate
signals (Cheng et al., 2017; Liu et al., 2018; Wang H. et al., 2020;
Liu, Wang, et al., 2020). According to previous reports, the
colorimetric assay can become a versatile strategy for rapid
detection of a wide variety of other bacteria and pathogens.
Moreover, Zhang et al. designed a MOF@COF nanozyme to
perform enhanced inhibition of bacteria like E. coli and S.
aureus, which demonstrate the possibility of nanozymes using
as potential antibacterial agents (Zhang et al., 2021). No matter
in detections or antimicrobial applications, active centers,
hierarchical nanocavities, and pore microenvironment within
nanozymes always play important roles in their efficient
catalytic activity.
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Viruses
Apart from bacteria, viruses belong to foodborne pathogenic
microorganisms that may contaminate the foods. However, a
lack of knowledge about the viruses in food safety issues is
reported. At present, the common foodborne viruses mainly
include hepatitis A and hepatitis E viruses, rotavirus,
astrovirus, enterovirus, and norovirus. Human norovirus
(NoV) is one of the most common viruses that cause
foodborne outbreaks worldwide (Patel et al., 2009). For
example, based on the peroxidase activity of silver ion-
incorporated Au NP (Au/Ag NP), Khoris et al. developed a
colorimetric bioassay for detection of NoV (Khoris et al.,
2019). Simply, NoV was captured by anti-NoV genogroup II
antibodies and formed a sandwich structure with antibody
modified Au NP. The in situ growth of Au/Ag was controlled
by introducing Ag+/hydroquinone solution. When TMB/H2O2

was added to the wells, Ag ions were released from the surface of
Au/Ag NPs and enhanced the oxidation of TMB with an intense
blue color. The method showed a LOD of 13.2 c132 copies/g feces
in the range of 102∼106 copies of viral RNA/mL. The strategy
offers an alternative for practical deployment of the norovirus
detection with simple pretreatment in contaminated food.

Food Additives
Food additives are a kind of raw material added in food or in the
process of food production, which aim to improve food edibility as
well as the taste and aesthetic feeling of food. The excessive use of
additives or illegal use of non–food additives will cause a series of food
safety problems.High doses of food additivesmay have harmful long-
term effects on animals such as cancer proliferation (Dolatabadi and

Kashanian 2010). Therefore, the analysis of these unavoidable
additives in food samples is important. In this section, nanozyme-
based methods are discussed for the detection of food additives.

Analysis of Antioxidants
Antioxidants can prevent or delay food oxidation deterioration by
reducing oxygen or free radical level around food and thus improve
the stability and storage resistance. Many analytical procedures have
been developed for the detection of antioxidants. In this part,
nanozymes-based electrochemical and colorimetric assays are
introduced to analyze antioxidants. For example, based on spiny
Au-Pt nanotubes and horseradish peroxidase,Wu et al. proposed an
electrochemical biosensor for the simultaneous determination of
butylated hydroxyanisole (BHA) and propyl gallate (PG) (Wu et al.,
2016). Themethod showed a wide linear range of 0.3–50mg L−1 and
0.1–100mg L−1 for BHA and PG with LODs of 0.046mg L−1 and
0.024 mg L−1. Moreover, BHA and PG were demonstrated by a
simple visual detection method, which involved Au-Pt nanotubes, a
kind of nanozymes, as catalyst and TMB as indicator. The
combination of visual and electrochemical detection can greatly
enhance the detection accuracy. In addition, Cui et al. designed and
prepared a novel porphyrin-based porous organic polymer, which
was adopted in the TMB/H2O2 reaction system for the evaluation of
antioxidants, like ascorbic acid (AA), gallic acid (GA), and tannic
acid (TA) (Cui et al., 2018). The catalytic activity of nanozymes is
also widely used in constructing electrochemical sensors. For
instance, Yue et al. reported an electrochemical sensor for
sensitive detection of TBHQ by integrating molecularly imprinted
polymers (MIP), PdAu NP, and reduced graphene oxide (RGO)
(Yue et al., 2019), wherein MIP realized the specific recognition with

FIGURE 10 | Schematic illustration of analytical techniques for foodborne pathogenic microorganisms based on nanozymes-based colorimetric assays.
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TBHQ, GRO accelerated electron transfer, and bimetallic PdAu NP
acted as a promising catalyst.

Analysis of Food Colorants
Food colorants are dyes or pigments that impart color added to
food or drink or any nonfood applications. Among them,
synthetic ones like tartrazine, ponceau 4R, allura red, and
sunset yellow are widely used in food industry. However,
continuous intake of synthetic ones may do certain toxicity to
human body. Experiments demonstrated that a high dosage of the
dye like amaranth might increase the incidence of malignant
tumors in rats (El-Wahab and Moram 2013). So, the synthetic
pigments allowed in some countries are regulated with strictly
limited dosage. Nanozymes are popular in detecting colorants
using the electrochemical sensors.

For example, based on TiO2/electroreduced graphene oxide
nanocomposites, Qin et al. described a voltammetric sensor for
simultaneous detection of ponceau 4R and tartrazine (Qin et al.,
2020). The method achieved the limit of detections (LODs) with
4.0 and 6.0 nM for ponceau 4R and tartrazine, respectively.
Similarly, Li et al. reported TiO2/ErGO nanohybrids for the
electrochemical detection of allura red with enhanced
electrocatalytic activity and voltammetric response, and the
LOD is 0.05 μM (Li et al., 2020). Besides, CuS with different
morphologies was studied and then applied in tartrazine and
sunset yellow detection by voltammetric techniques (Li et al.,
2019). The CuS nanoflowers constructed electrode realized the
detection limits of 12 nM for tartrazine and 6 nM for sunset yellow,
revealing the unique electrocatalytic activities of CuS crystals.

Analysis of Other Food Additives
Other additives that are commonly detected include preservatives,
sweetener, and flavor enhancers. For example, based on the
peroxidase-like catalytic activity of nanozymes, Xi et al.
designed copper/carbon hybrid as potential enzyme mimetics to
generate ROS for antibacterial therapy (Xi et al., 2020). Based on
ZnO NP/MWCNTs modified glassy carbon electrode, Balgobind
et al. developed a differential pulse voltammetry (DPV) technique
for aspartame detection (Balgobind et al., 2016). For the detection
of preservatives, Rather et al. proposed an electrochemical
detection of parabens by depositing polyaniline film (PANI)
and Au NP on the glassy carbon electrode. The square wave
voltammetric response of ethylparaben (EP) shows a wide linear
range from 0.1 to 5.10 nMwith a LODof 0.1 nM. In addition, using
gold nanoparticle decorated on a molybdenum disulfide/chitosan
(Au@MoS2/Ch) as a conductive matrix, Devi et al. constructed an
electrochemical immunosensor for the detection of monosodium
glutamate, a kind of flavor enhancers (Devi et al., 2019). A linear
detection range was perceived from 0.05 to 200 μM, with a LOD
and limit of quantification (LOQ) of 0.03 and 0.1 µM, respectively.

Heavy Metal Ions
Due to their potential threat to the public health, heavy metal ions
(Hg2+, Pb2+, Cd2+) in food has been of increasing concerns (Wu
J. et al., 2021). Long-term intake of these heavy metal ions, even
with trace amount in food, will cause some severe diseases, such
as cognitive deficits, kidney failure, cardiovascular, and

neurological disorders (Zhang et al., 2019). In addition, Cu2+

is an essential element at the trace level in human body. For
example, it can play a catalytic action in heme synthesis, but the
intake of large quantities can be toxic. It is therefore essential to
monitor heavy metals in the food or drinking water. Currently,
nanozyme-based analytical method is one of the frontiers in the
detection of toxic heavy metal ions. So, to achieve rapid, simple,
and sensitive detection of those heavy metal ions, many detection
methods coupled with nanozymes have been developed.

For example, Liu et al. prepared an Au/Ni-Fe LDH/rGO
nanocomposite that both acts as enzyme mimics and surface-
enhanced Raman scattering (SERS) substrate for the removal and
detection of organic mercury (MeHg) (Liu et al., 2021). Based on
the nanozyme material, MeHg can be degraded and removed as
well as detected with a LOQ of 10 nM, which is significant in
terms of the multiple applications of nanozymes. Huang et al.
reported a new chitosan-functionalized molybdenum(IV)
selenide nanosheets (CS-MoSe2 NS) for the colorimetric
sensing of Hg2+ (Huang et al., 2019b). With the principle of
Hg2+ activated CS-MoSe2 NS nanozyme activities and the
indicator of TMB, Hg2+ ions could be quantitatively and
selectively monitored with a LOD of 3.5 nM. The method is
based on the surface modification of nanozymes, and the catalytic
activity can be selectively triggered by specific target, which could
be an example for designing other specific nanozymes. Based on
Ag-CoFe2O4/reduced graphene oxide (rGO) nanocomposites,
Guo et al. established a dual colorimetric and SERS detection
assay for the sensitive detection of Hg2+ with a LOD of 0.67 nM
(Guo et al., 2018). For the detection of Pb2+ ions, Xie et al.
proposed Au@PtNP nanozyme as a colorimetric probe based on
the surface leaching of Au@PtNP nanozyme (Xie et al., 2020). By
using the TMB/H2O2 coloring system, a LOD of 3.0 nM with a
linear range from 20 to 800 nM was achieved. Liu et al. presented
a facile strategy for selective detection of Cu2+ by combining the
peroxidase-like nanozyme activity of gold nanoclusters with
amino acid ambidentate nature (Liu et al., 2017). The
nanozyme probe showed a linear range of 1–100 nM and a
LOD of 0.1 nM using the TMB/H2O2 system. Besides, Wen
et al. developed a nanozyme–SERS system for detection of
fluoride based on reduced MnCo2O4/Au nanotubes, which
revealed the key roles of •OH and O2

•– radicals in the
catalytic mechanism of nanozymes (Wen et al., 2020). The
constructed methods are adopting the inhibition principle of
heavy metal ions (Cu2+) or anion (F−) toward the catalytic activity
of nanozymes.

Various nanozyme-based analytical methods have been
developed to analyze food contaminants aiming at
achieving good selectivity, high sensitivity, and stability.
The nanozyme-based methods may overcome some
disadvantages involving high cost of natural enzyme, time-
consuming procedures, and complicated operations.
However, it remains a big challenge to obtain controllable
and stable nanozymes in the enhanced methods. To compare
the performance of nanozyme-based methods in food safety
detection, Table 1 listed the detection parameters such as
nanozyme classification, analytes, linear range, and limit of
detection (LOD), as well as examples of different nanozymes.
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PERSPECTIVES AND CHALLENGES

Along with their remarkable properties, nanozymes-based
analytical techniques have been booming. To drive the
development of nanozyme research in food safety, it is
essential to open a new avenue that can solve the
limitations of the exited analytical methods. Fortunately,
most of nanozymes are applied in constructing rapid
detection methods like fluorescence, colorimetry,
electrochemistry, and biosensors, which has provided some
potential opportunities to meet the demands of analytical
science. In this view, we summarized the nanozymes-based
analytical methods for the rapid and sensitive detection of food
contaminants. Though nanozymes can enhance analytical
performance, they are new artificial enzymes that are full of
challenges remained to be addressed.

1) We explore principles and mechanisms of nanozymes.
Although a large number of papers have been reported
on nanozymes, few experimental studies focused on the
theoretical work and mechanism clarification. It is of great
importance to explore the fundamental principles and
mechanisms of nanozymes, which can facilitate to

reveal the rule of structure-activity relationship and
guide the precise design of nanozymes with desirable
applications.

2) We develop uniform system and standards. Nanozymes are
built up from the concept of enzyme; however, the
properties differ a lot from natural enzymes. So, it is
difficult to characterize the nanozyme performance in a
traditional way. For example, the Michaelis–Menten
mechanism is popular in discussing natural enzymes,
but it is clear that natural enzymes catalyze a reaction
through a homogeneous medium, which is different from
nanozymes that occur in a heterogeneous mechanism on
the surface of nanomaterials. Thus, uniform system and
standards should be constructed to better characterize
nanozyme performance.

3) We engineer controllable and functional nanozymes. Since
size, morphology, and surface groups pose effects on
nanozyme activity and functions, it is favorable to achieve
nanozymes with high performance. How to controllably
engineer nanozymes and extend their functions by surface
modification is an important direction.

4) We evaluate high-performance nanozymes. In developing
improved analytical techniques, various nanozymes are

TABLE 1 | Reported nanozyme-based methods in food safety detection.

Classification Nanozyme Analytes Analytical method Linear range LOD References

Metal-based nanozymes Au NP Patulin SERS 0.5nM∼1 μM 0.085 nM Zhu et al. (2020b)

Pt NP Histamine BIA 0.90∼2,699.18 μM 1.15 μM Wang et al. (2020b)

Pd NP Iodine ions Colorimetry 0∼6.25 nM 0.19 nM He et al. (2020b)

Au@Pt Aflatoxin B1 NAISA 0.032∼3,202.36 nM 0.016 nM Wu et al. (2020c)

Metal oxide-based
nanozymes

Fe3O4 NP Phenol Colorimetry 1.67 μM∼1.2 mM 3.79 μM Wu et al. (2020a)

CeO2@MnO2 NP Glucose PEC sensor 0.1 μM∼0.3 mM 0.07 μM Wang et al. (2020c)

CuO NP Ascorbic acid Fluorometry 0.75∼7.5 μM/
12.5∼125 μM

29.2 nM He et al. (2020c)

MnO2 NP Paraoxon Electrochemistry 0.36∼72.68 μM 0.09 μM Wu et al. (2021b)

V2O5 NP Dimethylamine Chemiresistive
sensor

─ 0.11 mM Mounasamy et al. (2018)

Carbon-based nanozymes GQDs Y. enterocolitica Electrochemistry 1∼6.23 × 108 cfu mL−1 5 cfu ml−1 Savas & Altintas (2019)

CoOxH-GO Cyanide ions Colorimetry 100 nM∼100 μM 32 nM Lien et al. (2018)

MoS2/
f-MWCNTs

Chloramphenicol Electrochemistry 0.08∼1,392 μM 0.015 μM Govindasamy et al.
(2017)

Other nanozymes LMOF-241 Aflatoxin B1 Fluorometry ─ 0.15 μM Hu et al. (2015b)

Prussian blue S. typhimurium NLISA 6×103∼106 cfu mL−1 6 × 103 cfumL−1 Farka et al. (2018)

TAPB-
DMTP-COF

Pb(II) ion Electrochemistry 0.005∼2.0 μM 1.9 nM Zhang et al. (2018)

VS2 Glucose Colorimetry 5∼250 μM 1.5 μM Huang et al. (2018b)

SERS, surface enhanced Raman scattering; BIA, biomimetic immunoassay method; NAISA, nanozyme and aptamer-based immunosorbent assay; PEC sensor, photoelectrochemical
sensor; GQDs, graphene quantum dots; MoS2/f-MWCNTs, molybdenum disulfide nanosheets coated on functionalized multiwalled carbon nanotubes; CoOxH-GO, cobalt hydroxide/
oxide-modified graphene oxide; OPs, organophosphate pesticides; NLISA, nanozyme-linked immunosorbent assay.
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reported for signal production and amplification. However,
when applied to the real applications, the catalytic activity of
nanozymes is still relatively low. Compared to natural enzymes,
the types of nanozymes are limited, and nanozymes can hardly
catalyze one specific substrate. Hence, it is in great need to
develop nanozymes with high catalytic activity, various
enzymatic activity, and good substrate selectivity.

5) We integrate distinct techniques. It is encouraging
that nanozyme-based detection techniques are
narrowing the gap to practical-oriented food analytical
methods. But it is almost impossible to achieve all the
advances in a single detection technique. Thus, it is an
alternative to develop nanozymes-based techniques with
multimodes for the rapid, accurate, sensitive, and selective
detection of food contaminants. For instance, it can
greatly improve the specificity and selectivity of
nanozymes by coupling with molecular imprinting
technique.

In general, nanozymes are in the early stages of the
development of the second generation artificial enzymes. The
powerful functions of nanozymes make them popular from
in vitro detection to in vivo monitoring, and we believe that
they will have great potential in the analysis of food contaminants
in the near future. The above challenges will be the next frontier
for further nanozyme research.
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