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Abstract
Background: How to detect protein complexes is an important and challenging task in post
genomic era. As the increasing amount of protein-protein interaction (PPI) data are available, we
are able to identify protein complexes from PPI networks. However, most of current studies detect
protein complexes based solely on the observation that dense regions in PPI networks may
correspond to protein complexes, but fail to consider the inherent organization within protein
complexes.

Results: To provide insights into the organization of protein complexes, this paper presents a
novel core-attachment based method (COACH) which detects protein complexes in two stages.
It first detects protein-complex cores as the "hearts" of protein complexes and then includes
attachments into these cores to form biologically meaningful structures. We evaluate and analyze
our predicted protein complexes from two aspects. First, we perform a comprehensive
comparison between our proposed method and existing techniques by comparing the predicted
complexes against benchmark complexes. Second, we also validate the core-attachment structures
using various biological evidence and knowledge.

Conclusion: Our proposed COACH method has been applied on two different yeast PPI
networks and the experimental results show that COACH performs significantly better than the
state-of-the-art techniques. In addition, the identified complexes with core-attachment structures
are demonstrated to match very well with existing biological knowledge and thus provide more
insights for future biological study.

Background
With the completion of many genome-sequencing
projects, the focus in the post-genomic era has turned to
proteomics. One important task in proteomics is to detect
protein complexes based on the PPI data generated by var-
ious experimental technologies, e.g., yeast-two-hybrid [1],
affinity purification [2-4] and others.

Protein complexes are molecular aggregations of proteins
assembled by multiple protein-protein interactions. Many
proteins are functional only after they are assembled into
a protein complex and interact with other proteins in this
complex. Multiple-protein complexes are key molecular
entities to perform cellular functions. For example, the
complex 'RNA polymerase II' transcribes genetic informa-
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tion into messages for ribosomes to produce proteins and
complex 'Proteasome core particle' is involved in the deg-
radation of proteins, which is an essential process within
the cell.

Pair-wise protein interactions can be modeled as a graph
or network, where vertices are proteins and edges are pro-
tein-protein interactions (PPI). Such a network modeling
provides a new perspective to understand the complicated
biological systems [5]. Since proteins in the same complex
are highly interactive with each other, protein complexes
generally correspond to dense subgraphs in the PPI net-
work [6,7] and many previous studies have been pro-
posed based on this observation. Cliques (fully connected
subgraphs) [7,8] can be directly predicted as protein com-
plexes. Traditional graph clustering algorithms can also be
applied to detect dense clusters as protein complexes [9-
11]. Markov clustering method (MCL) [9] simulates ran-
dom walks within graphs and thus partition the PPI net-
work into many non-overlapping dense clusters. Graph
cuts (e.g., minimum cut and normalized cut [10]) are also
used for graph partition and thus for detecting protein
complexes. King et al. [11] recently proposed a graph clus-
tering algorithm to detect protein complexes, which
applied a restricted neighborhood searching with a cost
function. Some other methods detect dense subgraphs as
protein complexes by conducting local neighborhood
search [12-15]. Additional information are also more and
more exploited to improve the predictions, for example,
functional information used in some above studies
[11,14] and data of protein binding interfaces used in
[16].

In addition, several recent studies for detecting protein
complexes rely solely on TAP data [8,17,18]. These tech-
niques consist of two stages. First, they defined specific
scoring methods based on the purification records and
selected protein interactions with high scores (both direct
and indirect interactions) to construct reliable PPI net-
works (e.g., "Socio-Affinity" score in [17]). Second, they
applied some existing methods to detect dense clusters in
the reliable PPI networks as protein complexes, e.g., MCL
is used in [18] and clique-mining is used in [8].

Existing computational studies mainly focus on detecting
highly connected subgraphs in PPI networks as protein
complexes but ignore their inherent organization. How-
ever, recent analysis of experimentally detected protein
complexes has revealed their inherent organization [19].
A protein complex generally contains a core in which pro-
teins are highly co-expressed and share high functional
similarity. The protein-complex core is often surrounded
by some attachments, which assist the core to perform
subordinate functions. Gavin et al.'s work [17] also dem-
onstrates the similar architecture and modularity of pro-

tein complexes. Figure 1 shows an example of this kind of
core-attachment architecture.

In this paper, we propose a new method, called COACH
(Core-Attachment based method), to detect protein com-
plexes in PPI networks by considering their inherent
organizations. In particular, protein-complex cores, as the
"hearts" of the protein complexes, are first detected from
each vertex's neighborhood graphs. We subsequently gen-
erate protein complexes by including attachments into the
protein-complex cores. Experimental results using PPI
data of Saccharomyces cerevisiae show that our COACH
method does provide insights into the inherent modular-
ity and organization of protein complexes. In addition, in
terms of prediction accuracy, our COACH method also
outperforms existing computational methods.

Our proposed algorithm
A protein-protein interaction (PPI) network can be mod-
eled as a simple graph G = (V, E), in which a vertex in ver-
tex set V represents a protein and an edge in edge set E
represents an interaction between two distinct proteins.
This graph structure modeling is helpful for global analy-
sis of PPI data, such as graph clustering for protein com-
plex detection. Our COACH method operates in two
phases. COACH first detects protein-complex cores and
then applies an outward growing strategy to generate pro-
tein complexes by including attachments into the protein-
complex cores. We will first briefly introduce some basic
terminologies and then describe in detail our proposed
method for protein complex detection.

DNA repair complex, which repairs DNA damage by inter-acting with damaged DNAFigure 1
DNA repair complex, which repairs DNA damage by 
interacting with damaged DNA. Figure 1 shows an 
example of the DNA repair complex [17], whose core con-
sists of four red proteins (YAR007C, YDR097C, YML032C 
and YIR002C) in the dashed circle. These four proteins form 
a fully connected subgraph (clique) in the PPI network. Pro-
teins YBR114W, YER095W, YJL173C, YNL312W and 
YOL090W are the attachments of this complex. The interac-
tions in this figure are from the DIP data.
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Preliminaries
Given a PPI network G = (V, E), the degree of a vertex v 
V is the number of v's neighbors in G, written as deg(v).
The average degree of graph G is defined as the average of
deg(u) for all u  V, written as Avdeg(G) in equation 1. The
density of G, denoted as den(G), is defined in the equation
2.

Given two graphs A = (VA, EA) and B = (VB, EB), their
neighborhood affinity [12], NA(A, B), is defined as fol-
lows to measure the similarity between them,

For a vertex v  V, the neighborhood graph of v consists of
v, all its neighbors and the edges among them. It is defined
as Gv = (V', E'), where V' = {v}  {u|u  V, (u, v)  E}, and
E' = {(ui, uj) | (ui, uj)  E, ui, uj  V'}. In Gv, there will be
some vertices with degree 1 (i.e., only connect with the
vertex v) and generally the interactions involving these
proteins have low reliability with respect to the topologi-
cal reliability measures in [20-22]. Therefore, all vertices
with degree 1 will be removed from Gv. Since current PPI
data is quite noisy [23], this preprocessing step can help
us to filter out possible false positive interactions. The
neighborhood graph of v, Gv, thereafter refers to above
remaining graph if it is not empty. As a result, every vertex
in Gv has at least two neighbors and Avdeg(Gv)  2.

Definition of 'preliminary cores'
A protein-complex core is a small group of proteins which
show a high mRNA co-expression patterns and share high
degree of functional similarity. It is the key functional unit
of the complex and largely determines the cellular role
and essentiality of the complex [17,19]. Protein-complex
cores and their members often have specific topological
properties in PPI networks. For example, a protein in a
core often has many interacting partners and protein-
complex cores often correspond to small, dense and relia-
ble subgraphs in PPI networks [17]. In addition, complex
cores may have overlaps with each other.

According to these properties of protein-complex cores,
we first define their possible candidates in the neighbor-
hood graphs, denoted as preliminary cores. A preliminary
core in a neighborhood graph Gv is a dense subgraph
where all its members should show higher significance

and have heavier weights [12,13] than those non-mem-
bers. In particular, we first define a vertex u  Gv as a core
vertex if u's degree in Gv is larger than or equal to Gv's aver-
age degree, i.e., deg(u)  Avdeg(Gv). The core graph of Gv is
defined as the subgraph formed by all the core vertices
and their corresponding edges. A preliminary core in Gv
defined in this paper should satisfy following three con-
straints: (1) it is a subgraph of the core graph, that is, all
its vertices are core vertices, (2) it is dense (with density 
d and d is typically set as 0.7 in [13,14], which is also used
in this paper) and (3) it is maximal, that is, none of its
supergraphs satisfy the first two constraints.

Above definition of preliminary cores is based on the def-
inition of core vertices, which further relies on the degree
distribution of the PPI network. As we know, PPI net-
works are considered to be scale-free [24]. Therefore, pre-
liminary cores would mostly be formed around the
proteins with relatively large degrees. This is reasonable to
form preliminary cores because proteins with high
degrees in PPI network serve important biological roles
[24,25] and tend to be in the "hearts" of protein com-
plexes.

Protein-complex core mining algorithm
Based on the definition of preliminary cores, we are now
ready to describe our proposed algorithm to detect pro-
tein-complex cores. In our algorithm, the preliminary
cores are first detected from the neighborhood graph of
each vertex in the PPI network. Specifically, given a neigh-
borhood graph Gv, if its core graph CG is dense, CG is thus
directly predicted as a preliminary core; otherwise, multi-
ple possible preliminary cores would be detected from
CG. Since some vertices have similar neighborhood
graphs, the preliminary cores detected from their neigh-
borhood graphs may have large overlaps, which will result
in high redundancy. Hence, a Redundancy-filtering proce-
dure is applied to process preliminary cores and finally
generate protein-complex cores by eliminating such kind
of redundancy.

Algorithm 1 illustrates the overall framework to detect
protein-complex cores. For each vertex v in the PPI net-
work G = (V, E), we first construct its neighborhood graph
Gv and Gv's core graph CG in line 3. If CG is dense enough,
our Core-removal algorithm in line 4 will return it as a
preliminary core. If not, Core-removal algorithm may
generate several subgraphs of CG, which will be further
processed to be maximal dense as preliminary core in
lines 5–14 (note that a subgraph sg obtained from the
Core-removal algorithm may not be dense or maximal). If
sg is not dense, we first iteratively remove vertices with the
minimum degree until it is dense in lines 6–9. We may
add some core vertices into sg, which are highly connected
to the vertices in sg, to guarantee that sg is maximal and
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dense in lines 10–14. Finally, sg will be processed by the
Redundancy-filtering procedure in line 15. Note that after
filtering the possible redundant preliminary cores, all the
remaining preliminary cores in set SC will be regarded as
protein-complex cores. The details of Core-removal algo-
rithm, as well as Redundancy-filtering procedure, are
described in Algorithm 2 and 3 respectively.

Algorithm 1, Protein-complex core mining algorithm

Input: The PPI network G = (V, E);

Density threshold d;

Neighborhood affinity threshold to filter redundancy t.

Output: The set of protein-complex cores, SC.

1: SC = ; //initialization

2: for each vertex v  V do

3: construct the core graph of Gv, CG = (VCG, ECG);//VCG
= {u|deg(u)  Avdeg(Gv), u  Gv}

4: S = Core-removal(CG);

5: for each element sg  S do

6: while den(sg) <d do

7: ; // deg(u) is u's degree in sg

8: sg = sg - {w};// update sg by deleting w and its cor-
responding edges

9: end while

10: ;// deg1(u) is u's degree in

sg + {u}

11: while w exists and den(sg + {w})  d do

12: sg = sg + {w}; // update sg by adding w and its cor-
responding edges

13: ;

14: end while

15: Redundancy-filtering(sg);

16: end for

17: end for

Core-removal algorithm
Given a vertex v, if the core graph of Gv, CG, is dense
enough, core-removal algorithm will return it directly;
otherwise, there may be multiple preliminary cores in CG.
Our core-removal algorithm works as follows. If CG is not
dense enough, all the core vertices of CG are first removed
from CG, and the remaining graph may consist of a
number of connected components. We recursively repeat
this procedure to find highly-connected subgraphs in each
of above connected components. The removed core verti-
ces are added back into these subgraphs to form larger
subgraphs of CG, which will be further processed to be
maximal dense in Algorithm 1. Algorithm 2 shows the
details of our core-removal algorithm and figure 2 also
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The diagram of our Core-removal algorithmFigure 2
The diagram of our Core-removal algorithm. In this 
example, we assume that (A) shows the core graph of vertex 
1's neighborhood graph, denoted as CG1. The density and 
average degree of CG1 is 0.607 and 4.25 respectively. In (B), 
the core vertices of CG1, {1, 6}, are removed from CG1 and 
two connected components are left in the remaining graph. 
In (C), {1, 6} are added back into each connected compo-
nent. Two subgraphs with vertices {1,2,3,4,5,6} and {1,6,7,8} 
are obtained and finally returned.
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provides an example to illustrate the process of our pro-
posed core-remove algorithm.

Algorithm 2, Core-removal(cg) // cg = (Vcg,Ecg)

1: result = ;

2: if den(cg)  d do

3: insert cg into result;

4: else

5: cv = {u|u  Vcg, deg(u)  Avdeg(cg)}; // deg(u) is u's
degree in cg

6: remove all the vertices in cv from cg and obtain a set
of connected components;

7: for each connected component comp do

8: tresult = Core-removal(comp);

9: for each element tc  tresult do

10: insert tc  cv into result;

11: end for

12: end for

13: return result;

Redundancy-filtering procedure
Assume that SC is the set of all currently detected prelim-
inary cores and C = (VC, EC) is a newly detected prelimi-
nary core. We will first detect an element B = (VB, EB) in
SC, which has the highest similarity (NA score) with C. In
Algorithm 3, the procedure Redundancy-filtering(C) is
used to check and decide whether to discard or preserve
the newly detected preliminary core C. In particular, if B
and C are not quite similar (with NA(B, C) <t), C will be
inserted into SC in lines 2–3; otherwise, we prefer to pre-
serve the preliminary cores that have larger size and den-
sity in lines 4–8.

Algorithm 3, Redundancy-filtering(C)

1: ;//B is C's most similar subgraph

in SC

2: if NA(B, C) <t do

3: insert C into SC (Inserting);

4: else

5: if den(C) × |VC|  den(B) × |VB| do

6: insert C into SC in place of B (Substituting);

7: else

8: discard C (Discarding).

Protein-complex formation

In previous subsections (the first phase of our COACH
method), we have presented our techniques to detect the
protein-complex cores. In the second phase, we will
extract the peripheral information of each protein-com-
plex core and select reliable attachments cooperating with
it to form a protein complex. Given a PPI network G = (V,
E), the neighborhood of a complex core C = (VC, EC) is

defined as N(C) = {u|(u, v)  E, v  VC, u  V, u  VC}. N

(C) consists of those direct neighbors of the vertices in the

complex core C. For a vertex v  N(C), Nv is the set of all

v's neighbors. |Nv  VC| is the number of vertices in C con-

nected with v. Thus,  can be used to quantify the

closeness between the vertex v and the core C, denoted as

closeness(v, C). Each vertex v  N(C) with closeness(v, C) >
0.50 will be selected as an attachment, indicating that
selected attachments interact with more than half of the
proteins in the core. In this way, the attachments are
closely-associated with the complex core, showing that
these attachments are in stable and reliable cooperation
with the core.

In summary, our COACH method consists of two above
stages, protein-complex core detection and complex for-
mation (the available COACH system can be downloaded
from http://www1.i2r.a-star.edu.sg/~xlli/coach.zip. An
example in figure 3 illustrates our proposed algorithm to
detect protein complexes in PPI networks. For simplicity,
the Redundancy-filtering procedure is not shown in this
example. As we all know, detecting the complete set of
preliminary cores or maximal dense subgraphs is a NP-
complete problem (maximal clique finding is a special
case when density threshold is 1). However, our heuristic,
Core-removal algorithm, detects preliminary cores (not
always the complete set of preliminary cores) from the
core graphs, which are small-scale subgraphs within each
vertex's neighborhood graphs, e.g., the average size of core
graphs is 4.30 in DIP data [26] and 5.45 in a denser Kro-
gan et al.'s data [18], respectively. Therefore, our COACH
method is very efficient to detect preliminary cores and
protein complexes in PPI networks. The Additional File 1
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The diagram of our COACH methodFigure 3
The diagram of our COACH method. Our COACH method mainly consists of two stages, protein-complex core detec-
tion and complex formation. For simplicity, the Redundancy-filtering procedure is not shown in this figure.
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Table 1: The results of various algorithms using DIP data

Algorithms MCODE MCL DPClus DECAFF COACH

# predicted complexes 182 1116 1143 2190 746
# covered proteins in DIP 1173 4930 2987 1832 1837

Ncp 93 193 193 605 285
N 

cb 128 242 274 243 249
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also demonstrates the efficiency and scalability of our
COACH method in large-scale random graphs.

Results and discussions
We have applied our COACH method on two yeast PPI
networks. In this section, we will first present in detail the
results on DIP data. We perform both comprehensive
comparisons among various existing computational
methods and validation of our predicted core-attachment
structures. The results using Krogan et al.'s data from [18]
will also be briefly presented to demonstrate the effective-
ness of our proposed technique.

Comparative evaluation
In this subsection, we compared the performance of our
COACH method with other three competing algorithms,
DPClus [13], DECAFF [14] and MCL [9,18,27], using DIP
data. For comprehensive comparisons, we employed sev-
eral evaluation measures, including co-annotation, co-
localization, functional enrichment of GO terms (p-val-
ues), F-measure and coverage rate. For all these methods,
the optimal parameters were set to maximize their F-
measures. For example, the inflation parameter in MCL
was set as 1.9 when using DIP data [28]. Note that for fair
comparisons, we turned off the filtering step in DECAFF
because it used the functional information to filter away
possible false positive complexes while other techniques
only used topological properties of PPI networks. In addi-
tion, a comprehensive comparison between our COACH
method and a newly proposed method called
CoreMethod [29] is shown in the Additional File 2.

F-measure and coverage rate
Table 1 shows the basic information of predictions by var-
ious methods. In table 1, MCL predicted 1116 complexes,
of which 193 match 242 real complexes; DPClus detected
1143 complexes, of which 193 match 274 real ones and
DECAFF detected 2190 complexes, of which 605 match
only 243 real ones. Our COACH method managed to pre-
dict 746 complexes, out of which 285 match 249 real
complexes. In addition, MCODE [12] predicted 182 com-
plexes and correctly matched only 128 real complexes in
the benchmark. Both the number of complexes predicted
by MCODE and its Ncb (Ncb is the number of benchmark
complexes that are correctly predicted, see Methods sec-
tion) are far fewer than those of other algorithms. For this
reason, MCODE is not included in the later comparisons.

Figure 4 shows the overall comparison in terms of F-meas-
ure and coverage rate (see Methods section). On DIP data,
the F-measure of COACH is 46.1%, which is 19.6%,
19.4% and 8.9% higher than MCL, DPClus and DECAFF
respectively. Our COACH method can achieve the highest
F-measure by providing the highest precision and compa-
rable recall, which shows that our method can predict pro-

tein complexes very accurately. In figure 4, our COACH
method obtains the highest coverage rate of 34.9%, which
is 1.7%, 4.5% and 8.3% higher than MCL, DPClus and
DECAFF respectively. That is, our predicted complexes can
cover the most proteins involved in the real complexes.

Figure 5 illustrates an example, in which our predicted
SAGA complex [30] can cover more proteins in the real
SAGA complex. In this example, the real SAGA complex in
the benchmark consists of 20 proteins (Figure 5A). The
complex predicted by our COACH method has 13 pro-
teins and manages to cover 11 proteins (in red color).
Meanwhile, MCL, DPClus and DECAFF cover only 6, 8
and 8 proteins of the real SAGA complex respectively.

Co-annotation and co-localization
Since protein complexes are formed to perform a specific
cellular function, proteins within the same complex tend
to share common functions and be co-localized. Gener-
ally, higher co-annotation and co-localization scores [27]
show that proteins within the same protein complexes
tend to share higher functional similarity, and hence they
can be used to evaluate the overall quality of predicted
protein complexes.

Figure 6 shows the co-annotation and co-localization
scores of complexes predicted by various methods. In
terms of these two measures, the complexes predicted by
our COACH method are observed to have comparable
quality with those predicted by DECAFF, but much better
than those predicted by MCL and DPClus.

The performance comparison for various algorithms on DIP dataFigure 4
The performance comparison for various algorithms 
on DIP data. This figure shows the F-measure and Coverage 
Rate of various algorithms on DIP data.
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Statistical evaluation of predicted protein complexes
To substantiate the biological significance of our pre-
dicted complexes, we calculate their p-values, which rep-
resent the probability of co-occurrence of proteins with
common functions. Given that proteins in a protein com-
plex are assembled to perform common biological func-
tions, they are thus expected to share common functions.
As such, low p-value of a predicted complex generally
indicates that the collective occurrence of these proteins in
the complex does not happen merely by chance and thus
the complex has high statistical significance. In our exper-
iments, the p-values (with Bonferroni correction) of com-
plexes are calculated by the tool, SGD's GO::TermFinder
[31].

Using DIP data, 622 out of 746 complexes predicted by
COACH are considered to be significant, with corrected p-
value  0.01 [10]. The proportion of significant complexes

over all predicted ones can thus be used to evaluate the
overall performance of various methods [32]. Table 2
shows the comparison results based on this measure. In
table 2, the majority of our predicted complexes (83.4%)
are significant and our COACH method also predicts
higher proportion of significant complexes than other
three algorithms. Meanwhile, both MCL and DPClus pre-
dict many protein complexes with extremely small size
(e.g., with two proteins) and generally predicted com-
plexes with small size tend to have large p-values [32] (in
table 2, we have discarded the predicted complexes with
only one protein when calculating their p-values). There-
fore, MCL and DPClus only predicted a small proportion
of significant complexes. This result is also consistent with
the results in table 1 where both MCL and DPClus achieve
very low precision scores. In addition, table 3 shows 10
protein complexes with very low p-values, predicted by
our COACH method. The fifth column in table 3 refers to

The SAGA complex predicted by different methodsFigure 5
The SAGA complex predicted by different methods. In figure 5, (A) shows the real SAGA complex in the benchmark 
and (B-E) are the SAGA complex predicted by different methods. For each predicted complex, the proteins in red color are 
involved in the real SAGA complex and those in blue color are not.
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the NA scores between our predicted complexes (in the
third column) and real complexes (in the fourth column).
The last column shows the number of proteins in the real
complexes correctly covered by our predicted complexes.
In this table, proteins in bold italic form the protein-com-
plex cores and the rest are attachments. Figure 7 gives
three examples of complexes predicted by our COACH
method. The first example in figure 7(A) is CCR4-NOT
complex [33] (ID = 8). COACH managed to cover 9 out of
12 proteins in the real complex and also had two new pro-
teins (in blue color). The predicted complex in figure 7(B)

managed to cover 8 proteins in Oligosaccharyl transferase
complex (OST complex) [34] and had two novel proteins
(YBL105C and YPL076W) (ID = 9). The third example in
figure 7(C) is our predicted HOPS complex, which suc-
ceeded to cover all 7 proteins in HOPS [35] (ID = 10). We
find that many of our predicted complexes match well
with the known complexes. Due to the incompleteness of
the benchmark, our non-matched predicted complexes,
especially for those with low p-values, may provide poten-
tial candidate complexes for biologists to validate.

Validation of core-attachment structures
We first analyzed the difference between the cores as con-
sistent functional "hearts" and attachments as "second-
ary" units by using various biological evidences, such as
the GO annotations and gene expression data. Then, we
validated a few examples of predicted protein complexes
using biological knowledge from literature.

Analysis of protein-complex cores
Proteins within the same complex core should have
higher degree of functional similarities and tend to co-
localize to the same subcellular compartment than those
attachments [17,19]. Two interacting proteins (or an
interaction) can have a similarity score based on their GO
terms or gene expression profiles. In our experiments,
functional similarity between two proteins is calculated
based on the method in [36] and expressional correlation
is measured by the Pearson correlation coefficient. The
overall quality of all interactions involved in protein-com-
plex cores is an aid to analyze those complex cores. Using
DIP data, we managed to identify 746 complex cores,
involving 3886 interactions among 1536 proteins. Table
4 shows the average similarity of all these interactions,
using two sub-ontologies of GO (BP-"Biological Process"

Co-annotation and co-localization scores of complexes pre-dicted by various methodsFigure 6
Co-annotation and co-localization scores of com-
plexes predicted by various methods. Figure 6 shows 
the comparison result of various methods in terms of co-
annotation and co-localization scores [27].
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Examples of protein complexes predicted by COACH methodFigure 7
Examples of protein complexes predicted by COACH method. In figure 7, the predicted complexes in (A-C) matches 
CCR4-NOT complex [33], Oligosaccharyl transferase complex (OST complex) [34] and HOPS complex [35], respectively.

YAL002W

YDL077C

YDR080W

YLR148W

YLR396C

YMR231W

YPL045W

YAL021C

YCR093W

YDL165W
YDR443C

YER068W

YGR134W

YGR274C

YIL038C

YNL288W
YNR052C

YPR072W

(A) (B) (C)

YBL105C

YPL076W

YOR103C YOR085W

YMR149W

YJL002C

YGL226C-A

YGL022WYEL002C

YDL232W
Page 9 of 16
(page number not for citation purposes)



BMC Bioinformatics 2009, 10:169 http://www.biomedcentral.com/1471-2105/10/169
and CC-"Cellular Component") and gene expression data
respectively. We also obtained the average similarity of
two other sets of interactions, all the interactions in DIP
data and those involved in our inferred protein com-
plexes. In table 4, we can find that interactions within pro-
tein complexes have higher similarities than those in the
whole DIP PPI data, while interactions within complex
cores even have higher similarity than those in complexes,
which indicates the cores' biological meanings.

Figures 8, 9, 10 present some examples in which proteins
within the protein-complex cores share much higher
gene-expression correlations or functional similarities.

Proteins in the dashed circles form the cores of those pre-
dicted complexes in these figures.

In figure 8, each interaction within the predicted com-
plexes is annotated with the gene-expression correlation
between its two interacting proteins. The predicted com-
plex in (A) consists of 6 proteins and matches the DASH
complex [37]. In our predicted DASH complex, proteins
YDR016C, YGR113W and YKR037C form the complex
core. All 3 interactions in the core have a average gene-
expression correlation of 0.78, which is much higher than
that of interactions not in the core (0.45). The predicted
complexes in (B) and (C) match the trehalose-6-phos-
phate synthase/phosphatase complex [38] and RNA
polymerase II mediator complex [39], respectively. The
average gene-expression correlations for interactions
within and without the cores are 0.66 and 0.33 in (B) and
0.41 and 0.17 in (C), respectively.

In figure 9, each interaction is annotated with the similar-
ity of biological processes between its two interacting part-
ners. The predicted complex in (A) matches the CCAAT-
binding factor complex [40]. In this predicted complex,

Table 2: Statistical significance of complexes predicted by 
various methods

Algorithms MCL DPClus DECAFF COACH

# significant complexes 312 352 1653 622
# predicted complexes 913 1143 2190 746

Proportion (%) 34.2 30.8 75.5 83.4

Table 3: Selected protein complexes predicted by our COACH method using DIP data and their p-values

I
D

P-values Predicted protein complexes Real protein complexes NA # common proteins

1 9.85e-33 YBL084C YDL008W YDR118W YFR036W 
YGL240W YHR166C YKL022C YLR102C YLR127C 
YNL172W YOR249C

anaphase-promoting complex 0.688 11

2 5.85e-30 YBR154C YDL150W YDR045C YKL144C YKR025W 
YNL113W YNL151C YNR003C YOR116C 
YOR207C YOR224C YPR110C YPR190C

DNA-directed RNA polymerase III complex 0.765 13

3 7.0e-25 YCR035C YDL111C YDR280W YGR090W 
YGR095C YGR158C YGR195W YHR069C 
YHR081W YNL189W YNL232W YOL021C 
YOL142W YOR001W YOR076C

exosome (RNase complex) 0.805 13

4 5.00e-24 YBR081C YBR198C YBR253W YCL010C YDR167W 
YDR176W YDR216W YDR448W YGL112C 
YGR252W YHR099W YMR236W YPL254W

SAGA complex 0.452 11

5 9.90e-23 YBR081C YBR198C YDR167W YDR176W 
YDR392W YDR448W YEL009C YER148W 
YGL112C YGR274C YHR099W YMR236W 
YOL148C YPL254W YPR086W

SLIK (SAGA-like) complex 0.475 11

6 6.61e-23 YBL093C YBR193C YBR253W YCR081W YDL005C 
YDL140C YDR308C YER022W YGR104C YHR041C 
YHR058C YLR071C YNL236W YOL051W 
YOL135C YOR174W YPR070W

RNA polymerase II mediator complex 0.602 16

7 1.57e-20 YAR003W YBR175W YBR258C YDR469W 
YHR119W YKL018W YLR015W YPL138C

COMPASS complex 1.0 8

8 1.36e-19 YAL021C YCR093W YDL165W YDR443C 
YER068W YGR134W YGR274C YIL038C 
YNL288W YNR052C YPR072W

CCR4-NOT complex 0.614 9

9 1.43e-15 YBL105C YDL232W YEL002C YGL022W YGL226C-
A YJL002C YMR149W YOR085W YOR103C 
YPL076W

OST complex 0.71 8

1
0

1.66e-13 YAL002W YDL077C YDR080W YLR148W 
YLR396C YMR231W YPL045W

HOPS complex 1.0 7
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the core consists of proteins YBL021C, YGL237C and
YOR358W, which exactly share the same GO annotations,
e.g., all of them are involved in both the transcription
(GO:0006350) and regulation of carbohydrate metabolic
process (GO:0006109). Two predicted attachments, pro-
teins YDR277C and YOR047C, are involved in glucose
transport (GO:0015758) and glucose metabolic process
(GO:0006006), respectively. Obviously, the interactions
not in the core have a much lower average functional sim-
ilarity (0.28). The predicted complexes in (B) and (C)
match Cbf5-Nop10 complex [41] and nucleotide-excision
repair factor 1 complex [42], respectively. The average
similarities of biological processes for interactions within
and without the cores are 0.93 and 0.77 in (B) and 0.89
and 0.31 in (C), respectively. Similarly in figure 10, each
interaction is annotated with the similarity of cellular
components between its two interacting partners. The pre-
dicted complexes in (A-C) match the GPI-anchor transam-
idase complex [43], CCAAT-binding factor complex (note
that the predicted complex in (B) is the same one in figure
9(A)) and FACT complex [44], respectively. The average
similarities of cellular components for interactions within
and without the cores are 1.0 and 0.73 in (A), 1.0 and 0.46
in (B) and 0.94 and 0.61 in (C), respectively.

From table 4 and figures 8, 9, 10, it is clearly observed that
interactions within or not in the protein-complex cores
have different-level similarity scores. This fact supports
that proteins in complexes should be categorized into dif-
ferent organization levels, i.e., core member level and
attachment level. All above evidences also constitute
proofs that our identified protein-complex cores are
mostly biological hearts of protein complexes. Mean-
while, additional remarks in the Appendix show that
interactions within the cores tend to be reliable, signifying
another evidence for the importance of cores.

Validating examples for core-attachment structures
To illustrate the organization of our predicted complexes,
we further analyzed the second and third predictions in
figure 7.

In the OST complex as shown in figure 7(B), the core con-
sists of 3 proteins (YEL002C, YGL022W and YJL002C).
This is also reported in Gavin et al.'s analysis [17]. In addi-
tion, our method correctly identified 5 known attach-
ments (YDL232W, YGL226C-A, YMR149W, YOR085W
and YOR103C) and predicted two new attachments
(YBL105C and YPL076W). Since the protein YML019W in
the real OST complex interacts with only one protein
(YJL002C) within the core in DIP data, our predicted

Table 4: Average similarity of interactions involved in protein-complex cores, protein complexes and DIP data, respectively

Interactions Biological Process Cellular Component Gene Expression

In COACH complex cores 0.558 0.706 0.274
In COACH complexes 0.502 0.674 0.264

In DIP data 0.357 0.570 0.235

Predicted complexes with interactions scored by gene-expression correlationsFigure 8
Predicted complexes with interactions scored by gene-expression correlations. In figure 8, the proteins in the 
dashed circles form the cores of those predicted complexes and each interaction is attached with the gene-expression correla-
tion between its two interacting proteins. The predicted complexes in (A-C) match the DASH complex [37], trehalose-6-phos-
phate synthase/phosphatase complex [38] and RNA polymerase II mediator complex [39], respectively.
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complex did not identify it as an attachment. However,
the interactions between YML019W and all three proteins
in the core have been reported in [3]. As more PPI data
accumulated, we can expect our COACH can work even
better.

As to the HOPS complex in figure 7(C), proteins
YDR080W and YDL077C are its attachments and the core
consists of proteins YLR148W, YLR396C, YMR231W,
YPL045W and YAL002W. Biological experiments show

the core have the function of vacuole protein sorting [45].
With the help of attachments YDR080W and YDL077C,
this complex can perform the function of homotypic vac-
uole fusion [35]. This demonstrates that our computa-
tional discovery is consistent with the current biological
knowledge, indicating that some novel knowledge could
be discovered by our proposed method. Of course, bio-
logical experiments are necessary for further validating.

Predicted complexes with interactions scored by functional similarities (using BP)Figure 9
Predicted complexes with interactions scored by functional similarities (using BP). In figure 9, each interaction is 
attached with the functional similarity (using BP) between its two interacting partners. The predicted complexes in (A-C) 
match the CCAAT-binding factor complex [40], Cbf5-Nop10 complex [41] and nucleotide-excision repair factor 1 complex 
[42], respectively.
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Predicted complexes with interactions scored by functional similarities (using CC). In figure 10, each interaction is 
attached with the functional similarity (using CC) between its two interacting partners. The predicted complexes in (A-C) 
match the GPI-anchor transamidase complex [43], CCAAT-binding factor complex and FACT complex [44], respectively.
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Effect of the parameter t
Recall that COACH method employs a user-defined
parameter t (see Algorithm 3) to filter redundant prelimi-
nary cores. It is obvious that overlaps among protein-com-
plex cores are allowed when t > 0 and are not allowed
when t = 0. We now investigate how the variation of t
affects the performance of our COACH method. Figure 11
shows the F-measure and coverage rate of our COACH
method under different values of t, using DIP data.

Firstly, the number of predicted complexes increases with
the increase of t, i.e., COACH generates 268, 715 and
1040 complexes under t = 0, 0.2 and 0.4 respectively. This
is because the bigger the value of t, the more overlaps
among protein-complex cores are allowed, resulting in
more predicted complexes. With more complexes pre-
dicted, it is reasonable that more proteins in the bench-
mark complexes are covered with increasing the value of
t. However, the number of cases that multiple predicted
complexes match the same real complex (also denoted as
the redundancy in predicted complexes) is also increased
with the increase of t. For example, 267 correct predictions
match 247 real complexes when t = 0.2 (1.08 predicted
complexes match one real complex on average), while
371 match only 253 when t = 0.4 (1.47 predicted com-
plexes match one real complex on average).

Secondly, as we increase the values of t, the curve of the
resulting F-measure in figure 11 is observed to have 3 dis-
tinct and stable ranges for values of t, i.e., [0, 0.1], [0.125,
0.225] and [0.25, 0.4] respectively. Higher F-measure is
achieved in the first range (t  [0, 0.1]), which sacrifices

the Coverage Rate, resulting the lowest Coverage Rate
compared with those in other two ranges. Additionally in
this range, COACH only generates a small number of
complexes (e.g., it predicts 308 complexes, 145 out of
which match 211 real complexes when t = 0.05). On the
contrary, higher Coverage Rate are achieved in the third
range (t  [0.25, 0.4]), which sacrifices the F-measure.
However, as stated above, the redundancy in our pre-
dicted complexes would become more severe with the
increase of t. To reduce the redundancy involved in pre-
dicted complexes, as well as to encourage one-to-one
matching between predicted complexes and real ones, we
recommend that the suitable setting of t would be in the
second range i.e., t  [0.125, 0.225]. In fact, the perform-
ance of COACH does not change significantly in this
range. For the setting of t = 0.225 in our experiments,
COACH can achieve a good balance of both F-measure
and Coverage Rate.

Results using Krogan et al.'s PPI data
We also performed our COACH on Krogan et al.'s PPI
data (see Methods section). The F-measure and coverage
rate of each method using this data (t = 0.225) are shown
in figure 12. The F-measure of our COACH is 44.2%,
which is 18.7%, 10.3% and 4.6% higher than MCL,
DPClus and DECAFF respectively. From the perspective of
Coverage Rate, our COACH still performs the best as
shown in figure 12.

In particular, we check both Ncp and Ncb (see Method sec-
tion) of DECAFF and find that DECAFF generates protein

The effect of tFigure 11
The effect of t. Figure 11 shows how the variation of 
parameter t affect the F-measure and Coverage Rate of our 
COACH method.
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F-measure and Coverage Rate of various methods for 
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in figure 12.
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complexes with some redundancy on both DIP and Kro-
gan et al.'s PPI data. In other words, the complexes pre-
dicted by DECAFF overlap a lot with each other. For
example, DECAFF predicts 2190 complexes using DIP
data, 605 of which match 243 real complexes. Even, it pre-
dicts 2143 complexes using Krogan et al.'s data, 759 of
which only match 192 real complexes (almost 4 correct
predictions match a real one on average). The ratio Ncp/
Ncb of DECAFF is much higher than that of other methods,
which suggests that some post-processing (such as, clus-
tering highly overlapping complexes) is needed for
DECAFF.

Conclusion
Protein complexes are key molecular entities to perform
cellular functions. The increasing amount of protein-pro-
tein interaction (PPI) data has enabled us to detect protein
complexes from PPI networks. However, current compu-
tational methods only focus on detecting dense subgraphs
in PPI networks as protein complexes but ignore their
inherent organization. Hence, new approaches that can
provide insights into the organization of protein com-
plexes are greatly desired.

In this paper, we proposed a core-attachment based
method to detect protein complexes from PPI networks.
We first mined the protein-complex cores from the neigh-
borhood graphs and then formed protein complexes by
including attachments into cores. The evaluation and
analysis of our predictions demonstrated the following
advantages of our COACH method over the state-of-the-
art techniques. First, Our proposed method is fundamen-
tally different from existing methods. It provides insights
into the inherent organization of protein complexes while
existing methods mainly focus on detecting dense graphs.
Proteins within the same protein-complex core detected
by our method have high functional similarity and tend to
be co-localized, indicating that protein cores are possible
biological hearts of protein complexes. Second, COACH
has achieved significantly higher F-measure and Coverage
rate than existing methods. Thus, our predicted complexes
match very well with benchmark complexes. In addition,
COACH also performs very well in terms of other meas-
ures such as co-annotation, co-localization and p-values,
indicating that COACH can predict protein complexes
very accurately. Our identified complexes, therefore,
could be probably the true complexes to help the biolo-
gists to get novel biological insights. As we know, a pro-
tein complex is often formed by multiple proteins which
have permanent and stable relations with each other.
However, current PPI networks do not differentiate the
types of interactions. Recent studies demonstrate that pro-
teins structures and binding interfaces [46,47] are of help

to address the above issue. One of our future studies is to
integrate current PPI data and available structural infor-
mation to detect protein complexes with core-attachment
structures.

Methods
Experimental data
In our experiments, we performed our COACH method
on two yeast PPI networks. One is from DIP (the Database
of Interacting Proteins [26]), which consists of 17203
interactions among 4930 proteins. Krogan et al.'s PPI data
[18] consists of 14077 reliable interactions involving
3581 proteins (with a cut-off of 0.101 as shown in their
supplementary table S8). For evaluating our identified
complexes, the set of real complexes from [27] was
selected as benchmark. This benchmark set consists of
428 protein complexes, from three sources: (I) MIPS [48],
(II) Aloy et al. [49] and (III) SGD database [50] based on
Gene Ontology (GO) annotations. In addition, the gene
expression data was downloaded from Eisen's lab [51]
and GO data was downloaded from [52].

F-measure
The neighborhood affinity score (in equation 3) between
a predicted complex p and a real complex b in the bench-
mark, NA(p, b), is used to determine whether they match
with each other. If NA(p, b)  , they are considered to be
matching ( is set as 0.20 in [12,14], which is also used in
this paper). We assume that P and B are the sets of com-
plexes predicted by a computational method and real
ones in the benchmark, respectively. Ncp is the number of
correct predictions which match at least a real complex
and Ncb is the number of real complexes that match at
least a predicted one. Precision and recall are defined as
follows [15]:

F-measure, as the harmonic mean of precision and recall,
can be used to evaluate the overall performance of the dif-
ferent techniques [8,14].

Coverage rate
Coverage rate [27,53] is applied to show how many pro-
teins in the real complexes can be covered by the predicted
complexes. Given n benchmark complexes and m pre-
dicted complexes, Tij is the number of proteins in com-
mon between ith benchmark complex and jth predicted
complex. Coverage rate is then defined as:

N p p P b B NA p b

N b b B p P NA p b
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cb
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where Ni is the number of proteins in the ith benchmark
complex.
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Appendix
Remark 1. A preliminary core detected from vertex v's
neighborhood graph Gv will definitely contain the vertex
v.

Since vertex v links to all other vertices in Gv and has the
maximum degree, it is easy to understand the remark 1.

Remark 2. Each interaction in a complex core tend to be
reliable.

Let a complex core pc = (Vpc, Epc) be a preliminary core
detected from Gv. We discuss the reliability of interactions
within this complex core, based on following 2 cases.

Case 1: Avdeg(Gv) = 2. In this situation, Gv is protein-tri-
angle and also a preliminary core itself, i.e., pc = Gv. More-
over, each protein pair in Gv has a common neighbor (an
alternative path through one prortein) and protein inter-
actions within this topology tend to be reliable [21].

Case 2: Avdeg(Gv) > 2. For every interaction e = (u1,u2) 
Epc, e will be in one of two following cases.

Case 2.1, u1 = v, u2  v. Since deg(u2)  Avdeg(Gv) > 2, u2
will have at least another 2 neighbors besides u1, which
are common neighbors between u1 and u2. In this case, e
is demonstrated to have higher reliability than those in
Case 1[22,54]. Case 2.2, u1  v, u2  v. u1 and u2 will have
at least a common neighbor, namely v. e = (u1,u2) thus has
a reliable alternative path {u1 - v - u2}. e is also shown to
be with high reliability in [55].
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Additional file 1
The running time of our COACH method over random graphs. Addi-
tional file 1 shows the running time of our COACH method on two kinds 
of random graphs and demonstrates that COACH is efficient in large-
scale graphs.
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Additional file 2
The comparison between our COACH method and the CoreMethod. 
Additional file 2 first briefly introduces the CoreMethod. A comprehensive 
comparison between our COACH method and the CoreMethod is then 
presented in this file.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-10-169-S2.pdf]
Page 15 of 16
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2105-10-169-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-10-169-S2.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11283351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11403571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805826
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11805837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11743162
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14517352
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18304937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18304937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18304937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180928
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15180928


BMC Bioinformatics 2009, 10:169 http://www.biomedcentral.com/1471-2105/10/169
12. Bader G, Hogue C: An automated method for finding molecu-
lar complexes in large protein interaction networks.  BMC Bio-
informatics 2003, 4:2.

13. Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S: Devel-
opment and implementation of an algorithm for detection of
protein complexes in large interaction networks.  BMC Bioin-
formatics 2006, 7:207.

14. Li X, Foo C, Ng S: Discovering protein complexes in dense reli-
able neighborhoods of protein interaction networks.  CSB
2007:157-168.

15. Chua HN, Ning K, Sung WK, Leong HW, Wong L: Using indirect
protein-protein interactions for protein complex prediction.
CSB 2007:97-109.

16. Jung SK, Jang WH, Hur HY: Protein complex prediction based
on mutally exclusive interactions in protein interaction net-
work.  Genome Informatics 2008, 21:77-88.

17. Gavin A, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C,
Jensen LJ, Bastuck S, Dumpelfeld B, et al.: Proteome survey reveals
modularity of the yeast cell machinery.  Nature 2006,
440(7084):631-636.

18. Krogan N, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu
S, Datta N, Tikuisis AP, Punna T, et al.: Global landscape of protein
complexes in the yeast Saccharomyces cerevisiae.  Nature
2006, 440(7084):637-643.

19. Dezso Z, Oltvai ZD, Barabasi AL: Bioinformatics Analysis of
Experimentally Determined Protein Complexes in the Yeast
Saccharomyces cerevisiae.  Genome Res 2003, 13:2450-2454.

20. Saito R, Suzuki H, Hayashizaki Y: Interaction generality, a meas-
urement to assess the reliability of a protein-protein interac-
tion.  Nucleic Acids Res 2002, 30(5):1163-1168.

21. Saito R, Suzuki H, Hayashizaki Y: Construction of reliable pro-
tein-protein interaction networks with a new interaction
generality measure.  Bioinformatics 2003, 19(6):756-763.

22. Chua HN, Sung WK, Wong L: Exploiting indirect neighbours
and topological weight to predict protein function from pro-
tein-protein interactions.  Bioinformatics 2006, 22(13):1623-1630.

23. von Mering C, Krause R, Snel B, Cornell M, Oliver S, Fields S, Bork P:
Comparative assessment of large-scale data sets of protein-
protein interactions.  Nature 2002, 417(6887):399-403.

24. Yook SH, Oltvai ZN, Barabasi AL: Functional and topological
characterization of protein interaction networks.  Proteomics
2004, 4(4):928-942.

25. Przulj N, Wigle DA, Jurisica I: Functional topology in a network
of protein interactions.  Bioinformatics 2004, 20(3):340-348.

26. Xenarios I, Salwinski L, Duan X, Higney P, Kim S, Eisenberg D: DIP,
the Database of Interacting Proteins: a research tool for
studying cellular networks of protein interactions.  Nucleic
Acids Research 2002, 30:303-305.

27. Friedel CC, Krumsiek J, Zimmer R: Boostrapping the Interac-
tome: Unsupervised Identification of Protein Complexes in
Yeast.  In 12th Annual International Conference on Research in Compu-
tational Molecular Biology (RECOMB), of LNCS Volume 4955. Edited by:
Vingron M, Wong L. Springer; 2008:3-16. 

28. Wu M, Li X, Kwoh K: Algorithms for Detecting Protein Com-
plexes in PPI Networks: An Evaluation Study.  (Supplementary
paper presented at) International Conference on Pattern Recognition in Bio-
informatics (PRIB); 2008 Oct 15–17; Melbourne, Australia 2008:135-146.

29. Leung H, Xiang Q, Yiu S, Chin F: Predicting Protein Complexes
from PPI Data: A Core-Attachment Approach.  Journal of Com-
putational Biology 2009, 16(2):133-144.

30. Grant PA, Schieltz D, Pray-Grant MG, Steger DJ, Reese JC, Yates JR,
Workman JL: A subset of TAF(II)s are integral components of
the SAGA complex required for nucleosome acetylation and
transcriptional stimulation.  Cell 1998, 94:45-53.

31. Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G:
GO::TermFinder-open source software for accessing Gene
Ontology information and finding significantly enriched
Gene Ontology terms associated with a list of genes.  Bioinfor-
matics 2004, 20(18):3710-3715.

32. Maraziotis IA, Dimitrakopoulou K, Bezerianos A: Growing func-
tional modules from a seed protein via integration of protein
interaction and gene expression data.  BMC Bioinformatics 2007,
8:408.

33. Liu H, Chiang Y, Pan J, Chen J, Salvadore C, Audino D, Badarinarayana
V, Palaniswamy V, Anderson B, DenisDagger C: Characterization
of CAF4 and CAF16 Reveals a Functional Connection

between the CCR4-NOT Complex and a Subset of SRB Pro-
teins of the RNA Polymerase II Holoenzyme.  JBC 2001,
276(10):7541-7548.

34. Schwarz M, Knauer R, Lehle L: Yeast oligosaccharyltransferase
consists of two functionally distinct sub-complexes, specified
by either the Ost3p or Ost6p subunit.  FEBS Letters 2005,
579(29):6564-6568.

35. Seals DF, Eitzen G, Margolis N, Wickner WT, Price A: A ypt/rab
effector complex containing the sec1 homolog vps33p is
required for homotypic vacuole fusion.  PNAS 2000,
97(17):9402-9407.

36. Wang J, Du Z, Payattakool R, Yu P, Chen C: A new method to
measure the semantic similarity of GO terms.  Bioinformatics
2007, 23(10):1274-1281.

37. Miranda JJ, De Wulf P, Sorger P, Harrison SC: The yeast DASH
complex forms closed rings on microtubules.  Nat Struct Mol
Biol 2005, 12(2):138-143.

38. Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C,
Wiemken A, M TJ: Composition and functional analysis of the
Saccharomyces cerevisiae trehalose synthase complex.  J Biol
Chem 1998, 273:33311-33319.

39. Balciunas D, Ronne H: Three subunits of the RNA polymerase
II mediator complex are involved in glucose repression.
Nucleic Acids Res 1995, 23(21):4421-4425.

40. Gancido JM: Yeast Carbon Catabolite Repression.  Microbiol Mol
Biol Rev 1998, 62(2):334-361.

41. Hamma T, Reichow SL, Varani G, Ferre-D'Amare AR: The Cbf5-
Nop10 complex is a molecular bracket that organizes box
HACA RNPs.  Nat Struct Mol Biol 2005, 12(11):1101-1107.

42. Guzder SN, Sung P, Prakash L, Prakash S: Nucleotide excision
repair in yeast is mediated by sequential assembly of repair
factors and not by a pre-assembled repairosome.  J Biol Chem
1996, 271(15):8903-8910.

43. Fraering P, Imhof I, Meyer U, Strub J, van Dorsselaer A, Vionnet C,
Conzelmann A: The GPI transamidase complex of Saccharo-
myces cerevisiae contains Gaa1p, Gpi8p, and Gpi16p.  Mol Biol
Cell 2001, 12(10):3295-3306.

44. Formosa T, Eriksson P, Wittmeyer J, Ginn J, Yu Y, Stillman DJ: Spt16-
Pob3 and the HMG protein Nhp6 combine to form the
nucleosome-binding factor SPN.  EMBO J 2001,
20(13):3506-3517.

45. Rieder SE, Emr SD: A Novel RING Finger Protein Complex
Essential for a Late Step in Protein Transport to the Yeast
Vacuole.  Mol Biol Cell 1997, 8:2307-2327.

46. Tuncbag N, Gursoy A, Guney E, Nussinov R, Keskin O: Architec-
tures and functional coverage of protein-protein interfaces.
J Mol Biol 2008, 381(3):785-802.

47. Kim PM, Lu LJ, Xia Y, Gerstein MB: Relating Three-Dimensional
Structures to Protein Networks Provides Evolutionary
Insights.  Science 2006, 314(5807):1938-1941.

48. Mewes HW, Amid C, Arnold R, Frishman D, Guldener U, Mannhaupt
G, Munsterkotter M, Pagel P, Strack N, Stumpflen V, Warfsmann J,
Ruepp A: MIPS: analysis and annotation of proteins from
whole genomes.  Nucleic Acids Research (Database issue) 2004,
32:41-44.

49. Aloy P, Bottcher B, Ceulemans H, Leutwein C, Mellwig C, Fischer S,
Gavin AC, Bork P, Superti-Furga G, Serrano L, RB R: Structure-
based assembly of protein complexes in yeast.  Science 2004,
303(5666):2026-2029.

50. Dwight SS, Harris MA, Dolinski K, Ball CA, Binkley G, Christie KR,
Fisk DG, Issel-Tarver L, Schroeder M, Sherlock G, Sethuraman A,
Weng S, Botstein D, Cherry JM: Saccharomyces Genome Data-
base provides secondary gene annotation using the Gene
Ontology.  Nucleic Acids Research 2002, 30:69-72.

51. Gene Expression Data from Eisen's Lab   [Http://rana.lbl.gov/
EisenData.htm]

52. Gene Ontology Database   [Http://www.geneontology.org/
GO.database.shtml]

53. Brohee S, van Helden J: Evaluation of clustering algorithms for
protein-protein interaction networks.  BMC Bioinformatics 2006,
7:488.

54. Goldberg D, Roth FP: Assessing experimentally derived inter-
actions in a small world.  PNAS 2003, 100(8):4372-4376.

55. Chen J, Hsu W, Lee M, Ng S: Increasing confidence of protein
interactomes using network topological metrics.  Bioinformat-
ics 2006, 22(16):1998-2004.
Page 16 of 16
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12525261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12525261
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16613608
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19425149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19425149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19425149
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16429126
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16554755
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559778
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11861907
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12691988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12691988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12691988
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16632496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16632496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16632496
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12000970
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15048975
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14960460
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19193141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19193141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9674426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9674426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9674426
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15297299
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17956603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17956603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17956603
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16297388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16297388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16297388
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10944212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10944212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10944212
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17344234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17344234
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15640796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15640796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9837904
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7501465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7501465
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9618445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16286935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16286935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16286935
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8621533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8621533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8621533
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11598210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11598210
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11432837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11432837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11432837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9362071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9362071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9362071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18620705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18620705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17185604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17185604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17185604
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15044803
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752257
Http://rana.lbl.gov/EisenData.htm
Http://rana.lbl.gov/EisenData.htm
Http://www.geneontology.org/GO.database.shtml
Http://www.geneontology.org/GO.database.shtml
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17087821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17087821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12676999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12676999
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16787971
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16787971

	Abstract
	Background
	Results
	Conclusion

	Background
	Our proposed algorithm
	Preliminaries
	Definition of 'preliminary cores'
	Protein-complex core mining algorithm
	Core-removal algorithm
	Redundancy-filtering procedure

	Protein-complex formation

	Results and discussions
	Comparative evaluation
	F-measure and coverage rate
	Co-annotation and co-localization
	Statistical evaluation of predicted protein complexes

	Validation of core-attachment structures
	Analysis of protein-complex cores
	Validating examples for core-attachment structures

	Effect of the parameter t
	Results using Krogan et al.'s PPI data

	Conclusion
	Methods
	Experimental data
	F-measure
	Coverage rate

	Authors' contributions
	Appendix
	Additional material
	Acknowledgements
	References

