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ABSTRACT
Objectives Describe patient transfer patterns within a 
large Norwegian hospital. Identify risk factors associated 
with a high number of transfers. Develop methods to 
monitor intrahospital patient flows to support capacity 
management and infection control.
Design Retrospective observational study of linked 
clinical data from electronic health records.
Setting Tertiary care university hospital in the Greater 
Oslo Region, Norway.
Participants All adult (≥18 years old) admissions to the 
gastroenterology, gastrointestinal surgery, neurology and 
orthopaedics departments at Akershus University Hospital, 
June 2018 to May 2019.
Methods Network analysis and graph theory. Poisson 
regression analysis.
Outcome measures Primary outcome was network 
characteristics at the departmental level. We describe 
location- to- location transfers using unweighted, 
undirected networks for a full- year study period. Weekly 
networks reveal changes in network size, density and key 
categories of transfers over time. Secondary outcome 
was transfer trajectories at the individual patient level. 
We describe the distribution of transfer trajectories in the 
cohort and associate number of transfers with patient 
clinical characteristics.
Results The cohort comprised 17 198 hospital stays. 
Network analysis demonstrated marked heterogeneity 
across departments and throughout the year. The 
orthopaedics department had the largest transfer network 
size and density and greatest temporal variation. More 
transfers occurred during weekdays than weekends. 
Summer holiday affected transfers of different types 
(Emergency department- Any location/Bed ward- Bed 
ward/To- From Technical wards) differently. Over 75% 
of transferred patients followed one of 20 common 
intrahospital trajectories, involving one to three 
transfers. Higher number of intrahospital transfers was 
associated with emergency admission (transfer rate ratio 
(RR)=1.827), non- prophylactic antibiotics (RR=1.108), 
surgical procedure (RR=2.939) and stay in intensive care 
unit or high- dependency unit (RR=2.098). Additionally, 
gastrosurgical (RR=1.211), orthopaedic (RR=1.295) and 

neurological (RR=1.114) patients had higher risk of many 
transfers than gastroenterology patients (all effects: 
p<0.001).
Conclusions Network and transfer chain analysis 
applied on patient location data revealed logistic and 
clinical associations highly relevant for hospital capacity 
management and infection control.

INTRODUCTION
Hospitals are complex systems which must 
run smoothly to ensure treatment quality 
and patient safety. Transfer of patients 
between specialised departments is a key part 
of hospital operation, and optimisation of 
patient flows is crucial for hospital capacity 
management and infection control.

Patients’ journeys through the hospital 
may be analysed from different viewpoints. At 
a systemic level, assessment of overall transfer 
patterns makes it possible to identify logistic 
problems and make adequate adjustments. 

Strengths and limitations of this study

 ► Strengths of this study include its comprehensive 
data set with time- stamped patient- level infor-
mation on intrahospital transfers, admission type, 
demographics, physiological derangement and an-
tibiotic use.

 ► Both static and temporal network analysis methods 
were applied to capture different aspects of patient 
flow.

 ► Regression techniques complemented the network 
analyses, assessing associations between patient- 
level risk factors and longer intrahospital transfer 
trajectories.

 ► Limitations of the study include a 12- month data 
set, hampering robust analysis of yearly seasonality.

 ► Data were limited to patients in four hospital de-
partments, precluding network analysis at an all- 
hospital or interhospital level.
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Improved bed utilisation to counter unanticipated under-
capacity and overcapacity in different hospital wards may 
reduce variability of workload and stress for hospital 
personnel. However, placement of patients in inappro-
priate settings may reduce quality of care and increase 
the risk of errors.1 Physically moving patients also carries 
a risk of introducing infectious agents to new staff and 
hospital areas. Certain locations and the transfers between 
them may be crucial for hospital operation, and some 
pathways may be especially vulnerable to, for example, 
understaffing or closure during an infection outbreak.2 
At an individual level, each transfer requires handover 
of medical information, its quality and completeness 
being essential for error avoidance and continuity of 
care. Hospitalised patients who are frequently transferred 
have increased risk of falls, delirium, prolonged hospital 
length of stay (LOS), healthcare- associated infections and 
mortality.3–6 Characterisation of transfer patterns both at 
a systemic and an individual level may thus be relevant for 
understanding and revising healthcare service use. For 
organisational planning, smoothed, long- term transfer 
data showing major patient flows and seasonality are key. 
In contrast, real- time data reveal the extremes and allow 
for immediate intervention, for example, when moni-
toring detects excessive staff workload or single patients 
subjected to transfer pathways known to carry unaccept-
able risk.

Intrahospital patient transfers have been studied 
using graph theory and network analysis. Construction 
of a weighted, directed transfer network describing the 
emergency surgical services in a UK hospital identified 
potential hubs and bottlenecks in the system.2 Static 
and temporal transfer networks of patient flow in two 
UK acute care hospitals were evaluated and related to 
emergency department (ED) performance.7 Interde-
partmental patient transfer networks for five European 
hospitals were constructed and used in a simulation 
study of infection spread among high- risk and low- risk 
patient groups.8 Network analysis has also been applied 
on national,9 regional10 and simulated11 patient transfer 
data to elucidate spread of resistant microbes.

The above studies almost exclusively evaluated transfer 
networks for entire hospital systems. Most studies anal-
ysed networks as static entities, without attention to 
possible temporal changes in size or connectivity. Further-
more, network analysis alone is insufficient to describe 
individual patient trajectories, since in this method 
each patient’s intrahospital journey is broken up into a 
number of separate location- to- location moves. All trans-
fers are then analysed collectively without regard to their 
sequence.

In this study, we examined patient transfers in a large 
Norwegian hospital using electronic health record 
data. Our primary objective was to describe intrahos-
pital transfer patterns at a systemic level. To this end, 
we applied network analysis on all transfers in four 
hospital departments, highlighting the heterogeneity of 
transfer patterns across departments and over time. Our 

secondary objective was to evaluate transfers on an indi-
vidual level. We identified typical and atypical transfer 
trajectories and assessed whether patient characteristics, 
including admission type, age, gender, surgery, antibiotic 
use and physiological derangement, were associated with 
a higher number of intrahospital transfers.

METHODS
Hospital characteristics
This retrospective, observational cohort study analysed 
data from Akershus University Hospital (AUH), Norway, 
a tertiary hospital serving a population of 560 000 within 
the Greater Oslo Region. Patients who need cardiac 
surgery and neurosurgery or suffer from major trauma are 
referred elsewhere. In 2019, AUH had 763 somatic (non- 
psychiatric) beds, 66 280 somatic admissions, 33 886 day 
cases and 366 858 somatic ambulatory consultations. The 
ED is an integrated division of the hospital and predom-
inantly receives urgent cases arriving by ambulance and 
prescreened patients from local emergency medical 
centres. Approximately 75% of patients presenting in the 
ED are transferred to other hospital wards. Two surgical 
suites together provided 22 operating rooms (ORs). Two 
mixed medical- surgical intensive care units (ICUs), one 
cardiac high- dependency unit (HDU) and one mixed 
postoperative care unit/HDU together provided 14 inva-
sive and eight non- invasive ventilator beds.

Data collection
Pseudonymised data were extracted on 6 December 
2019 by the AUH Department for Data Extraction and 
Analysis and stored and processed within the Service for 
Sensitive Data at the University of Oslo. The study period 
was 365 days starting at a Monday in June 2018; the exact 
week number was not released to the authors for privacy 
protection reasons. For time- stamped data, the granu-
larity of time is hourly.

All adult (≥18 years) admissions to any ward in the 
departments of gastroenterology, gastrointestinal surgery, 
neurology or orthopaedics in the study period were 
included. The four departments, two medical and two 
surgical, each containing one to three wards (table 1, 
online supplemental table S1), were selected because they 
treat defined patient groups that were expected to differ 
from each other. Study sample size was not predefined. 
The cohort only contained admissions occurring after the 
study start time and hence excluded patients who were 
already admitted. Stays with incomplete or erroneous 
data (eg, missing LOS, negative time durations) were 
excluded. For patients with multiple hospital stays within 
the study period, each stay was treated as a unique event.

We extracted time- stamped patient location data 
throughout each stay to construct individual intrahos-
pital transfer trajectories. The following information 
was also extracted from AUH electronic health records: 
demographics (age, gender), admission type (elective 
or emergency), time of hospital admission, physiological 
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Table 1 Clinical and location characteristics of study cohort

Department Gastroenterology Gastrosurgery Neurology Orthopaedics

Admissions (n) 1712 5522 4788 5176

Surgical procedure Yes No Yes No Yes No Yes No

(n, p1%) 69 1643 1942 3580 46 4742 3171 2005

4.0 96.0 35.2 64.8 1.0 99.0 61.3 38.7

Emergency admission
(n, p1%, p2%)

49 1059 1029 3043 45 3944 1643 1605

2.9 61.9 18.6 55.1 9.3 82.4 31.7 31.0

71.0 64.4 53.0 85.0 97.8 83.2 51.8 80.0

Antibiotic use
(n, p1%, p2%)

39 337 663 1176 9 527 1272 317

2.3 19.7 12.0 21.3 1.9 11.0 24.6 6.1

56.5 20.5 34.1 32.8 19.6 11.1 40.1 15.8

Cohort characteristics

Age 65 65 58 62 51 64 68 69

36–81 30–85 28–80 31–83 35–75 32–84 40–85 35–88

NEWS2 score 4 2 3 2 1 2 3 2

1–8 0–6 1–6 0–6 0–3 0–5 1–6 0–6

Hospital LOS (days) 5.3 2.0 3.9 2.0 2.2 2.8 4.3 1.2

1.2–13 0.5–7.9 1.1–13 0.5–7.1 0.8–7.2 0.7–10 1.3–12 0.3–5.8

44 86 184 90 49 113 84 43

Unique wards visited 4 2 4 2 4 2 4 2

3–5 1–3 3–5 1–3 3–5 1–2 3–5 1–3

6 4 7 5 6 6 9 5

Individual transfers 3 1 3 1 2 1 3 1

1–4 0–2 2–4 0–2 2–3 0–1 2–5 0–2

7 6 21 9 4 8 23 6

Ward Type n

Emergency 
department

ED 12 370 1101 4058 3980 3231

Operating room OR 5032 67 1828 45 3092

Day surgery 235 2 119 1 113

Postoperative HDU Technical 5444 144 2018 99 3183

General ICU 134 8 75 24 27

Medical ICU 201 86 45 47 23

Cardiac HDU 2 1 1

ED observation unit 2036 531 747 54 704

Haemodialysis 8 2 6

Orthopaedics A Surgical 2144 11 2 2131

Orthopaedics B 1849 13 1836

Orthopaedics C 603 1 9 593

Gastrosurgery A 2328 5 2301 2 20

Gastrosurgery B 2488 4 2462 1 21

Mixed surgery 197 2 101 1 93

Urology 534 4 386 2 142

Thoraco- vascular 496 166 1 329

Continued
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derangement measured as National Early Warning Score 
2 (NEWS212), administration of antibiotics (excluding 
surgical prophylaxis) and whether the patient underwent 
a surgical procedure. The term ‘patient record’ refers to 
all data collected during a stay at the hospital.

Key variable definitions
At AUH, NEWS2 is routinely scored in the ED and three 
times daily in bed wards. The maximum and mean 
NEWS2 for each patient during their first 48 hours of stay 
were used in analyses, to use NEWS2 as a marker of physi-
ologically deranged state around hospital admission. Any 
non- prophylactic antibiotic use during a stay was coded 
as a binary yes- no variable. Hospital LOS was converted 
to days. ICUs, HDUs and ORs were collectively denoted 
Technical wards. A surgical procedure was assumed for 
stays with OR or day surgery unit in the location log. In 
line with Norwegian hospital routine, the transition from 
one hospital day to the next was defined to occur at 07:00 
hours. Weekdays and weekends were Monday to Friday 
and Saturday to Sunday, respectively.

Intrahospital transfer, or transfer for brevity, is a patient 
movement from one physical location (ward, ED, etc) to 
another. For perioperative transfers, we chose to combine 
multiple consecutive patient movements between the 
preoperative and postoperative HDU and the OR into a 
single location, ORBLOCK, to avoid inflating the number 
of transfers. For example, patient movement from a bed 
ward to the preoperative area, in to the OR, to the pre-/
postoperative HDU, and back to the bed ward would be 

counted as two transfers (bed ward – ORBLOCK– bed 
ward), not four transfers.

Transfer patterns
We describe intrahospital transfer patterns at hospital 
departmental level using networks, and at individual 
patient level using transfer chains. In network analysis and 
graph theory,13 14 a network is a graph that contains two 
types of elements: vertices (or nodes) and edges. A vertex 
represents the elementary unit of the system, and an edge 
captures the interaction between two different units. The 
edge can be directed or undirected. If two vertices are 
connected more than once, a weight can be assigned to 
the edge between them. Network density is defined as the 
ratio of the number of existing edges over the sum of 
all possible edges for all vertices. Degree of a vertex is the 
number of other vertices it is connected with. Taking into 
account whether each connected vertex is on the ‘from’ 
or ‘to’ side of the edge, out- degree and in- degree for a vertex 
can be computed.

In this study, vertices were hospital locations patients 
had visited, and edges were the transfers between any 
two locations. Imagine an emergency patient who needs 
surgery and therefore is transferred from the ED to a bed 
ward, then to the OR, then back to the same bed ward, 
and eventually discharged home. This transfer history 
can be constructed into a network of three vertices and 
three edges, if we ignore the final discharge to home. For 
each of the four departments studied, we first constructed 
an unweighted, undirected network to explore global 

Department Gastroenterology Gastrosurgery Neurology Orthopaedics

Neurology A Medical 2521 2 1 2516 2

Neurology B 2245 5 1 2237 2

Neurological 
rehabilitation

306 306

Gastroenterology 1263 1246 15 2

Palliation A 8 8

Geriatrics 5 1 2 2

Palliation B 11 11

Infection/haema 14 8 4 2

Infection A 20 8 8 1 3

Cardiac 9 3 1 5

Cardiac/renal 8 3 3 1 1

Pulmonary A 2 1 1

Pulmonary B 1 1

Upper panel: cohort summary for four hospital departments, stratified by whether patient stay involved surgery. Antibiotic use excludes surgical 
antimicrobial prophylaxis. Middle panel: patient characteristics in each subcohort. Unique wards refer to the number of unique wards visited 
during each patient stay. Age and NEWS2 are reported as median and 10th–90th percentiles. LOS, unique wards visited and number of transfers 
are reported as median, 10th–90th percentiles and maximum. Lower panel: number of visits to each of 30 observed wards by patients’ allocated 
department.
ED, emergency department; HDU, high- dependency unit; ICU, intensive care unit; LOS, length of stay; n, number of patient stays; NEWS2, National 
Early Warning Score 2 (maximum value in the first 48 hours); OR, operating room; p1%, percentage of all patient stays in the department; p2%, 
percentage of patient stays in the department with same surgery status.

Table 1 Continued
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connectivity, disregarding timing, frequency and type of 
transfers. We further constructed more detailed networks 
by letting them change with time, from study week 1 
through 52, and from weekday to weekend. Finally, we 
examined the temporal frequency of specific types of 
transfers. Here, we categorised all edges in the networks 
into three broad transfer groups: ED- Any (transfers from 
the ED to any other ward), Bed ward- Bed ward (transfers 
not involving technical wards) and Technical (transfers 
involving technical wards; ie, ICUs, HDUs and ORs).

Network analysis only captures the grand total of 
location- to- location transfers and is insufficient to 
examine individual patients’ transfer trajectories. We 
therefore extracted the transfer chain for each stay, 
keeping the sequence of locations. Variables of interest 
were the actual transfer sequences themselves and the 
length of the chains, that is, the number of transfers.

Network and statistical analysis
Network size was quantified by number of vertices and 
edges (unique locations and transfers). For the 52 weekly 
networks in the temporal network analyses, we report 
mean and SD of weekly vertex and edge counts. Network 
density was computed for the undirected, unweighted 
networks. In- degree and out- degree for vertices were 
computed for directed, unweighted networks in the 
weekday–weekend network comparison. Descriptive 
statistics of patient cohort characteristics are provided as 
counts, percentages or medians (10th–90th percentiles) 
as appropriate. Frequencies of the various transfer chains 
were examined and the most common types of chains 
were listed.

Two multivariate Poisson regression models were used 
to identify risk factors associated with higher number 
of intrahospital transfers. Explanatory variables used 
in both models were age (categorised as 18–39, 40–64, 
65–84 and 85+ years), gender, admission type (elective 
vs emergency), departmental allocation, physiological 
derangement (mean first 48- hour NEWS2, categorised as 
0–2, 3–4, 5–6 and 7+) and whether non- prophylactic anti-
biotics were administered during the stay. In the second 
model, we also included variables indicating treatment 
(having undergone surgery, having a stay in an HDU or 
ICU). Interaction terms between departmental alloca-
tion, surgery and antibiotic use were modelled. Results 
are reported as transfer rate ratios (RR) with 95% CIs. P 
values <0.01 are considered statistically significant.

All analyses were implemented in the statistical soft-
ware R (V.3.4.2). Network analyses and visualisation were 
conducted using packages igraph15 (https://igraph.org) 
and ggraph.16

RESULTS
Patient cohort and hospital locations
After processing, the cohort contained 17 198 unique 
records. Table 1 summarises the cohort demographics 

and locations visited, stratified by whether the stay 
involved surgery.

The gastroenterology department had fewest admis-
sions (n=1712, 10%); the other three departments had 
between 4788 and 5522 admissions. Surgical procedures 
were rare for stays in the neurology department (1%) and 
common in the orthopaedics department (61%). Overall, 
across departments, 63%–83% of patient stays were non- 
elective, that is, emergency admissions starting in the ED.

The proportion of stays with non- prophylactic anti-
biotics administered varied from 11% (neurological 
patients not undergoing surgery) to 57% (gastroenter-
ological patients undergoing surgery). Antibiotic use 
was more common for stays with surgery, irrespective 
of department. LOS and maximum NEWS2 during the 
first 48 hours of stay were higher in stays with surgery, 
except in the neurology department. Stays with surgery 
also on average comprised two more unique intrahospital 
locations and more transfers than stays without surgery 
(median 3 times vs 1). Overall, 0.5% of patients experi-
enced eight or more transfers. Maximum transfer count 
varied markedly between the medical departments (8) 
and the surgical departments (23).

Transfer networks
A total of 1940 (11%) stays comprised only one intrahos-
pital location and were excluded from network analysis. 
In total, 35 001 location- to- location transfers were found 
for the remaining 15 258 patient stays. Figure 1 displays 
the department- wise static networks. Vertex colours indi-
cate ward types. In general, the ED, OR, HDUs and ICUs 
had many connections with wards in all studied depart-
ments. Many emergency patients ultimately allocated to 
one of the four studied departments were initially trans-
ferred from the ED to the OR, an HDU or one of a wide 
range of surgical and medical wards belonging to other 
departments. The orthopaedics department network was 
most densely connected, comprising 28 locations and 
155 unique location- to- location transfer pathways, giving 
a network density of 0.410. The neurology department 
network was the least densely connected, with 20 vertices, 
55 edges and network density of 0.288. Despite a much 
larger cohort size (4788 vs 1712 stays), the gastroenter-
ology department had network size and density very 
similar to neurology.

Figure 2A visualises week- by- week edge (location) and 
vertex (unique transfer pathway) counts throughout 
the study period, stratified by hospital department. The 
gastrosurgery and orthopaedics networks contained 
many more transfer pathways than the other two depart-
ments. The orthopaedics network also displayed marked 
temporal variations over the year. A dip in connectivity 
around study weeks 3–10 could have been due to less elec-
tive surgery and closure of wards during summer holidays.

Figure 2B displays week- by- week number of transfers, 
stratified by transfer type and department. In figure 2C, 
these data are normalised by number of admissions during 
that week in the corresponding department. ED- Any- type 

https://igraph.org
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transfers denote emergency hospital admissions and were 
relatively constant over time for all departments. The 
neurology department had fewest elective admissions, 
thus its normalised ED- Any was close to 1. Counts of Bed 
ward- Bed ward transfers also were rather constant and did 
not constitute much of the traffic. In contrast, Technical- 
type transfers, involving transfers to and from ICUs, 
HDUs and ORs, showed distinct temporal variation and 
lower activity during the summer holidays.

Network connectivity varied during the week (figure 3). 
On average, networks included more locations (vertices) 
and almost twice as many unique location- to- location 
transfer pathways (edges) on weekdays as during week-
ends. A majority of hospital locations visited by our 
patient cohort received patients from more locations 
(higher in- degree) and transferred patients to more 

locations (higher out- degree) on weekdays than on week-
ends. Adjusted for number of patients present (bed occu-
pancy was higher on weekdays than weekends), number 
of transfers was still higher on weekdays. In contrast, the 
number of unique locations used by patients ultimately 
allocated to one of the four studied departments was 
higher on weekends.

The ED had a very large out- degree but zero in- degree, 
as this ward feeds patients to many locations but receives 
no patients from other hospital wards. Conversely, the 
‘home’ wards for our patient cohort (gastroenterology, 
gastrosurgery A/B, neurology A/B, orthopaedics A/B/C) 
received their patients from more locations than they 
transferred patients to. Home wards thus ‘assembled’ 
patients from the ED, OR, HDUs and any ‘ad hoc’ wards, 
ultimately for patient discharge to home.

Figure 1 Unweighted, undirected patient transfer networks for four hospital departments over a 1- year period. Vertex (location) 
colours distinguish different functionality, that is, ED, ORs, ICUs and medical and surgical wards. Vertex size is proportional to 
its degree (number of other locations connected to it). Network sizes are given as edge (E) and vertex (V) counts and density. 
The complete list of abbreviations is found in online supplemental table S1. ED, emergency department; EDOU, emergency 
department observation unit; GE, gastroenterology; GIS, gastrointestinal surgery; ICU, intensive care unit; MICU, medical 
intensive care unit; NR, neurology; OR, operating room; OT, orthopaedics; PHDU, postoperative high- dependency unit; TCVS, 
thoracic and cardiovascular surgery.

https://dx.doi.org/10.1136/bmjopen-2021-054545
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Patient transfer chain analysis
The 15 258 patient stays comprising more than one intra-
hospital location followed 1118 unique transfer chains, 
that is, sequences of locations. Chain utilisation was 
highly skewed: 75% of transferred patients followed one 
of the top 20 (1.8%) transfer chains (table 2). The three 
most common transfer chains, from the ED to one of the 
two neurological bed wards or the ED observation unit, 
together represented one- third of transferred patients. 

Ten out of the 20 most common transfer chains involved 
only one transfer and started in the ED. The subpattern 
Bed ward - ORBLOCK - Bed ward occurred in nine out of 
the 20 most common transfer chains.

In contrast, the majority of unique transfer chains 
occurred infrequently: 10% of patient stays (1505 out of 
15 258) followed one of 976 uncommon patterns (87% of 
all types), each occurring ≤7 times over the 1- year period. 
Compared with the majority, in this 10% subgroup, 

Figure 2 Temporal changes in network size by hospital department and transfer type. (A) Weekly network sizes in terms of 
transfer pathway (edge) and location (vertex) counts. (B) Weekly sum of transfers, split by transfer type. (C) Weekly sum of 
transfers by type, normalised by number of patient admissions in the corresponding department that week. Study week is 
counted from a Monday in June 2018; hence, study weeks 1–13 denote June to August, and so forth. ED- Any: transfers from 
the emergency department (ED) to any other ward. Bed ward- Bed ward: transfers between regular wards. To- From Technical: 
transfers involving technical wards, that is, intensive care units (ICUs), high- dependency units (HDUs) and operating rooms 
(ORs).
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patients stayed at a higher number of unique hospital 
locations (4 (2–5) vs 3 (2–3)) and more often underwent 
surgery (64% vs 49%) and advanced treatment in an 
HDU or ICU (42% vs 23%). Also, in this 10% subgroup, 
8% of patient stays from the gastrosurgery or orthopae-
dics department also involved stays in medical bed wards, 
as opposed to 0% among the remaining surgical patient 
stays.

Two multivariate Poisson regression models identified 
risk factors associated with a higher number of intrahos-
pital transfers (table 3). In the first model, older age was 
negatively associated with more transfers, while higher 
mean first 48- hour NEWS2 was associated with more 
transfers. The effect increased from NEWS2 scores 0–2 
via 3–4 to 5–6, from where it levelled off. The effects of 
age and NEWS2 were no longer significant when treat-
ment in the OR or HDU/ICU was adjusted for (model 
2 in table 3). Gender did not contribute significantly in 
either model.

Emergency hospital admission and antibiotic use 
were associated with increased risk of undergoing more 
transfers, as was treatment in the OR or an HDU/ICU. 
Although much of the increased risk was explained by 
these factors, admission to surgical departments (gastro-
surgery and orthopaedics) in itself increased the risks of 
more transfers. Modelled interactions between depart-
mental allocation, surgery and antibiotic use were not 
significant (online supplemental table S2).

DISCUSSION
The main finding in this retrospective study applying 
network analysis on patient location data in four hospital 
departments was a marked heterogeneity in patient 
transfer patterns. Departments differed markedly 
regarding network size and density, transfer types and 
temporal changes over the week and year.

Why network analysis of patient location data
Given the range of health services offered to different 
patient populations, patient flows within hospitals would 
be expected to vary widely between departments and even 
wards. Optimisation of patient logistics is key to reduce 
delays and overcrowding, and thus time and healthcare 
costs. Availability of beds in wards specialised for each 
patient’s medical condition likely reduces errors and 
improves quality of care. Detailed knowledge of highly 
connected hospital hubs and patient trajectories is also 
important for prevention and control of hospital infec-
tions.2 3

Heterogeneity in size and connectivity of transfer networks
In all departments studied, a majority of stays were emer-
gency admissions via the ED. As in previous work,1 the 
number of emergency admissions was relatively constant 
over time (figure 2B,C). The ED acted as a hub feeding 
patients to their allocated department’s ‘home’ wards 
(figure 1). However, networks revealed that gastrosur-
gical and orthopaedic patients also to a large degree were 
treated in surgical wards in other surgical departments. 
‘Home’ and ‘non- home’ wards alike transferred patients 
to and from the OR. Likely, the large proportion of emer-
gency admissions at AUH intermittently caused patient 
surges, overcrowding and patients being placed in any 
suitable ward with a free bed and only later transferred to 
a ward in their allocated department. Gastrosurgical and 
orthopaedic patients, many of whom are multimorbid, 
also had stays in a number of medical wards (figure 1). 
This resulted in the two surgical departments having 
larger and 2.5–3 times more densely connected transfer 
networks than those of the two medical departments, 
which may have treated more homogenous patient popu-
lations. Although neurology had many more admissions 
than gastroenterology, the two networks were very similar 
in number of locations and connectivity.

These findings illustrate that patient flows in one 
department may be heavily affected by logistic changes 
implemented in seemingly unconnected departments. 
Weighted and directed networks would provide important 
additional information, useful for real- time monitoring 
of patient flows.

Temporal variation in patient transfer networks
Monitoring of temporal changes in patient transfer 
networks is relevant for capacity planning, but in- depth 
organisational knowledge of studied departments is 
required for interpretation of findings to be reliable. We 
saw marked heterogeneity across hospital departments 

Figure 3 Transfer network connectivity on weekdays and 
weekends. For 30 hospital wards, daily average number 
of hospital locations the ward received patients from (in- 
degree, green dots) and sent patients to (out- degree, amber 
dots). Data for all stays allocated to any of the four studied 
departments, split by weekday/weekend. Full- year network 
size (all four departments) is reported as mean (SD) of edge 
(E) and vertex (V) counts. ED, emergency department; HDU, 
high- dependency unit; ICU, intensive care unit; OR, operating 
room.

https://dx.doi.org/10.1136/bmjopen-2021-054545
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regarding temporal variability (figure 2A). Week- to- week 
variation in number of transfers was much larger in the 
orthopaedics department than in gastrosurgery, despite 
the two networks having similar edge and vertex counts 
when averaged over the year. The contrast between the 
two surgical departments and neurology was pronounced.

Higher temporal variability in the orthopaedics depart-
ment seemed to reside in transfers involving ORs, ICUs 
and HDUs (figure 2B) and partially reflected the weekly 
number of admitted patients (figure 2C). Both surgical 
departments had a drop in transfers during summer 
holidays, when fewer elective surgical procedures are 
performed. In the gastroenterology department, some 
change in patient logistics must have been implemented 
around Christmas, that is, study week 26. Similar effects of 
organisational changes have been reported in UK acute 
care data.7

Network connectivity also changed over the week. On 
average, studied hospital wards were connected to almost 
twice as many locations during the week than on weekends 
(figure 3). The ‘assembling’ function of ‘home’ wards, 
that is, wards belonging to the four studied departments 
(higher in- degree than out- degree), also was less marked 
on weekends. Admissions occurring on weekends have 

been shown to more often result in transfer to the ICU 
and to be associated with increased adjusted mortality 
rates.17 18

Individual patient transfer trajectories
Standardised patient trajectories facilitate hospital logis-
tics and specialised treatment. Network analysis, however, 
examines the total number of transfers and does not 
capture their sequence in individual patients.3 4 More-
over, in some healthcare systems, the format of patient 
location data does not facilitate the analysis of entire 
patient trajectories, and data validity may be poor.1

Core hospital pathways manage a majority of patients.7 
We found that 11% of stays involved only one location. A 
further 67% of stays followed one of 20 common patient 
transfer chains, half of which started in the ED and 
involved only one transfer (table 2).

In contrast, a substantial minority of patient stays 
represented a very high number of uncommon, non- 
standardised hospital location sequences. These 
uncommon transfer chains included more locations 
and more often multiple OR visits and ICU/HDU stays. 
Among the stays following the 10% least common transfer 
chains, 8% of patients allocated to one of the two surgical 

Table 2 The 20 most common intrahospital transfer trajectories

Location sequence n % Cum %

ED—Neurology A 2015 13.3 13.3

ED—ED observation unit 1544 10.1 23.4

ED—Neurology B 1508 9.9 33.3

ED—Gastrosurgery A 872 5.7 39.0

ED—Gastrosurgery B 866 5.7 44.7

ED—Orthopaedics A—ORBLOCK—Orthopaedics A 474 3.1 47.8

ED—Gastroenterology A 470 3.1 50.9

Orthopaedics C—ORBLOCK—Orthopaedics C 429 2.8 53.7

ED—Orthopaedics B—ORBLOCK—Orthopaedics B 413 2.7 56.4

ED—Orthopaedics B 391 2.6 59.0

Orthopaedics B—ORBLOCK—Orthopaedics B 370 2.4 61.4

ED—Gastrosurgery B—ORBLOCK—Gastrosurgery B 349 2.3 63.7

Gastrosurgery B—ORBLOCK—Gastrosurgery B 325 2.1 65.8

ED—Orthopaedics A 324 2.1 67.9

Gastrosurgery A—ORBLOCK—Gastrosurgery A 309 2.0 69.9

Orthopaedics A—ORBLOCK—Orthopaedics A 293 1.9 71.8

ED—Gastrosurgery A—ORBLOCK—Gastrosurgery A 180 1.2 73.0

ED—Urology 154 1.0 74.0

ED—Neurology A—Neurology B 153 1.0 75.0

ED—Thoraco- vascular 118 0.8 75.8

Total: 15 258 patients 11 557 75.8 75.8

The 20 most common out of a total of 1118 transfer chains observed in all 15 258 patient stays in the departments of gastroenterology, 
gastrointestinal surgery, neurology and orthopaedic surgery over a 1- year study period.
ED, emergency department; ORBLOCK, preoperative/postoperative high- dependency unit stay in combination with operating room 
treatment.
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departments (orthopaedics or gastrosurgery) also had 
stays in medical bed wards. In contrast, surgical patients 
following the 90% most common transfer chains had no 
medical ward stays. Multimorbidity thus seemed to predis-
pose for non- standard needs, which again is known to 
carry a higher risk of unwanted outcomes.3–6

Although not necessarily causal, the factors associ-
ated with higher number of intrahospital transfers in 
our regression analysis are clinically recognisable as 
proxy variables for more complex hospital stays. Caution 

must be used when interpreting effect sizes, since there 
could have been interdependence between variables. 
The regression model controlling for age and gender 
showed an increase in number of transfers with increas-
ingly deranged physiological state early in the hospital 
stay, quantified as mean NEWS2 during the first 48 hours. 
The effect levelled out at NEWS2 of 5 or higher; values 
that are often associated with transfer to more advanced 
care.12 In the model that also adjusted for treatment in an 
HDU, ICU or OR, the statistical contribution of NEWS2 

Table 3 Poisson regression analysis on number of intrahospital transfers per stay

Risk factors

Model 1 Model 2

RR 95% CI P value RR 95% CI P value

Age

  18–39 Reference Reference

  40–64 0.984 0.949 to 1.021 0.405 1.017 0.980 to 1.055 0.382

  65–84 0.925 0.892 to 0.959 <0.001 0.982 0.947 to 1.019 0.344

  85+ 0.835 0.793 to 0.880 <0.001 0.960 0.911 to 1.011 0.125

NEWS2*

  0–2 Reference Reference

  3–4 1.071 1.027 to 1.117 0.001 0.984 0.943 to 1.027 0.470

  5–6 1.138 1.051 to 1.231 0.001 0.956 0.882 to 1.034 0.270

  7+ 1.132 0.988 to 1.289 0.068 0.801 0.699 to 0.914 0.001

Gender

  Female Reference Reference

  Male 0.984 0.961 to 1.009 0.205 0.997 0.973 to 1.021 0.786

Department

  Gastroenterology Reference Reference

  Gastrosurgery 1.679 1.590 to 1.773 <0.001 1.210 1.144 to 1.280 <0.001

  Neurology 1.039 0.980 to 1.102 0.199 1.117 1.053 to 1.184 <0.001

  Orthopaedics 2.406 2.281 to 2.540 <0.001 1.294 1.222 to 1.372 <0.001

Admission

  Elective Reference Reference

  Emergency 1.388 1.347 to 1.440 <0.001 1.834 1.778 to 1.892 <0.001

Antibiotics†

  No Reference Reference

  Yes 1.372 1.336 to 1.409 <0.001 1.107 1.077 to 1.138 <0.001

Been to OR‡

  No Reference

  Yes 2.936 2.846 to 3.029 <0.001

Been to ICU§

  No Reference

  Yes 2.106 2.025 to 2.189 <0.001

Bold font indicates a statistically significant association with number of transfers per stay.
*Mean first 48- hour NEWS2 score.
†Use of any non- prophylactic antibiotics.
‡Indicates a surgical procedure.
§Stayed in an ICU or HDU, indicates a severe patient condition.
HDU, high- dependency unit; ICU, intensive care unit; NEWS2, National Early Warning Score 2; OR, operating room; RR, rate ratio (patient 
transfer).
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was no longer detectable. The effect of these two variables 
could thus not be disentangled by our analysis.

Non- prophylactic antibiotic use was associated with 
more patient transfers. This variable could have acted 
as proxy for bowel anastomosis leakage or postopera-
tive wound infections needing repeated surgical treat-
ment, and postoperative pneumonia needing advanced 
monitoring or mechanical ventilatory support. Interest-
ingly, stays in surgical departments were associated with 
increased number of intrahospital transfers even after 
statistical adjustment for clinical risk factors, OR and ICU 
treatment.

Implications for clinicians and policymakers
Analysis of intrahospital patient transfer networks is rele-
vant for design of new hospital buildings and allocation of 
hospital areas for essential units acting as hubs. Proximity 
between wards frequently connected by transfers may 
increase efficiency. In wards with known high connec-
tivity, planning more isolation beds might be prudent, to 
shield vulnerable individuals and prevent outbreaks.

Ongoing monitoring of the connectivity (in- degree and 
out- degree) of individual hospital wards is highly relevant 
for infection prevention and control. When new patho-
gens emerge simultaneously in different wards with no 
apparent linkage, network and transfer sequence anal-
ysis may reveal possible transmission routes that can be 
controlled. To limit a hospital outbreak, it may be useful 
to identify units so frequently connected by transfers that 
they should be regarded as equally exposed to an infec-
tious agent.

Patient transfer is often necessary for diagnostics or 
specialised treatment, but intrahospital transfers may 
also result from foreseeable and preventable factors 
such as seasonal overcrowding and staffing shortages, 
construction work or wards being closed during infec-
tion outbreaks. Evaluation of factors resulting in transfer 
peaks might motivate improved institutional prepared-
ness. Placing patients in inappropriate specialty areas 
increases the risk of medical errors when staff are exposed 
to unfamiliar medical conditions, treatments or devices. 
Real- time transfer analysis may identify and warn hospital 
managers about unusual, potentially high- risk transfer 
sequences.

The methods applied in this study could be used to 
monitor patient flows, predict likely logistic problems 
and routes of infection spread and develop plans for 
optimising placement of patients deemed at risk for long 
and complicated hospital stays. There is a need for stan-
dardised indicators of patient flow logistics to facilitate 
comparison between institutions and health systems.1

Strengths and limitations
A 1- year study period prevented the analysis of long- 
term trends. We only had data for adult patients allo-
cated to four selected hospital departments. Short- term 
patient movement, for example, for medical imaging or 

diagnostic procedures was not studied. Generalisability of 
our findings may be limited to similar healthcare systems.

Strengths of this study include that complete data sets 
with a high time- resolution, comprising both elective and 
emergency admissions, were evaluated on a departmental 
and ward level. Transfers were categorised by subtype, 
and individual transfer trajectories were associated with 
key clinical patient characteristics. Our methodological 
approaches should be transferable to new settings.

CONCLUSION
Temporal network analysis applied on departmental and 
ward levels provides insight into the heterogeneity of 
intrahospital patient transfers. The method is a potential 
tool for continuous, automated monitoring of patient 
flows. Analysis of typical and atypical patient transfer 
trajectories is a useful supplement. Obvious areas of 
benefit are hospital capacity management across wards 
and departments, and infection prevention and control.

Areas remaining for future research include patient and 
systemic factors that may predict and prevent extremely 
long transfer trajectories. Frequent changes of intrahos-
pital location may negatively affect important aspects of 
patients’ experience of their care, such as quality and 
consistency of medical information given and confidence 
in hospital staff.19 Intrahospital transfer patterns should 
therefore be studied also in view of patient- reported 
outcome measures.
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