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Abstract

Background

Thyroid cancer affects over ½ million people in the U.S. and the incidence of thyroid cancer

has increased worldwide at a rate higher than any other cancer, while survival has remained

largely unchanged. The aim of this research was to develop, calibrate and verify a mathe-

matical disease model to simulate the natural history of papillary thyroid cancer, which will

serve as a platform to assess the effectiveness of clinical and cancer control interventions.

Methods

Herein, we modeled the natural pre-clinical course of both benign and malignant thyroid

nodules with biologically relevant health states from normal to detected nodule. Using estab-

lished calibration techniques, optimal parameter sets for tumor growth characteristics,

development rate, and detection rate were used to fit Surveillance Epidemiology and End

Results (SEER) incidence data and other calibration targets.

Results

Model outputs compared to calibration targets demonstrating sufficient calibration fit and

model validation are presented including primary targets of SEER incidence data and size

distribution at detection of malignancy. Additionally, we show the predicted underlying

benign and malignant prevalence of nodules in the population, the probability of detection

based on size of nodule, and estimates of growth over time in both benign and malignant

nodules.
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Conclusions

This comprehensive model provides a dynamic platform employable for future comparative

effectiveness research. Future model analyses will test and assess various clinical manage-

ment strategies to improve patient outcomes related to thyroid cancer and optimize resource

utilization for patients with thyroid nodules.

Introduction

Thyroid cancer affects over ½ million people in the U.S. and the incidence of thyroid cancer

has increased worldwide at a rate higher than any other cancer[1–3]. Over 90% of cases are

papillary thyroid carcinoma (PTC) and the vast majority of the increase in incidence has been

observed among PTC < 1 cm (papillary thyroid microcarcinoma, PTmC) [2]. Moreover, the

number of patients affected by thyroid cancer is steadily increasing because of the relatively

young age of patients at diagnosis, and because thyroid cancer is associated with a 5-year dis-

ease-specific survival rate of 98% [4].

Given that there has not been a similar increase in PTC mortality, it has been argued that

clinicians are identifying tumors that would otherwise never have become symptomatic or

caused harm. The argument for over-diagnosis is supported by autopsy series, showing a

large subclinical reservoir of disease of PTC [5,6]. Of a large group of low-risk patients under-

going active surveillance of PTmC in Japan, few patients developed nodal metastases and no

patient died of thyroid cancer over a median follow-up of ten years [7]. In the U.S., the main-

stay of treatment of PTC has been total thyroidectomy and adjuvant radioactive iodine, despite

evidence that less aggressive treatment generates similar outcomes [8]. This suggestion of po-

tential over-treatment of PTC on a large scale has led to a focus among experts on the effective-

ness of current treatment and surveillance strategies. This is reflected in the recent changes in

the revised American Thyroid Association (ATA) guidelines for the management of adult

patients with thyroid nodules and differentiated thyroid cancer published in late 2015 [9].

While there may be a shift towards less aggressive treatment, it is essential that we develop

methods of accurately identifying those patients who do require more aggressive treatment.

Over prolonged follow-up, nearly 1/3 of PTC patients have recurrence and 9% die from dis-

ease, making effective risk-stratification critical [10]. Given the longevity of patients who carry

a diagnosis of PTC, survival alone does not suffice as an outcome measure and clinical trials

are prohibitively time consuming and expensive. The physical, psychological, and financial

costs of diagnosis and treatment over the prolonged course of survivorship are, therefore,

increasingly relevant.

Mathematical simulation modeling utilizing best available clinical and epidemiological data

provides a comprehensive framework with which to objectively assess current and future stan-

dards of care for patients with thyroid cancer. Herein we present the construction of the Thy-

roid Cancer Policy Model including the structure, primary data inputs, calibration techniques

and targets, and estimates of goodness of fit. As a verification exercise, we use our natural his-

tory model to estimate the projected number of thyroid nodules that would be found with a

hypothetical screening program and compare it to existing screening ultrasound data. The

detailed presentation of the methodological rigor in the development of the TCPM is with the

goal of providing transparency and reproducibility or model integrity, a critical issue to estab-

lish this comprehensive model as a foundation and platform for future comparative effective-

ness research. Our ultimate goal for the TCPM is to use it to perform analyses that will provide
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pressing evidence on quality of care, patient outcomes and optimize resource utilization to

inform decision making for patients with papillary thyroid cancer.

Methods

Human subject research

Approved by the Kuma Hospital Ethics Committee, protocol #20130905. Informed (verbal)

consent protocol was approved and performed (see Tumor growth and progression kinetics

section).

Model overview

The TCPM is a microsimulation model that depicts the natural history of thyroid nodules

with the purpose to develop a comprehensive platform for future comparative effectiveness

research. Microsimulation is a type of computer-based analytic tool that, distinct from a cohort

study, operates at the level of the individual or smaller. We model each patient individually,

starting from birth; tracking the number of cells in each thyroid nodule that is developed to

inform nodule volume. Each simulated individual has unique sets of attributes (i.e. age, sex) to

which a set of potential events are applied (“transition probabilities”) such as chance of dying

from various causes or chance of tumor growing or a distinct rate of tumor growth within a

given time period. Individual lifetimes provide clinical details and population heterogeneity,

but they are aggregated to assess overall outcomes. Data sources for model inputs include the

US national cancer registry (Surveillance Epidemiology and End Results, SEER), published lit-

erature, and primary longitudinal data from a large clinical cohort.

We describe the methodological processes of model development including: identifying

essential model parameters, assumptions, and key pre-clinical and clinical health states; defin-

ing calibration targets; and assessing model fit to calibration targets. Estimation of pre-clinical

disease and course is essential to assess the effect of clinical interventions. We use accepted

model calibration techniques to estimate unknown or unknowable transition probabilities

between health states and tumor growth characteristics.

Model structure and assumptions

The Thyroid Cancer Policy Model (TCPM) is built in C++. It is a simulation of the natural

history of thyroid nodules among women (thyroid cancer is three times more common in

women than men)[4] followed from birth to age 100 or death (whichever comes first). All-

cause mortality probabilities are based on cross sectional CDC life-tables from 2010–2012

[11]. There are four primary, overarching health-states in the model: no nodules present, sub-

clinical nodule, detected nodule, and death (Fig 1). Fig 2 depicts the annual decision tree

wherein each year (cycle length of the model) patients have a chance of developing new (sub-

clinical) nodules, of detecting existing nodules (detected nodule), and of death. Simulated

patients in the population have the potential to develop multiple nodules, each of which can be

Fig 1. State transition diagram.

https://doi.org/10.1371/journal.pone.0177068.g001
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benign or malignant, unilateral or bilateral to replicate realistic clinical presentation. Addition-

ally, each cycle tumors may grow, shrink, or remain stable in size. To account for patient and

biological heterogeneity, each nodule has a unique rate of growth or shrinkage.

In this pre-clinical natural history model, we define detection of a nodule to be at the point

of clinical presentation. Clinical detection of thyroid nodules occurs commonly on physical

exam or through incidental discovery from an unrelated imaging study. Simultaneous model-

ing of benign nodules is necessary, as, in practice, work-up of and treatment of potentially

larger and/or benign nodules can lead to the incidental detection of a malignant nodule.

Tumor growth and progression kinetics

Thyroid carcinogenesis is distinct from most other cancers in that thyroid carcinomas are not

thought to evolve from benign thyroid nodules [12]. Regardless, benign thyroid nodules need

to be considered when attempting to model the diagnostic and treatment course of thyroid

Fig 2. Schematic of decision tree representing a simulated patient during an annual cycle. Each year individual patients have a chance of death from

all causes, developing new (subclinical, undetected) nodules, or of moving from pre-clinical to clinical state of detecting existing nodules. Each simulated

patient has the potential to develop multiple nodules, each of which can be benign or malignant, unilateral or bilateral to replicate realistic clinical presentation.

Each cycle tumors may grow, shrink, or remain stable in size.

https://doi.org/10.1371/journal.pone.0177068.g002
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disease given the coincident location, growth, and imperfect diagnostic tests (i.e. of fine-needle

aspiration biopsy and thyroid ultrasound). All thyroid nodules, both benign and malignant,

can grow, remain stable, or shrink; cross-sectional data provides the proportion of benign nod-

ules that fall into each category [12–15]. The analogous proportions for malignancies we de-

rived from primary data (Y.I., A.M.): Patients at Kuma Hospital in Japan, under an approved

study protocol, were informed of the risks and benefits of immediate surgery versus active sur-

veillance for biopsy-proven low-risk PTmC (tumors < 1 cm) [16]. The current protocol was

approved by the Kuma Hospital Ethics Committee (#20130905). We analyzed the de-identified

primary data on the tumor size and growth rates (based on ultrasound) of 221 patients (age

21–80) with low-risk PTmC who underwent observation alone over a median follow-up of 9.7

years (S1 File). We assumed that the Japanese data approximates proportions of growth behav-

ior (i.e. how tumors many grow, shrink, or stay the same size) for PTmCs to be comparable for

all malignant nodules [7]. We found that in the group of tumors that grew, they did so in an

exponential manner over the time intervals measured. However, the rate of growth in the ob-

served data was too slow to account for the presence of large nodules that are seen in clinical

practice. This is likely because, in this cohort of patients, tumors that grew at a faster rate

passed a size threshold to be referred for surgery. To extrapolate the primary data over a longer

time interval and to include the possibility of larger tumors, we needed to account for biologi-

cal size limitations seen in vivo (i.e. symptomatic compression of surrounding structures in the

neck adjacent to the thyroid) and the slowing of growth towards the upper (biological) limit of

thyroid nodule size.

Although multiple growth models were attempted for nodule growth, our model best fit

with a logistic growth model. Shrinking nodules were assumed to shrink exponentially; each

nodule was characterized based on a random distribution with an average rate equal to that

found in the analysis of the longitudinal data of Japanese patients with PTmCs. Because the

true biological reasons for spontaneous shrinking in thyroid nodules are unknown, and that it

is shown in both benign and malignant nodules, we assumed that malignant and benign nod-

ules shrank at the rate found in the analysis of the Japanese patients with shrinking PTmCs.

Results of the analysis of the Japanese data used in this work are provided in Table 1.

Table 1. Model input parameters.

Input Parameter Description (Abbreviation) Base-Case Value Source

Probability a nodule is benign (p_benign) 0.90 [18]

Malignant Nodule Growth Characteristics Probability of Growing (p_malig_growth) 0.301 *

Probability of Shrinking (p_malig_shrink) 0.252 *

Probability of Remaining Stable (p_malig_stable) 0.447 *

Benign Nodule Growth Characteristics Probability of Growing (p_ben_grow) 0.111 [12]

Probability of Shrinking (p_ben_shrink) 0.131 [12]

Probability of Remaining Stable (p_ben_stable) 0.758 [12]

Rate of Shrinking Nodules (Exponential Shrinking)

(r, Eq 3)

0.0170 (0.0016)** *

Slope of Stable Nodules (Linear Stability)

(r, Eq 4)

0.0094 (0.0096)** *

Initial Tumor Cell Size (Diameter in millimeters)

(Vo, Eq 2)

0.012407 [22]

Minimum Nodule Size Detection (min_size_detect) 3.0 mm in diameter [19–21]

Probability a detected patient has a malignancy (p_detected_nod_is_malig) 0.164 [18]

*Primary data from Kuma Hospital, Kobe, Japan.

**Format: Mean (standard deviation)

https://doi.org/10.1371/journal.pone.0177068.t001
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We used established mathematical models for modeling tumor growth [17]. The logistic

growth model used for tumor growth satisfies the differential equation below:

dV
dt
¼ rV tð Þ 1 �

VðtÞ
K

� �� �

ð1Þ

where r is the rate of growth, V is volume, t is time, and K is the carrying capacity. The solution

is then

V tð Þ ¼
KVoert

Kþ Voðert� 1Þ
ð2Þ

where Vo is the initial tumor volume. In our model, we fixed the initial tumor volume to be the

volume of one cell, or, 10−6 mm3. For the carrying capacity, we assumed that nodules are

spherical in nature and take the largest possible nodule to be 20 cm in diameter. With these

assumptions, our only unknown parameter in the model was the rate of growth, which we

assumed to be log-normally distributed. We then calibrated the mean and standard deviation,

assuming a separate distribution for both malignant and benign nodules in addition to an age-

based effect. For tumor shrinking, we used the following model:

VðtÞ ¼ Voe
� rt; ð3Þ

where Vo is the initial size of the nodule when starting to shrink. Stable nodules develop over

time in the form

VðtÞ ¼ Vo þ rt: ð4Þ

For both shrinking and stable nodules, we assumed that benign and malignant nodules acted

similarly. In addition, there is limited data to model when growing stops occurring; we assume

then that the decision to potentially shrink or remain stable occurs five years after nodule

development.

Parameters

Our natural history parameters include both calibrated (unknown) transition probabilities

and those derived from literature (input). We assume that our calibrated parameters are

dependent on age and stratify them by the calibrated age groups. We calibrate the probability

of developing a nodule, a rate of clinical detection, and initial nodule growth rate, dependent

on if the nodule’s true state as benign or malignant. Each nodule is assigned a true state upon

development. We write the rate of detection as:

riðVÞ ¼ B1i
þ B2iV; ð5Þ

where i is each age group, V is the volume of the largest nodule, and r is the rate of detection.

Both B1 and B2 are calibrated for each age group. Thus, the rate of detection is independent of

the number of nodules and the location in the thyroid, and is only dependent on age and

volume.

In order to account for diagnosis and treatment of benign nodules that frequently occurs in

clinical practice and subsequent incidental finding of malignancies in smaller nodules during

work-up or on surgical pathology, our model includes the possibility of detection of benign

nodules inferred by a relative risk of detection of benign versus malignant nodules from the lit-

erature [18]. For a person to be detected, there must exist a nodule greater than 3 mm, which

represents a conservative limit of sonographic technology [19–21]. The model input parame-

ters (prior to calibration) are shown in Table 1.

Thyroid cancer policy model

PLOS ONE | https://doi.org/10.1371/journal.pone.0177068 May 8, 2017 6 / 15

https://doi.org/10.1371/journal.pone.0177068


Calibration

There are two SEER calibration targets for the model: 1) Cross-sectional SEER thyroid cancer

incidence data from 2010–2012, 2) SEER tumor data regarding malignant thyroid nodule size

and age of detection for primary tumors diagnosed from 1975–2012. The model is calibrated

to the tumor size by age, stratified by 5-year age groups (from 15–85) and one centimeter (cm)

size intervals at diagnosis. We grouped tumor sizes greater than 6 cm into a single classifica-

tion due to the limited data availability for nodules of this size. In order to set a target for

patients detected that have only an underlying benign disease, we derived a proportion of pa-

tients that are diagnosed with a nodule that have a true underlying malignancy [18]. From this,

we approximated benign incidence. However, there is limited data regarding size distribution

of benign nodules on diagnosis; therefore, we assumed it to follow the same distribution as

malignant nodules. However, because of the limited data in the benign size distribution, we

did not weigh it heavily in the evaluation of model fit. Calibrated parameters were stratified by

age and sex.

Model outputs using different possible calibrated parameter sets were quantitatively com-

pared to expected targets using a weighted Chi-Squared goodness of fit (GOF) function and a

visual assessment. The unknown parameter space was explored with simulated annealing and

a greedy refinement of local minimum solutions [23]. A solely greedy approach–where steps

are only accepted if they are strictly lower than the comparison–is limited by convergence to a

non-ideal local minimum, whereas simulated annealing (in the initial phase) allows for steps

to worse solutions in order to potentially escape local minima. Each calibration run explored

over 20,000 unique parameter sets. All local minima parameter sets and goodness of fit results

were recorded with the lowest GOF indicating the best fitting parameter set. After the calibra-

tion run, all local minimum parameter sets within a 5% range of the best goodness of fit value

were fine-tuned using a greedy descent in the neighborhood of the solution. Calibrated param-

eters are shown in Table 2.

Hypothetical screening analysis: Illustrative example of future TCPM

application

Screening for thyroid cancer is not currently recommended in the U.S. Analysis of changes in

incidence before and after implementation of increased screening for thyroid cancer in South

Korea showed direct correlation between screening and incidence for PTC [24]. As an applica-

tion of our model to assess preclinical disease (i.e. underlying reservoir), we used the TCPM to

assess the number of nodules and the number of cancers that would be detected if screening

was implemented. This was compared to a cross sectional study of the German population

who underwent screening thyroid ultrasound.[15]

Table 2. Calibrated parameter sets.

Calibrated Parameter Description

Rates of nodule

development

Constant, stratified by age*

Initial malignant growth

rate

Calibration of the mean and standard deviation of a lognormal distribution,

stratified by age*

Initial benign growth rate Calibration of the mean and standard deviation of a lognormal distribution,

stratified by age*

Nodule detection rate Calibration of β1 & β2 in Eq 5, stratified by age*

*5-year age intervals from 15 to 85. Ages below 15 use the calibrated values for ages 15–20, and ages

greater than 85 use the calibrated values for ages 80–85.

https://doi.org/10.1371/journal.pone.0177068.t002
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Results

Model fit

Model fit to our primary calibration targets are shown: The incidence proportion of thyroid

cancers is plotted as a function of age category is provided below in Fig 3 and fit of size distri-

bution in comparison to data from the SEER registry is depicted in Fig 4. Additionally, we

present the model’s estimated distributions of sub-clinical thyroid nodules (a metric that

includes benign and malignant nodules) (Fig 5). Our estimates of undetected nodules and the

proportions are consistent with estimates regarding prevalence and size as detected by ultraso-

nography or autopsy [6,25,26]. Fig 6 illustrates the probability of detection based on the size of

the nodule with variation shown based on age. Fig 7 shows TCPM estimates of benign and

malignant nodule growth over time (excluding nodules that stay the same size or shrink).

Model verification

As an initial test and verification of the model, we simulated the effects of screening all

50-year-old women in the population with ultrasound. Our model predicted an underlying

prevalence of any thyroid nodule at 50.01% for 50-year-old women with 6.44% having at least

one malignant nodule (pre-clinical). Lastly, a simulation following females from age 15 to 85

estimates that in the interval 1.88% will develop thyroid cancer, consistent with SEER predic-

tions. However, over 98% of the nodules would be less than 10 mm and non-palpable. When

Fig 3. Model assessment of fit to primary calibration target: Thyroid Cancer Policy Model incidence output versus observed SEER incidence

data (2010–2012) by five-year age intervals.

https://doi.org/10.1371/journal.pone.0177068.g003
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compared to an external cross sectional study with screening ultrasound, the Thyroid Cancer

Policy Model approximates the prevalence of patients with detectable nodules at all ages

(Fig 8).

Discussion

The incidence of papillary thyroid carcinoma has been increasing worldwide, likely in large

part because of increased awareness and improved imaging technologies. Survival with thyroid

cancer remains stable, and the increase in incidence is attributable to small, indolent PTC. The

clinical relevance of these small tumors is the subject of debate among experts in the field and

has led to an overarching shift to less aggressive treatment and a primary focus on better risk-

stratification [9,27,28]. Moreover, thyroid cancer patients are relatively young at diagnosis and

frequently incur substantial associated health care costs as they undergo surveillance and treat-

ment for recurrent disease over a lifetime, experiences that are a detriment to quality of life,

and can cause financial hardship [29–32]. Given the excellent survival outcomes and numbers

of patients required to be informative, clinical trials are impractical. Comparative effectiveness

has been highlighted as a key area for research [9]. Therefore, a mathematical model to simu-

late the natural history of disease becomes valuable. The TCPM provides the framework to

assess appropriateness, effectiveness, and cost-effectiveness of treatment.

We present details of the methodological process used in the development of the TCPM,

with the goal of transparency to provide assurances regarding model integrity and validity.

The primary strength of our model is the comprehensive and rigorous methodology we used

Fig 4. Size distribution at detection of malignancy: Model versus SEER data.

https://doi.org/10.1371/journal.pone.0177068.g004
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to develop and validate it, with pre-determined calibration targets, calibration using an estab-

lished automated search algorithm, and quantitative assessment of model output fit to calibra-

tion targets. Additional model strengths include the inclusion of both benign and malignant

nodules, which is essential to inform comparative effectiveness in the clinical realm. The

model is able to quantify and assess the underlying reservoir of disease that was informed by

cross sectional ultrasound series. This is crucial in future comparative effectiveness work in

including the costs and potential overtreatment downstream of an incidental finding.

Through reported longitudinal observations as well as cross sectional autopsy and ultra-

sound series, wherein incidental PTC were not age or gender specific, we have learned that

some nodules remain clinically insignificant indefinitely [5,6,15,33,34]. Starting in the early

1990’s, our colleagues (Y.I., A.M.) at Kuma Hospital in Japan began offering active surveillance

or surgery for low-risk PTmC. During extended follow-up, no patients died of thyroid cancer

and<10% ultimately demonstrated evidence of significant growth of their tumors [7]. In

another Japanese cohort, Sugitani et al found similar results. After a mean follow-up of five

years, during which time only seven patients were lost to follow-up, 7% of lesions grew, and

only 4% eventually underwent surgery [14]. Both Japanese studies found that younger patients’

tumors were more likely to progress, and that rescue surgery was successful. These findings

have motivated changes in the most recent American Thyroid Association guidelines to allow

Fig 5. Proportion of simulated population with underlying thyroid nodules in TCPM, benign and malignant, by age.

https://doi.org/10.1371/journal.pone.0177068.g005
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Fig 6. Probability of nodule detection by diameter of nodule (mm) with variation in probability range based on age as predicted by the model.

https://doi.org/10.1371/journal.pone.0177068.g006

Fig 7. Model estimates of growth over time stratified by benign versus malignant and by age groups.

https://doi.org/10.1371/journal.pone.0177068.g007
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for the consideration of active surveillance of low-risk PTmCs [9,27]. While U.S. trials to assess

the safety of active are being initiated, informative results will take many years to accumulate.

Experts have outlined stratification for active surveillance but many are concerned about non-

compliance or a loss to follow up among patients who agree to undergo surveillance alone.

In addition to estimating over diagnosis and treatment, TCPM will provide the foundation

to assess which clinical interventions are effective in identifying and treating appropriate

patients. After surgery for PTC, 10–28% of patients develop recurrent disease [10,35]. Simula-

tions of large numbers of patients will allow us to objectively assess if conventional risk-stratifi-

cation algorithms, use of known and future molecular diagnostics [36–39], post-operative

adjuvant therapy, and individually tailored-approaches to the frequency and intensity of sur-

veillance for tumor recurrence are cost-effective [40].

We chose SEER data as the primary calibration target as this is the highest quality data

available in the US. An essential component to model thyroid cancer is the consideration of all

thyroid nodules given the colocation and difficulty in definitive pre-operative diagnosis of

malignancy. Clinical and cost implications of all nodules must be considered. In an attempt to

capture the natural history of thyroid nodules, it is imperative that we include growth of both

malignant and benign nodules. However, empirical data regarding sizes of benign nodules as

well as the ratio of benign to malignant nodules is limited; for this reason, future steps include

analysis of existing databases to infer targets for benign nodules as well.

In conclusion, we present the results of the development and validation of our TCPM. In

future modifications, we will integrate financial and quality of life effects of thyroid cancer sur-

vivorship into the model for future analyses. Our model can be used to identify pivotal data

gaps to target future research. Additionally, the model can be modified to integrate new data

Fig 8. Comparison of Thyroid Cancer Policy Model output for prevalence of thyroid nodules (benign or malignant) by age

category compared to published cross sectional data of the German population.

https://doi.org/10.1371/journal.pone.0177068.g008
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as they become available in the future. Our ultimate goal for the TCPM is for it to serve as a

platform for future analyses that will provide data to improve patient outcomes and optimize

resource utilization for patients with papillary thyroid cancer.
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