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a b s t r a c t

As of writing this paper, COVID-19 (Coronavirus disease 2019) has spread to more than 220 countries
and territories. Following the outbreak, the pandemic’s seriousness has made people more active on
social media, especially on the microblogging platforms such as Twitter and Weibo. The pandemic-
specific discourse has remained on-trend on these platforms for months now. Previous studies have
confirmed the contributions of such socially generated conversations towards situational awareness of
crisis events. The early forecasts of cases are essential to authorities to estimate the requirements
of resources needed to cope with the outgrowths of the virus. Therefore, this study attempts to
incorporate the public discourse in the design of forecasting models particularly targeted for the
steep-hill region of an ongoing wave. We propose a sentiment-involved topic-based latent variables
search methodology for designing forecasting models from publicly available Twitter conversations. As
a use case, we implement the proposed methodology on Australian COVID-19 daily cases and Twitter
conversations generated within the country. Experimental results: (i) show the presence of latent social
media variables that Granger-cause the daily COVID-19 confirmed cases, and (ii) confirm that those
variables offer additional prediction capability to forecasting models. Further, the results show that
the inclusion of social media variables introduces 48.83%–51.38% improvements on RMSE over the
baseline models. We also release the large-scale COVID-19 specific geotagged global tweets dataset,
MegaGeoCOV, to the public anticipating that the geotagged data of this scale would aid in understanding
the conversational dynamics of the pandemic through other spatial and temporal contexts.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

COVID-19 (Coronavirus disease 2019) is a respiratory illness
aused by severe acute respiratory syndrome coronavirus 2
SARS-CoV-2), the first case identified in Wuhan, China, in De-
ember 2019, has since spread globally, spanning to an ongoing
andemic [1]. The disease was declared as a public health emer-
ency of international concern on January 30, 2020, and as a
andemic on March 11, 2020, by the World Health Organization.
s of November 9, 2021, more than 251 million global cases and
ore than 5 million deaths have been confirmed [2]. During the
arly phase of the pandemic, countries and territories around the
lobe initiated partial and/or complete lockdowns to contain the
pread of the virus. Mass vaccination campaigns have also been
tarted after late 2020 with vaccines such as Oxford-AstraZeneca,
fizer, Moderna, Johnson and Johnson, and Sinovac [3].
In the case of Australia, the country’s first case of COVID-

9 was confirmed by Victoria Health Authorities on January 25,
020 [4]. Since then, as of November 9, 2021, 182,870 cases and
841 deaths have been confirmed as the country is currently
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1568-4946/© 2022 Elsevier B.V. All rights reserved.
facing its third wave of COVID-19 infections [2]. Fig. 1 shows the
daily confirmed numbers and the cumulative numbers of COVID-
19 infections in Australia between late January 2020 and early
September 2021. Also illustrated in Fig. 1, Australia experienced
the first wave of COVID-19 infections during March–April 2020,
the second wave during June–October 2020, and the ongoing
third wave since June 2021. Other than during the waves, the
daily COVID-19 infections in Australia are within two digits. The
highest confirmed cases for a single day during the first wave
were 497, during the second wave were 716; while the third
wave is ongoing and reporting significantly large figures each
day [2].

Since the outbreak, the pandemic’s gravity has made people
more vocal on social media, especially on microblogging plat-
forms such as Twitter and Weibo. As people share what they
are experiencing, observing, and gathering, multiple terms related
to the pandemic have emerged and remained on-trend on these
platforms for months now. Previous studies have shown that
such public discourse contributes to a better understanding of
an ongoing crisis. With this consideration, this study attempts to
incorporate the public discourse in designing pandemic-related
time series forecasting models specially targeted for the steep-

hill region of a pandemic’s ongoing wave. The modeling and early

https://doi.org/10.1016/j.asoc.2022.109603
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2022.109603&domain=pdf
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Fig. 1. Daily (new) and total (cumulative) COVID-19 cases reported in Australia between January 25, 2020 (first COVID-19 case reported), and September 9, 2020.
rediction of the prevalence of virus are essential to provide situ-
tional information to decision making bodies and authorities to
stimate the requirements of resources and equipment needed to
ope with the consequences of the virus [5]. This study, therefore,
ocuses on the forecast of COVID-19 spread while addressing the
ollowing research questions (RQs):

RQ1: Geotagged data plays a crucial role while modeling
ocation-specific information [6]. Inclusion of social media vari-
bles into forecast models requires a large amount of geotagged
ata. Therefore, we would like to know what portion of the
witter volume is geotagged? After the release of Twitter’s Aca-
emic Track-based Full-archive search and count APIs, finally, it
s possible to address this research question—earlier researchers
ere able to access only a sample of overall Twitter volume.
RQ2: Is there a presence of latent variables within geotagged

witter data that Granger-cause the daily COVID-19 confirmed
ases time series?
RQ3: If the answer to RQ2 is ‘yes’, do those variables provide

dditional prediction capability to time series forecasting models?
RQ4: Is ‘‘the volume of public discourse in the last few days’’

redictive of the steep-hill curve of COVID-19 cases during an
ngoing wave?
The paper is organized as follows: Section 2 presents related

ork, Section 3 explains the design of the time series dataset
includes data collection, sentiment analysis, topic modeling),
ection 4 presents experimentation and discussion, and Section 5
s the conclusion.

. Related work

In the past, modeling and forecasting of cases and transmis-
ion risks have been done across multiple areas: human West
ile virus cases and mosquito infection rates [7], hepatitis A virus
nfection [8], seasonal outbreaks of influenza [9] and its real-time
racking [10], Ebola outbreak [11], H1N1-2009 [12], international
pread of Middle East respiratory syndrome (MERS) [13]. There
ave also been some notable works in the area of forecast-
ng the daily confirmed cases of the ongoing pandemic. Maleki
t al. [14] modeled the total number of global confirmed cases
nd recovered cases using autoregressive models based on the
wo-piece t distributions for predicting the global cases between
pril 21, 2020–April 31, 2020. In [15], Salgotra et al. performed
ime series prediction of COVID-19 confirmed and death cases
cross major Indian cities for the period May 15, 2020–May 25,
020, based on genetic programming [16]. Papastefanopoulos
t al. [17] used both traditional statistical methods and machine
earning approaches for estimating the percentage of active cases
2

per population, up to 7 days into the future, for ten countries
including the United States, Spain, Italy, the United Kingdom, and
Germany. The authors showed that, overall, the traditional ap-
proaches like ARIMA (Autoregressive Integrated Moving Average)
prevail over methods based on machine learning in the forecast
of COVID-19 time series due to lack of a large amount of data.
Similarly, Saba et al. [18] observed ARIMA and SARIMA (Seasonal
ARIMA) models producing relatively better results, in the forecast
of daily COVID-19 cases during complete and herd lockdowns,
than machine learning algorithms such as Polynomial Regression,
K-nearest neighbors, Random Forests, Support Vector Machine,
and Decision Trees. In [19], Singh et al. used a hybrid model with
discrete wavelet decomposition and ARIMA to forecast the cases
of COVID-19.

ARIMA and its variations appear to be the most favored tech-
niques for COVID-19 cases time series forecast. Different param-
eterized ARIMA and its variants have been used across studies
targeting regions such as India [20,21], Pakistan [22], Saudi Ara-
bia [23], Mainland China, Italy, South Korea, Thailand [24], US,
Brazil, Russia, Spain [21], North America, South America, Africa,
Asia and Europe [25], Italy, Spain, and France [26], and the most
hit countries [27,28]. Furthermore, models such as Susceptible,
Exposed, Infection and Recover (SEIR), Infection and Recover (SIR)
and their variations, and others such as Agent-based models,
Curve-fitting and Logistic growth models have also been ap-
plied extensively for mathematical modeling of the COVID-19
situations for forecasting purposes [29–34].

Social media platforms, such as Facebook and Twitter, have
an active user base of millions and hold an enormous amount of
socially generated data through the exchange of conversations.
These platforms have become an active source of information
during day-to-day life as well as during mass emergencies such as
the ongoing pandemic [5]. During mass emergencies, the number
of user activities across these platforms increases exponentially,
as people: (a) generate trends on search engines such as Google,
(b) share their safety status or query the safety status of their
near ones, and (c) also share what they have seen, felt, or heard.
These socially generated activities can be collected and analyzed
for understanding the relationship between public discourse and
how an emergency event unfolds at the ground level [5]. For
example, in [35], Chew et al. used semantic word vectors as
a representation of the public’s response to the pandemic to
forecast the daily growth rate in the number of global confirmed
COVID-19 cases with a lead-time of 1 day for the period Jan-
uary 25, 2020, and May 11, 2020. The authors extracted vector
representations from more than 100 million English language
tweets, trained a deep neural network on the vectors alongside
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Fig. 2. The overall view of the Twitter-based COVID-19 cases forecast methodology.
he historical time series of growth rates and reported that their
eural nets based approach outperforms traditional time series
nd machine learning models. In [36] Qin et al. collected social
edia search indexes (SMSI) for the COVID-19 specific keywords
dry cough, chest distress, coronavirus, fever, and pneumonia –

rom December 31, 2019, to February 9, 2020. The authors used
he lagged series of the search indexes to predict the COVID-19
ase numbers for the same period and reported that the cases’
rend correlated significantly with the lagged series. COVID-19
pecific search query volumes on Google, Baidu, and Weibo have
lso been observed correlated to laboratory-confirmed and sus-
ected cases of COVID-19 [37]. Similar results were reported
y Cousins et al. [38]—the search-engine query patterns were
bserved predictive of COVID-19 case rates.
In [39], Li et al. collected around 115k Weibo posts origi-

ating from Wuhan, China, between December 23, 2019, and
anuary 30, 2020, and designed a regression model to observe
he COVID-19 related posts being predictive of the number of
ases reported. Similarly, Shen et al. [40] used more than 15
illion Weibo posts created between November 1, 2019, and
arch 31, 2020, and designed a machine learning classifier to

dentify ‘‘sick’’ related posts. The count of such ‘‘sick’’ posts were
bserved Granger-causing the daily number of COVID-19 cases.
n [6], Comito reported that the number of Twitter posts increases
efore confirmed cases follow a similar trend, suggesting that
ocial media discourse can be a front indicator of epidemics
preading.
The studies dealing with the early forecasts of confirmed cases,

ay it be COVID-19 or previous epidemics outbreaks, rely ma-
orly on the ‘‘volume of conversations’’ feature, i.e. overall count,
entiment-based count, or a specific category-based count [5].
he issue with ‘‘volume of conversations’’ feature is its reliability
nd robustness. Methodologies based on this feature get heavily
ffected by avalanches of autogenerated conversations. Further-
ore, as per our literature search, the effectiveness of the latent
ariables within the publicly available social media conversations
as not been studied for their possible influence on the trend of a
andemic/epidemic outbreak. While addressing these limitations,
his study contributes the following to the literature:
a) the study proposes an effective representation for microblog
onversations, such that the ‘‘volume of conversations’’ feature
an be represented at a more granular level to decrease the
ntensity of possible forecast biases,
b) the study provides evidences that confirm the significance
f social media variables in forecasting the future trend of a
teep-hill curve of a pandemic/epidemic outbreak, and
c) we release a large-scale COVID-19 specific geotagged tweets
ataset, MegaGeoCOV 1, to the public. The dataset was curated for

1 https://github.com/rabindralamsal/MegaGeoCOV.
 2

3

this study, and as per Twitter’s terms of use [41], we only release
the tweet identifiers, which can be hydrated using tools such
as Hydrator2 (desktop application) or twarc3 (python library) to
rebuild the dataset locally.

3. Time series

We implement the methodology illustrated in Fig. 2 for our
time series analysis. In this section, we discuss the data collection
procedure and the time series formulation approach in detail, and
in the next section (Section 4), we design the forecasting models
on a set of influential time series and experiment with social
media variables in the design of pandemic related forecasting
models to address our research questions.

3.1. Data collection

We considered Twitter as a primary data source since its acts
as an instant, short, and frequent basis of communication, and
most importantly it allows researchers to access the publicly
available data on its platform through a wide range of API end-
points [42]. Some of the widely used Twitter’s endpoints include
Tweet lookup endpoint for looking up tweets using tweet iden-
tifiers, Search endpoint for searching most recent 7 days, or the
full-archive of tweets, Tweet counts endpoint for retrieving a count
of tweets that match given query, Filtered stream endpoint for
retrieving real-time public tweets, and Sampled stream endpoint
for retrieving approximately 1% of all real-time public Tweets.

In this study, we used Twitter’s new academic track end-
point, the Full-archive search endpoint,4 for collecting COVID-19
specific tweets created between January 01, 2020, and Septem-
ber 9, 2021. The following keywords (plain word) and hashtags
(word preceded by # symbol) were considered while search-
ing and collecting for COVID-19 specific tweets: coronavirus,
#coronavirus, covid, #covid, covid19, #covid19, covid-
19, #covid-19, pandemic, #pandemic, quarantine, #quar-
antine, #lockdown, lockdown, ppe, n95, #ppe, #n95,
pneumonia, #pneumonia, virus, #virus, mask, #mask, vac-
cine, vaccines, #vaccine, #vaccines, lungs, and flu. The
keywords selection was done based on previously proposed sets
of keywords [43,44]. Additionally, we used the Full-archive count
API for getting the descriptive statistics (presented in Table 1) of
the daily COVID-19 public discourse on Twitter.

2 https://github.com/DocNow/hydrator.
3 https://twarc-project.readthedocs.io/en/latest/.
4 This new endpoint enables researchers to collect tweets from as early as
006.

https://github.com/rabindralamsal/MegaGeoCOV
https://github.com/DocNow/hydrator
https://twarc-project.readthedocs.io/en/latest/
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Fig. 3. Daily distribution of COVID-19 specific tweets between January 1, 2020, and September 9, 2020.
Table 1
Descriptive statistics of the daily COVID-19 public discourse on Twitter.

All Tweets Geotagged
Tweets
(global)

Tweets from

Australia

% of tweets
geotagged
(global)

mean 4.62 million 33.2 k 493 0.694538
std 3.74 million 30.8 k 337 0.129555
minimum 59.6 k 615 7 0.449497
25% 3.06 million 18.9 k 272 0.595030
median 3.77 million 24.4 k 408 0.682665
75% 4.64 million 33.7 k 660 0.781970
maximum 25.8 million 183 k 2297 1.439504
Table 2
Overview of MegaGeoCOV.
Total tweets (unique ids) 21,305,691
Duplicate tweets (exact copy) 137,836
Countries and territories 245
Cities and states 260,732
Languages 64 (and undefined)

Generally, there are two classes of geographical metadata
vailable with tweets. The first class is related to ‘‘tweet lo-
ation’’ in which a location is shared by a Twitter user while
reating a tweet. The location data is attached with the tweet
ither as exact geocoordinates (a point location) or as a bounding
ox (a general location). The second class is related to ‘‘account
ocation’’ which is based on the location provided by a user
n his/her public profile. Since the account location field is not
alidated by Twitter, we only considered the tweets having exact
eocoordinates or bounding boxes while designing the forecast-
ng models. In total, 21.36 million geotagged COVID-19 specific
weets were retrieved from the API endpoint. We name this large-
cale geotagged global tweets dataset MegaGeoCOV. The dataset
s briefly explored in terms of numbers across multiple attributes
general overview given in Table 2)—countries, cities and states
in Table 3), languages (in Table 4), and frequency distribution
in Fig. 3).

.1.1. Australian tweets
MegaGeoCOV has more than 90 tweet objects, each object

epresenting various tweet metadata. From MegaGeoCOV, we
xtracted tweets originating from Australia (by conditioning the
eo.country object) and considered only the created_at (date
nd time), text (tweet), geo.full_name (geolocation) objects
or curating Australia-specific COVID-19 tweets dataset, from
4

Table 3
Top 15 global locations in MegaGeoCOV.
(a) Top countries/territories (N = 245).

Country/territory Tweets

United States 7,375,997
United Kingdom 2,279,064
India 1,563,017
Brazil 1,379,733
Canada 756,466
Spain 625,599
Indonesia 509,498
Argentina 434,454
Mexico 430,478
Philippines 383,215
Australia 366,033
South Africa 357,674
France 339,001
Italy 324,028
Nigeria 293,242

(b) Top cities and states (N = 260,732).

City/state Tweets

Los Angeles 240,374
Rio de Janerio 192,986
Manhattan 185,021
New Delhi 173,854
Mumbai 155,855
Sao Paulo 148,202
Toronto 141,963
Florida 122,370
Chicago 120,930
Brooklyn 112,231
Houston 111,836
Melbourne 111,038
Washington 98,907
Madrid 96,592
Buenos Aires 95,759
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Table 4
Most frequent languages (N = 64) in MegaGeoCOV.
Language ISOa Tweets

English en 13,854,642
Spanish es 2,545,726
Portuguese pt 1,389,951
Indonesian in 708,023
Undefined – 689,301
French fr 415,434
Italian it 280,087
Tagalog tl 274,845
Hindi hi 221,280
Turkish tr 157,962
German de 143,874

Other languagesa in order of their frequencies:
nl, ca, ja, th, ar, pl, et, ru, sv, ht, lt, mr, ro, cs, fi, da, el, ur, ta,
zh, sl, ne, gu, bn, lv, no, vi, cy, te, kn, uk, hu, ko, or, fa, is, eu,
si, ml, iw, bg, sr, pa, dv, km, my, am, sd, ckb, ps, lo, hy, ka, bo ,

aISO 639-1 Language Code

Table 5
Top Australian locations in MegaGeoCOV.
(a) Top small regions (N = 3724).

Small regions Tweets

Melbourne 94,330
Sydney 70,118
Brisbane 21,298
Perth 18,143
Adelaide 13,372
Canberra 8,366
Gold Coast 6,483
New Castle 3,574
Sunshine Coast 2,843
Central Coast 2,190

here on termed as dataset D. Since the geo.full_name object
followed the [city, state] data structure, all other geolocation-
specific objects were ignored as this object was enough for
extracting both city- and state-level information.

Tweets selection. Out of the 366,033 tweets originating from
Australia, only the tweets geotagged with exact geocoordinates
or bounding box coordinates were considered. Twitter does not
validate the account location field. Entries such as ‘‘My Home’’,
‘‘My Dream’’, ‘‘Solar System’’, ‘‘Milky Way Galaxy’’, etc are equally
valid. Further, some users can have one location on their public
profile and create tweets from some other location. Therefore
we considered only the tweets whose geolocation was shared by
users while creating tweets. Next, we filtered out tweets that had
less than 10 terms within the text body. After following these
selection criteria, the numbers in the dataset D dropped down
to 305,418 unique tweets identifiers and 304,885 unique tweets.

The geo.fullname object was split into two subparts based
on its [small region, larger region] data structure. This data struc-
ture was not the same for all the tweets in the dataset—some
had single location detail such as just ‘‘Melbourne’’, and ‘‘New
South Wales’’. In such cases, the single location details were
considered small regions. Following this step, there were 3724
small region unique entries (shown in Table 5) and 125 larger
region unique entries (shown in Table 5) in dataset D. As a general
overview of the dataset, Table 5 lists the top Australian locations
(cities/towns/states) participating in the COVID-19 Twitter dis-
course, and Table 6 lists the most frequent unigrams and bigrams
used by Australian Twitter users during the discourse.

The dataset D at this stage is {(t1, tw1, g1), . . . , (tN , twN , gN )},
where N = 305,418, the first component, t1, . . . , tN , represents
date/time attribute, the second component, tw1, . . . , twN , rep-
esents individual tweets, and the third component, g1, . . . , gN ,
epresents geolocation information of the individual tweets.
5

Table 5 (continued).
(b) Top larger regions (N = 125).

Larger regions Tweets

Victoria 107,560
New South Wales 89,142
Queensland 37,107
Western Australia 20,259
South Australia 15,301
Australia 14,703
Australian Capital Territory 8,373
Not Available 4,678
Tasmania 3,280
Northern Territory 2,141

Table 6
20 most frequent unigrams and bigrams used by Australian Twitter
users in the COVID-19 discourse.
(a) Unigrams

Unigram Frequency

covid 46,942
lockdown 34,016
people 30,936
virus 21,844
vaccine 19,380
covid-19 18,132
#covid-19 17,231
quarantine 16,618
pandemic 15,842
australia 13,456
mask 12,936
time 12,891
coronavirus 12,602
health 12,111
cases 11,444
#coronavirus 8,859
government 8,679
nsw 8,481
home 8,202
work 8,104

(b) Bigrams

Bigram Frequency

(‘hotel’, ‘quarantine’) 3,161
(‘wear’, ‘mask’) 2,037
(‘2’, ‘weeks’)/(’14’, ’days’) 1,974
(‘aged’, ‘care’) 1,970
(‘wearing’, ‘mask’) 1,517
(‘new’, ‘cases’) 1,463
(‘social’, ‘distancing’) 1,424
(‘public’, ‘health’) 1,303
(‘new’, ‘daily’) 1,302
(‘many’, ‘people’) 1,239
(‘mental’, ‘health’) 1,221
(‘federal’, ‘government’) 1,154
(‘covid’, ‘cases’) 1,098
(‘last’, ‘year’) 1,077
(‘vaccine’, ‘rollout’) 1,074
(‘stay’, ‘home’) 1,037
(‘face’, ‘mask’) 1,002
(‘tested’, ‘positive’) 907
(‘covid’, ‘vaccine’) 858
(‘covid’, ‘test’) 805

3.2. Sentiment analysis with BERT

There exists a plethora of pre-trained sentiment analysis mod-
els and libraries suitable for sentiment analysis of short texts.
Short-length texts and common use of informal grammar, ab-
breviations, spelling errors, and hashtags make it difficult in us-
ing pre-trained sentiment analyzers trained on formally written
and typographical errors-free large-scale text corpora to handle
sentiment analysis tasks on Twitter data. Further, in our case, we



R. Lamsal, A. Harwood and M.R. Read Applied Soft Computing 129 (2022) 109603

r
1

B
m
m
B
t
m
p
(
l
a
l
r
s

t
0
s
e
a
m
B

(

(

(
f

(

w

6

equired a sentiment analyzer capable of understanding COVID-
9 specific tweets.
Therefore, we finetuned a pre-trained language model,

ERTweet [45], for our sentiment analysis task. The language
odel has been reported to outperform existing state-of-the-art
odels across multiple NLP tasks including text classification.
ERTweet has the same architecture as BERTbase [46] and is
rained on 850 million English Tweets (cased) and additional 23
illion COVID-19 English Tweets (cased) using the RoBERTa [47]
re-training procedure. We finetuned the pre-trained BERTweet
bertweet-covid19-base-cased) model using the transformers
ibrary [48] on the SemEval-2017 Task 4 A dataset5 and achieved
n accuracy of 0.7231 on the validation set built using the scikit-
earn’s train_test_split function [49] with parameters (given for
esults reproducibility) test_size = 0.2, random_state = 41, and
tratify setting on the sentiment column.
The fine-tuned model (hereafter termed as BERTsent) outputs

hree labels each with a probability score for sentiment analysis:
representing ‘‘negative’’ sentiment, 1 representing ‘‘neutral’’

entiment, and 2 representing ‘‘positive’’ sentiment. The model
ffectively classifies sentences such as ‘‘I had covid’’. as negative
nd just the word ‘‘covid’’ as neutral by a significant probabilistic
argin. We release both the PyTorch and TensorFlow versions of
ERTsent from the Hugging Face Hub.6
Next, we used BERTsent to compute sentiment probabilities for

each tweet in dataset D. Dataset D at this stage gets a new com-
ponent, sn1, . . . , snN , that represents the sentiment of individual
tweets. Output label with the highest probability was considered
as the sentiment of a tweet. Dataset D at this stage is:

{(t1, tw1, g1, sn1), . . . , (tN , twN , gN , snN )}.

3.3. Topic modeling

Next, we identify topics that best describe all the tweets in
dataset D. We implemented one of the commonly preferred topic
modeling techniques – Latent Dirichlet Allocation (LDA) [50] –
using Gensim’s LdaMallet module [51] which is a Python wrapper
for LDA from MALLET [52]. LDA maps all the tweets in dataset D
to the topics such that terms in each tweet are mostly captured
by the topics. A ‘‘topic’’ represents a group of words that often
occur together. Algorithm 1 briefly summarizes the steps taken
in implementing LDA on the tweets present in dataset D.

Steps (iv), (v), (vii), and (viii) of Algorithm 1 were imple-
mented using Gensim’s Python library. For both unigrams and
bigrams, the minimum term frequency was set to 500 to ignore
sparsely appearing terms. For lemmatization, we used spaCy’s
Python library and considered only the Noun part-of-speech for
building the topic models. Gensim’s LdaMallet module was em-
ployed for building LDA models of a varying number of topics
k. Having the ‘‘right’’ k solely based on mathematical goodness-
of-fit does not necessarily mean that the topics have the best
interpretability [54]. Therefore, the best k was identified based
on both the average topic coherence score [53] and the human
interpretability of the produced topics.

The value of k was set in the range 5–50. LDA models were
created for each k, and for each model the topic coherence scores
were averaged. The highest average topic coherence scores were
observed at k = 18 and k = 22; however, the interpretability
of topics was relatively better at k = 18. The final LDA model
M with k = 18 was used for assigning topics to each tweet in
Dataset D. Appendix presents the LDA results obtained on DLDA.
Tweets were assigned topics based on a probability distribution

5 https://alt.qcri.org/semeval2017/task4/.
6 https://huggingface.co/rabindralamsal/BERTsent.
6

Algorithm 1: LDA implementation
(i) DLDA ← all tweets present in D
(ii) Drop duplicate tweets from DLDA
(iii) Clean tweets:

(a) Ignore tweets with terms count < 10
(b) Transform tweets to lowercase
(c) Remove URLs, mentions and consider only alphabets and digits
(d) Remove extra spaces and paragraph breaks

(iv) Remove Stop words and tokenize each tweet into a list of words
(v) Identify frequently appearing bigrams in DLDA and add them to the list
of words
vi) Lemmatize each unigram present in the list of lists of words while
considering only Noun part-of-speech
vii) Construct word<->integer_ids mappings; design the bag-of-words
format: list of (integer_ids, token_count) 2-tuples
viii) Perform topic modeling
or each integer between 5 and 50 as number_of_topics do

Build LDA model
Compute average topic coherence score based on the measure (cv)
proposed in [53]

end
(ix) Select the LDA model M with highest average topic coherence score
and human interpretability
x) Use M for assigning topics to tweets in dataset D

generated by M—a tweet is assigned to a topic whose probability
score is the highest in the distribution.

With the addition of the topic component, tp1, . . . , tpN , dataset
D becomes:

{(t1, tw1, g1, sn1, tp1), . . . , (tN , twN , gN , snN , tpN )}

3.4. Design of time series

Next, a time series dataset Dts was created based on dataset
D for the period January 1, 2020, to September 9, 2021. Dataset
D was grouped by the date/time component, t1, . . . , tN , and the
frequency of tweets across each day was summed for computing
the volume of tweets over different topics and sentiments. From
here, additional (number of topics = 18 × number of sentiments
= 3) 54 components were generated, where each component
represented topics and sentiments combined form.

Dts can be represented as a tensor of the following form:

Dts : X t i
tpjsnk

here, index i associates with the date component, index j as-
sociates with the topic component, and index k associates with
the sentiment component. These indices take the values: i =
18, . . . , 1 (t618 representing January 1, 2020, and t1 representing

September 9, 2021); j = 0, . . . , 17; and k = 0, 1, 2.

3.4.1. Lagged time series
For topic and sentiment components in Dts, an additional of

l = 1, . . . , 14 days lagged components were generated to create
a new time series dataset Dts−lagged, that takes the following tensor
form:

Dts−lagged : X t i
(tpjsnk)l

Generating the lagged components introduces NULL values in
the last 14 samples of Dts; therefore, Dts−lagged consists of tweets
time series data for the period: January 15, 2020–September 9,
2021, after the loss of 14 days’ data. Dts−lagged is created so that
the forecasting models trained on it can regress on the lagged
variables present in Dts to look up to 14 days back for making
forecasts. The maximum lag of 14 was considered because of:
(a) incubation period of the virus and suggested quarantine pe-
riod [55], (b) research works confirming the correlation between
social media activities and future trends of the evolution of the
virus [37].

https://alt.qcri.org/semeval2017/task4/
https://huggingface.co/rabindralamsal/BERTsent
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. Experimentation and discussion

.1. Feature selection

At this stage, there are 54 components in Dts. We performed
feature selection based on Granger Causality [56] to identify
the set of features that are better predictors of daily confirmed
COVID-19 cases. Tests were performed for all the variables in Dts
to check if X causes y, where X = {x1, x2, . . . , x54}, and y =
OVID-19 confirmed cases. The data source for y was OWID [57].
Granger Causality is a statistical concept that determines if
time series helps forecast another. A time series x is said

o‘‘Granger-cause’’ a time series y if the lagged values of x contain
nformation that helps predict y exceeding the predictive ability
arried by the lagged values of y alone.
Mathematical statement: Granger causality supposes the fol-

owing hypotheses—H0 (null): x does not Granger-cause y, Ha
alternative): x Granger-causes y. Both the time series need to
e stationary i.e. parameters such as mean and variance should
emain constant over time. To test H0, the proper number of lags
f y to be included in an univariate autoregressive model of y
Eq. (3)) is identified using information criteria such as Akaike
nformation criterion (AIC) [58] and Bayesian information criterion
7

(BIC) (also known as Schwarz Criterion) [59]. AIC and BIC are
ormally defined as:

IC = 2k− 2ln(̂L) (1)

BIC = ln(n)k− 2ln(̂L) (2)

where k is the number of estimated parameters (the variables in
the model and the intercept), L̂ is a measure of model fit, and n
is the sample size.

We start with modeling an autoregressive model yt that has
the lowest AIC or BIC value.

yt = a0 + a1yt−1 + a2yt−2 + · · · + anyt−n + et (3)

Next, the lagged values of x are included into the model yt .

t = a0+a1yt−1+a2yt−2+· · ·+anyt−n+bsxt−s+· · ·+blxt−l+et (4)

The s and l parameters, in Eq. (4), are the shortest and longest
ag lengths for which the values of x are significant. H0 is accepted
f and only if no lagged values of x are significant in Eq. (4). The
ignificance of the individual variables and their collective ex-
lanatory power is done based on t-test and F-test, respectively.
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Table 7
Variables in Dts that Granger-cause y at most lags (only ≥10 listed).
Variable Variable

definition
sig.
p-values

Variable Variable
definition

sig.
p-values

X t i
tp16sn0

topic16
negative

14 X t i
tp6sn1

topic6
neutral

12

X t i
tp1sn1

topic1
neutral

14 X t i
tp7sn1

topic7
neutral

12

X t i
tp10sn1

topic10
neutral

14 X t i
tp13sn2

topic13
positive

12

X t i
tp11sn1

topic11
neutral

14 X t i
tp7sn0

topic7
negative

11

X t i
tp12sn2

topic12
positive

14 X t i
tp8sn1

topic8
neutral

11

X t i
tp7sn2

topic7
positive

13 X t i
tp16sn2

topic16
positive

11

X t i
tp9sn2

topic9
positive

13 X t i
tp3sn2

topic3
positive

10
d
d
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Table 8
Best forecasting model for y.
Approach Avg. RMSE

Traditional modela (ARIMA of p = 1, d = 1, q = 3)b 135.387
Additive model (FB Prophet) 236.427
Machine learning model (XGBoost) 341.8

aalso involves the participation of the models such as AR, MA, ARIMA, SARIMA.
the traditional models and their mathematical structures are discussed later in
ection 4.2.1.

The causality test was performed between y and each xi for the
aximum lags of 14 at 5% significance level. We used Statsmod-
ls’ adfuller module [60] to implement the Augmented Dickey–
uller (ADF) test [61] to check variables for stationarity. The test
upposes the following hypotheses—H0: Non Stationarity exists
n the series, Ha: Stationarity exists in the series. Second-level
ifferencing was required to make y and all variables in Dts

stationary. Table 7 lists the set of variables sorted based on the
count of significant p-values i.e. count of lags at which a variable
was observed Granger-causing y. The respective plots of these
variables are shown in Fig. 4.

4.2. Forecasting models

Autoregressive (AR), Moving Average (MA), ARMA, Integrated
ARMA (ARIMA), exogenous variables included ARIMA (ARIMAX),
seasonal observations and errors-based (SARIMA, SARIMAX),
Prophet, Neural net-based (NeuralProphet, Long Short-Term Mem-
ory), and stochastic gradient boosting-based (XGBoost) are some
of the widely used time series forecasting models. Before getting
started with experiments to address the research questions (RQ2,
RQ3, and RQ4) of this study, we fit the variable y to multiple
time series forecasting models for identifying the model that
best explains the variable’s trend. This way, going forward, it is
justifiable to continue with the best model and introduce the
social media context into the model. We used a machine learning
python library, Auto TS,7 for building multiple traditional-based,
FB Prophet, and XGBoost models on y and identified the best
model based on the reported Root Mean Square Error (RMSE)
(Eq. (12)) scores. The training and testing were performed using
the expanded window cross-validation (using the library’s default
parameters). Table 8 shows the results provided by Auto TS.

We also did experiments with neural network models; the
results were not encouraging; maybe the amount of data (this
study uses 618 days’ of data) is not sufficient to fully exploit the

7 https://github.com/AutoViML/Auto_TS.
8

forecasting capabilities of neural-based models. The results, re-
ported in Table 8, suggest that the traditional models significantly
explain the cases trend compared to the additive approach-based
FB Prophet and the gradient boosting-based XGBoost model. From
here, to address the research questions RQ2, RQ3 and RQ4, the
esign of forecasting models is done in two phases. First, we
esign ARIMA with exogenous variables (ARIMAX) models to
how that the inclusion of social media data provides additional
orecasting capabilities. Second, we design Vector Autoregressive
VAR) models to forecast the number of COVID-19 cases, seven
ays into the future, using the same set of variables.

.2.1. ARIMAX models
Mathematical definition. Given a time series yt , the autore-

ressive part, AR(p), can be defined as:

t = β + ϵt +

p∑
i=1

θiyt−i (5)

here, β is a constant, ϵt is the error at time t , and p is the
number of lags of the prior values of yt to be considered for
regression.

Eq. (5) can be made more concise (shown in Eq. (6)) by intro-
ducing the back-shift operator (a.k.a. lag operator) L, as Lnyt =
t−n.

t = Θ(L)pyt + ϵt (6)

here, Θ(L)p is the polynomial function of L of order p.
Similarly, for the same time series yt , the moving average part,

A(q) can be defined as:

t = Φ(L)qϵt + ϵt (7)

here, q is the number of lags of the prior values of error to be
onsidered for regression, and Φ is defined similar to Θ .
The sum of AR(p) and MA(q) models forms the ARMA(p, q)

odel, which is defined as:

t = Θ(L)pyt +Φ(L)qϵt + ϵt (8)

Further, to deal with non-stationary time series, an integration
perator ∆d is introduced and defined as: y[d]t = ∆dyt = y[d−1]t −
[d−1]
t−1 , where d is the order of differencing required to make the
on-stationary time series stationary. When an ARMA(p, q) model
s fitted on the integrated time series, the model is termed as
RIMA(p, d, q) and represented as:
dyt = Θ(L)p∆dyt +Φ(L)q∆dϵt +∆dϵt (9)

(L)p∆dy = Φ(L)q∆dϵ (10)
t t

https://github.com/AutoViML/Auto_TS
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Table 9
Results from training. Models are ranked based on their AIC scores.
(a) Top 5 baseline models.

(p,d,q) AIC RMSE

(6, 2, 7) 6118.50 37.78
(5, 2, 8) 6118.80 37.81
(7, 2, 5) 6119.06 37.89
(7, 2, 8) 6120.12 37.70
(7, 2, 6) 6120.21 37.87

(b) Top 5 social media models.

(p,d,q) AIC RMSE

(2, 2, 3) 5941.08 32.97
(1, 2, 4) 5942.43 33.05
(2, 2, 2) 5945.95 33.26
(4, 2, 3) 5957.88 33.12
(4, 2, 2) 5960.05 33.41

When the ARIMA(p, d, q) models consider exogenous variables
into account, the models are termed ARIMAX(p, d, q) models and
represented as:

Θ(L)p∆dyt = Φ(L)q∆dϵt +

n∑
i=1

βixit (11)

where, n is the number of exogenous variables xit with βi as their
respective coefficients.

Exogenous variables at time t are the independent variables
that influence the dependent variable at t . ARIMAX models do
not regress on the lagged values of such variables; instead, they
are computed outside the system and used for predicting the
dependent variable. In our case, the social media variables are
the exogenous ones; however, our designed lagged time series
dataset Dts−lagged also incorporates lagged values so that the time
series models can look back up to 14 days and make forecasts
accordingly.

We use Root Mean Square Error (RMSE), Mean Absolute Per-
centage Error (MAPE), and Coefficient of Determination (R2) as
the measures for assessing the quality of predictions made by
the forecasting models. For N number of observations with xi
representing true values and x̂i representing predicted values,
RMSE, MAPE, and R2 are mathematically defined as:

RMSE =

√∑N
i=1(xi − x̂i)2

N
(12)

APE =
100
N

N∑
i=1

⏐⏐⏐⏐xi − x̂i
xi

⏐⏐⏐⏐ (13)

2 = 1−
∑

i(xi − x̂i)2∑
i(xi − x̄)2

(14)

We fit ARIMA(p, d, q) models on y, and ARIMAX(p, d, q) on y
nd the variables (alongside their lags available through Dts−lagged)

in Dts that Granger-cause y at all 14 lags. We mark the ARIMA
(p, d, q) models as baseline model candidates and the ARIMAX
(p, d, q) models as social media model candidates. All the mod-
els were fitted on the data observed up to August 26, 2021,
and tested on the data observed between August 27, 2021, and
September 9, 2021. The best fit was determined based on the
reported AIC scores—lower the AIC, better the fit. The results from
the training are shown in Table 9 for both set of models.

Since all social media models report lower RMSE on the train-
ing data compared to the baseline models, it is evident that the
inclusion of the social media variables for modeling does help
explain the dependent variable better (12.73% improvement over
the best baseline model) compared to using just the lagged values
9

Table 10
Results (upper values) from test data. Baseline model versus Social media model
at 1% and 5% significance.
Date Cases Baseline Social media

at 5% at 1% at 5% at 1%

2021-08-27 1119 1068 1092 1116 1138
2021-08-28 1321 1090 1114 1143 1166
2021-08-29 1355 1074 1099 1171 1195
2021-08-30 1257 1114 1144 1219 1244
2021-08-31 1225 1161 1195 1242 1272
2021-09-01 1467 1120 1159 1289 1325
2021-09-02 1648 1194 1240 1358 1399
2021-09-03 1741 1230 1280 1413 1459
2021-09-04 1670 1221 1276 1447 1496
2021-09-05 1536 1261 1320 1472 1525
2021-09-06 1466 1279 1342 1529 1586
2021-09-07 1696 1326 1393 1572 1634
2021-09-08 1725 1323 1394 1568 1635
2021-09-09 1870 1334 1410 1661 1731
RMSE 342.58 295.68 175.31 143.76
MAPE 19.36% 16.29% 9.24% 7.61%
R2 0.67 0.68 0.75 0.75

of the dependent variable. It is also apparent that the best-fitted
social media model requires lower lag parameters for both au-
toregressive and moving-average processes compared to the best-
fitted baseline model. For forecasting the daily COVID-19 cases for
the test period, we selected the ARIMA(6, 2, 7) model as the base-
line model and the ARIMAX(2, 2, 3) as the social media model.
The residuals from both models were further checked for the
presence of any possible patterns. For both models, the residual
correlograms showed autocorrelations near-zero (insignificant)
for all lags. Table 10 presents the forecasting results obtained
using baseline and social media models at 1% and 5% significance,
and Fig. 5 plots the forecasts of the models from both training and
testing phases.

On the testing data, the social media models introduce 48.83%
and 51.38% improvements on RMSE over the baseline models at
5% and 1% significance, respectively. These significant improve-
ments confirm that the social media discourse indeed is a good
predictor for pandemic-related forecasting models. In Table 10,
if we look at the data observed after September 1, 2021, the
forecasting ability of the baseline model begins to be off by
significant margins, while the social media model seems to be
catching up with the trend of the everyday cases with small
errors.

The testing timeline in this study, a steep-hill curve (also
shown in Fig. 5), was the most suitable region (compared to
monotonically ascending regions) for examining the effect of
exogenous variables that might influence the variable to be fore-
casted. Based on the results presented in this section, we conclude
that the latent variables extracted from the COVID-19 specific
social media discourse can be good predictors of the pandemic’s
daily cases, and these variables are predictive of the steep-hill
curve of COVID-19 cases during an ongoing wave.

Continuing with the idea that the social media variables are
predictive of our dependent variable, in the next section, we fit
VAR models to forecast the COVID-19 cases in Australia for the
next 7 days.

4.2.2. VARMA models
Vector Autoregressive Moving-Average (VARMA) models are

multivariate linear time series models generally used for simul-
taneous modeling of multiple stationary time series and gener-
ating simultaneous forecasts of the independent variables in the
system. Mathematically, a VARMA(p, q) model is defined as:

yt = c +
p∑

Θjyt−j +
q∑

Φkϵt−k + ϵt (15)

j=1 k=1
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Table 11
VAR order selection—fitting VAR models on Dts .
Lowest AIC score is highlighted.
parameter p AIC

0 28.60
1 23.33
2 22.90
3 22.69
... ...
15 22.50
16 22.52

where, yt is an n × 1 vector of distinct dependent time series
ariables at t , c is an n × 1 vector of constant in each equation,
j is an n×n matrix of autoregressive coefficients, Φk is an n×n

matrix of moving-average coefficients and ϵt is an n×1 vector of
error terms.

From our experiments, we observed that the inclusion of the
moving-average part of the VARMA(p, q) models did not improve
the quality of the forecasts compared to using the autoregressive
part alone. Therefore, we considered VAR(p) models (defined as
Eq. (16)) for our multivariate time series forecasting.

yt = c +
p∑

j=1

Θjyt−j + ϵt (16)

We fitted multiple VAR(p) models, where 0 ≤ p ≤ 20, on the
variables (except for the lagged ones) used by the social media
model in Section 4.2.1 to forecast the COVID-19 cases for the next
7 days. The results from the VAR order selection and the forecasts
made by the best fitted VAR model are shown in Table 11 and
Fig. 6, respectively. We observed the lowest AIC score with the
VAR(15) model. The social media model from Section 4.2.1 had
the autoregressive process of lag order of 2, implying that looking
back up to 15 days best describes our dependent variable—we had
the lagged time series dataset Dts−lagged designed in such as way
that the lag order of 1 included the past 14 days’ data, the lag
order of 2 included the past 15 days’ data, and so on. We observe
the same mathematical implication here from the best-fitted VAR
model.

The VAR(15) model was used for forecasting the COVID-19
cases in Australia one week in advance from September 10, 2021,
to September 16, 2021. The forecasts and the deviations from the
actual cases are illustrated in Fig. 6. The RMSE and the MAPE of
the overall forecasts were 224.65 and 9.08%, respectively. Exclud-
ing the September 10, 2021’s sudden rise, the model reported
RMSE of 142.8 and MAPE of 6.74%. Out of the 7 days’ forecasts,
the model forecasted the cases almost perfectly for 3 days and
10
Fig. 6. Forecast of COVID-19 cases for the next 7 days with VAR(15) model.
MAPE = 9.08% (overall); MAPE = 6.74% (excluding the 9/10/2021’s sudden rise).

ith small margin of errors for the other 3 days. The VAR model
an be deployed for making forecasts using unseen tweets. Its
ependency is on dataset Dts, which is based on the outputs

generated by BERTsent and the LDA-based topic model. After a
collection of a statistically significant number of social media
conversations related to an event, similar topic model can be
trained and used along side BERTsent to generate a time series
dataset identical to Dts as discussed in Section 3.4.

4.3. Comparison with the existing studies

In this study, we proposed a representation for microblog
conversations that can represent the volume of social media ac-
tivity (conversations) feature at a more granular level to decrease
the intensity of possible forecast biases. In the existing litera-
ture, the ‘‘volume’’ feature includes social media search indexes,
category-based counts, and overall count strategies. Use of the
‘‘volume’’ feature keeps computational complexity to minimal
as we maintain only the counts of tweets based on a strategy.
Notably, such models can be deployed on small-scale infrastruc-
tures. However, those models get heavily affected by avalanches
of auto-generated conversations. Therefore, this study proposed
a representation for microblog conversations to break the ‘‘vol-
ume’’ feature to more granular levels in order to decrease the
dependency of the models on one or a few thematic counts.

From Table 8, it is evident that the traditional forecasting
models significantly explain the trend of the daily confirmed
COVID-19 cases in Australia compared to additive-based, machine
learning, and neural models. This observation is in agreement
with what has been reported in earlier studies [17,18] that in-
volved the forecast of COVID-19 cases. Moving on, in this section,
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Fig. 7. Search interests data retrieved from Google Trends for the period January 1, 2020, and September 9, 2021.
we compare the forecasting ability of our social media model
with existing studies that use social media ‘‘volume’’ feature for
designing discourse-based forecasting models. To compare our
methodology (identifying relevant exogenous variables through
latent variables search), we fit various volumetric features con-
sidered by existing studies, as exogenous variables to forecast our
dependent variable y.

Social media-based volumetric features. The following volu-
etric features were considered as exogenous variables for com-
arison against the variables identified by our latent variables
earch methodology.
(i) Search indexes: Google Trends8 was considered the data

ource for social media search indexes. The platform provides the
opularity of search queries on Google across various geographi-
al regions. The popularity of a search query is provided through
set of numbers (between 0–100) for each day, where the peak
alue ‘‘100’’ is the highest point on the graph for the given region
nd timeline. The platform gives the daily search interests for a
earch query only for a timeline of 9 months at most; beyond that
ange, week-level search interests are provided. For this study,
e extracted search interests in three different blocks (search
rend blocks) for the period January 1, 2020, and September 9,
021, for the following terms: dry cough, chest distress,
oronavirus, fever, and pneumonia. The search trend blocks
ere created with overlaps to scale the second and third blocks
elative to the first. The daily search interests in the second
nd third blocks were re-scaled by the blocks’ respective scaling
actors as:

urrent scale value ∗ factor = previous scale value (17)

Fig. 7 plots the daily Google search interests for the search
erms. The term ‘‘chest distress’’ was excluded since it did not
ave significant search interest in Australia. Fig. 7(e) is the plot
or all search terms relative to each other. It is evident from
he plot that the search interests for the term ‘‘coronavirus’’ was
ignificantly higher compared to other terms.
(ii) Sick posts: We processed all the Twitter conversations

n dataset D through the LDA model designed in Section 3.3 to

8 https://trends.google.com/trends/?geo=AU.
11
create ‘‘sick’’ related posts’ time series. Tweets with the highest
score in the probability distribution for topic ‘‘6’’ were considered
as ‘‘sick’’ related posts. Some salient words in topic ‘‘6’’ include
(sorted based on the influence) test, case, testing, isola-
tion, symptom, clinic, lab, isolate, swab, fever, throat,
trace, temperature, quarantine, positive, tracer, car-
rier, diagnosis, pathology, vitamin.

(iii) Overall posts: A daily distribution was maintained for the
Twitter conversations present in dataset D to create the ‘‘overall’’
posts’ time series.

Next, we created additional 14 lagged variables for each time
series to assist the models to look back up to 14 days for making
forecasts (dataset Dts−lagged followed the same implementation).
Tables 12 and 13 summarize the results from fitting ARIMAX
models on different sets of exogenous variables considered in the
existing studies. We use the same training and testing timeline as
the social media model designed in Section 4.2.1.

Table 12 reports the RMSE, MAPE, and R2, of the baseline
model, existing studies, and this study at both 5% and 1% signif-
icance. The results show that our methodology outperforms the
existing studies that use social media-based volumetric features
to forecast the daily confirmed COVID-19 cases. Except for the
search term fever, the search interests of the other three terms
included in the experimentation, i.e., dry cough, coronavirus,
and pneumonia, seem to provide additional forecasting abilities
(compared to the baseline model that was regressed only on y).
When all search terms were combined and fitted, there were
further improvements observed in both RMSE and MAPE. The
best-fitted model for the ‘‘sick’’ related posts performed poorly
compared to the search indexes combined model. We performed
an additional modeling by combining and fitting the exogenous
variables associated with sick posts and all search indexes, and
observed significant improvements in RMSE and MAPE; the met-
rics improved to 198.52 and 10.29% at 5%, and 160.62 and 8.52% at
1%. The overall posts model performed on par with the sick posts
model, providing evidence that the count strategy, be it category-
based or general, offers limited forecast capability. Overall, our
latent variables search methodology achieves the lowest RMSE

and MAPE and the highest R2 at both significant levels.

https://trends.google.com/trends/?geo=AU
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Table 12
Comparison of our latent variables search methodology with existing studies that use social media-based volumetric features.

at 5% at 1%

RMSE MAPE R2 RMSE MAPE R2

Baselinea 342.58 19.36% 0.67 295.68 16.29% 0.68
Search index (dry cough)b 326.93 17.76% 0.68 277.22 14.74% 0.7
Search index (coronavirus)b 307.48 16.98% 0.7 258.716 13.75% 0.7
Search index (fever)b 344.15 19.49% 0.67 297.28 16.4% 0.68
Search index (pneumonia)b 266.13 14.51% 0.67 223.15 11.79% 0.68
Search indexes Combinedb 241.23 13.1% 0.66 200.40 10.62% 0.67
Sick postsc 283.44 15.71% 0.68 239.68 12.72% 0.69
Sick posts + Search indexes combined 198.52 10.29% 0.7 160.62 8.52% 0.70
Overall postsd 289.16 16.07% 0.73 241.44 12.84% 0.73
Latent variables searche 175.31 9.24% 0.75 143.76 7.61% 0.75

afitted solely on y. Exogenous variables: b[36–38], c [40], d[6]. ethis study.
Table 13
Results from fitting the exogenous variables listed in Table 12 and their respective 14 days’ lags against 84 weeks of data (January
15, 2020, to August 26, 2021).

Best fitted model Exo. Variables count AIC RMSE

Baseline ARIMA(6,2,7) – 6118.50 37.78
Search index (dry cough) ARIMAX(9,2,9) 1 and its 14 lags 6019.93 37.46
Search index (coronavirus) ARIMAX(7,2,5) 1 and its 14 lags 6013.5 37.51
Search index (fever) ARIMAX(5,2,8) 1 and its 14 lags 5993.47 37.55
Search index (pneumonia) ARIMAX(6,2,9) 1 and its 14 lags 6001.28 37.52
Search indexes Combined ARIMAX(7,2,8) 4 and respective 14 lags 6085.15 36.53
Sick posts ARIMAX(8,2,7) 1 and its 14 lags 5989.78 37.12
Sick posts + Search indexes combined ARIMAX(3,2,9) 5 and respective 14 lags 6069.28 35.77
Overall posts ARIMAX(4,2,5) 1 and its 14 lags 5991.94 37.34
Latent variables search ARIMAX(2,2,3) 14 and respective 14 lags 5941.08 32.97
To demonstrate the robustness of our methodology, in Ta-
le 13, we provide the results (p, d, and q parameters of the
est-fitted models, their respective exogenous variables counts,
nd AIC/RMSE scores) obtained while fitting the exogenous vari-
bles listed in Table 12 and their respective 14 days’ lags against
4 weeks of data, i.e., January 15, 2020, to August 26, 2021. The
esults show that the exogenous variables identified by our latent
ariables search methodology explain the dependent variable
etter compared to the existing studies in the literature. For
he 84 weeks of data, our social media model benchmark the
owest RMSE of 32.97 and is followed by the Sick posts + Search
ndexes combined model with an RMSE of 35.77. All the models
ith exogenous variables achieved better RMSE scores than the
RIMA-based baseline model.
Issue with search interests. Search interests are ‘‘broad’’ in

ature—a search for ‘‘coronavirus’’ can relate to multiple use
ases, such as checking top stories, querying updates and local in-
ormation, and accessing health information (symptoms, preven-
ion, treatments). Search interests do not provide the granular-
evel distinction of the use case unless the search terms are more
pecific, such as ‘‘melbourne covid hotspots today’’, ‘‘coronavirus
ymptoms’’, and ‘‘covid hotline melbourne’’. Therefore, while de-
igning interpretable forecasting models it is critical to exploit
he public conversations for searching latent variables that carry
ranular-level details regarding an event. Besides, services such
s Google Trends can retire, or data extraction can be made
imited as the platforms upgrade to different versions. However,
iscourse-based models entirely rely on the conversations and
an have applications outside of Twitter-verse.

.4. The research questions

In this section, we address the four research questions (RQ1–4)
hat this study sets out to answer.

Modeling of Twitter data for region-specific analyses requires
large amount of geotagged tweets. For addressing RQ1, we
curated a large-scale geotagged tweets dataset – MegaGeoCOV –

12
targeting the public COVID-19 discourse. We used Twitter’s Aca-
demic Track-based Full-archive search and count APIs to access
the numbers presented in Table 2. Between January 01, 2020,
and September 9, 2021, the minimum number of tweets (for the
specific set of keywords and hashtags mentioned in Section 3.1)
was 59.6k and the maximum was 25.8 million, with a mean of
4.62 million. Among those numbers, the volume of geotagged
tweets were observed between 0.449%–1.43%. Although the geo-
tagged volume is considerably limited, the experiments from this
study suggest that ‘‘what is currently available’’ is satisfactory
for designing similar discourse-based forecasting models. We ad-
dressed RQ2 by performing Granger causality tests on the time
series that were created based on the geotagged Twitter data.
We observed the presence of latent variables within the data that
Granger-caused the daily COVID-19 confirmed cases time series.
Some such variables (granger-causing at lags ≥ 10 out of 14 lags)
are listed in Table 7. The methodology for the identification of
such variables is discussed in Section 4.1. We also observed that
the identified Granger-causing latent variables provide additional
prediction capability to time series forecasting models (this ob-
servation addresses RQ3). We noticed that the inclusion of social
media variables for modeling introduced 12.73% improvement
on the training data, and above 48% improvements (at 1% and
5% significance) on the testing data over the baseline model
(discussed in Section 4.2.1). Furthermore, ‘‘the volume of public
discourse in the last few days’’ being predictive of the steep-
hill curve of COVID-19 cases during an ongoing wave address
our RQ4. The latent variables (variables in Dts) are the outputs of
every day’s tweet volume. The forecasts produced by the ARIMAX
and VAR models designed in this study verify that the volume
of public discourse is predictive of the COVID-19 cases’ steep-hill
trend.

5. Conclusion

In this paper, a sentiment-involved topic-based latent vari-

ables search methodology was proposed for time series analysis
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f publicly available COVID-19 related Twitter conversations. A
anguage model trained on 850 million English Tweets (cased)
nd additional 23 million COVID-19 English Tweets (cased) us-
ng the RoBERTa pre-training procedure was finetuned for the
entiment analysis task, and LDA was performed for identify-
ng the hidden topics within the conversations. The proposed
ethodology was implemented on the COVID-19 cases in Aus-

ralia and Twitter conversations generated within the country
etween January 1, 2020, and September 9, 2021. ARIMA models
baseline model candidates) were fitted on y = Australian COVID-
9 cases, and ARIMAX models (social media model candidates)
ere fitted on y and the social media variables (alongside their

ags) that Granger-cause y the most (at all 14 lags). Experimental
esults from the training showed that the inclusion of social
edia variables for modeling brings in 12.73% improvement over

he baseline model compared to using just the lagged values of y.
hile, on the testing data, the social media models introduced
8.83% and 51.38% improvements on RMSE over the baseline
odels at 5% and 1% significance, respectively. Considering the
ame set of variables used by the social media model, a VAR
odel was used for forecasting the COVID-19 cases in Australia
ne week in advance from September 10, 2021, to September
6, 2021. Out of the 7 forecasts, the model predicted the cases
lmost perfectly for 3 days and with small margin of errors for
he other 3 days—with RMSE and MAPE ranging between 142.8–
24.65 and 6.74–9.08%, respectively (the upper values of these
etrics is outcome of the September 10, 2021’s sudden rise in

he cases with respect to the next 6 days).
This study confirms the presence of a relationship between

atent social media variables and COVID-19 daily cases. The lit-
rature seems to have overlooked the social media perspective
f the COVID-19 time series analyses. The inclusion of social
edia variables alongside native epidemiological data (causes,

isk factors, population descriptors, etc.) can be beneficial for an
arly forecast of an epidemic/pandemic’s future courses. One of
he limitations of this study is that only the social media vari-
bles are included in the time series analysis. Social media, and
specially microblogging platforms, are more skewed towards
ech-savvy users and younger populations. Further, the study
onsiders only three categories of sentiment – positive, neutral,
nd negative – and does not consider other possible categories
uch as hate, offense, and irony. Furthermore, filtration of misin-
ormative tweets can be an additional tweets selection procedure
efore time series are constructed. These limitations could be an
mportant research avenue while designing next generations of
iscourse-based forecasting models.
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ppendix. LDA results on DLDA

Topic Salient words

0
lockdown, pm, rule, idea, message, panic, detail, move, meeting,
announcement, restriction, location, gathering, situation, detention,
notice, prime_minister, mess, looking_forward, regulation

1
food, order, book, shop, market, price, water, store, delivery,
supermarket, restaurant, paper, supply, stock, demand, sale, stuff,
trade, cafe, list, product, customer, shortage, grocery

2
family, friend, hope, love, mate, house, shit, thought, heart, member,
visit, guy, daughter, wife, mother, girl, party, partner, son, movie,
dad, anxiety, brother, memory, sister, colleague, loved_one, neighbor,
kind, hug, spirit, song, prayer, soul, sunshine

3
time, thing, moment, ship, air, lung, fire, cruise, trip, passenger,
winter, crew, plane, hell, summer, pain, island, tip, weather,
get_back, spring, ruby_princess, hope, quality, doubt, trouble, board,
tour, track, smoke, breathe, omg, port, storm, boat

4
year, team, game, event, show, season, video, player, sport, club, tv,
challenge, watch, fan, race, art, music, crowd, training, play, session,
ground, tennis, football, ticket, court, venue, ball, goal, episode, win,
series, cricket, artist, film, star, host, horse, content, performance,
league, competition, song, entertainment, gig

5
death, people, number, rate, infection, risk, population, datum,
transmission, protest, freedom, idiot, conspiracy, spread, exposure,
control, theory, toll, site, suicide, factor, stat, mortality, prevent,
evidence, confirmed_case, statistic, count, analysis, victim, every_day,
protester, survivor, fatality, cases_death, surge

6
day, today, test, case, person, hour, testing, isolation, yesterday,
symptom, contact, tomorrow, area, period, week, clinic, morning,
site, line, act, last_week, lab, drive, delay, queue, household, isolate,
swab, fever, throat, trace, temperature, quarantine, positive, tracer,
carrier, diagnosis, pathology, caution, vitamin

7
people, world, country, life, rest, war, leader, million, threat, earth,
around_world, citizen, pressure, stop, die, moron, stupidity, worry,
shit, covidiot, problem, spanish_flu, kill, narrative, planet, prison,
mentalhealth, years_ago, faith, enemy, weapon, danger, livelihood,
estate, liberty, bullet, fighting, destruction, frustration

8
health, issue, system, advice, problem, expert, science, effect,
research, safety, emergency, condition, treatment, mental_health,
concern, evidence, disease, management, trial, effort, scientist,
solution, trust, officer, report, process, authority, drug, brain, damage

9
news, media, story, fact, article, election, app, information, fear,
comment, answer, view, truth, tweet, info, twitter, vote, source,
journalist, ad, opinion, page, claim, president, statement

10
mask, hospital, hand, patient, doctor, ace, staff, care, nurse, centre,
phone, distance, shopping, icu, eye, ppe, pace, practice, bed, work,
line, nose, capacity, folk, guideline, mouth, limit, nursing, lady

11
work, job, business, worker, support, service, money, company,
industry, cost, office, pay, healthcare, access, economy, leave, loss,
bill, payment, driver, bus, sector, university, frontline, income, tax,

12
state, case, border, vic, nsw, travel, restriction, outbreak, premier,
flight, new_case, control, record, sa, victorian, wave, gladys,
hotel_quarantine, cluster, traveler, arrival, closure, bubble,
community_transmission, update, ban, region, hotspot, territory,
exemption

13
community, response, measure, part, change, decision, level, impact,
economy, nation, point, situation, law, recovery, strategy,
opportunity, crisis, sense, society, step, term, history, experience,
reality, role, behavior, contract, thread, lock, model
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Topic Salient words

14
vaccine, flu, vaccination, pfizer, group, risk, age, jab, dose, study,
delta, choice, blood, chance, strain, shot, astrazeneca, variant, type,
appointment, get_vaccine, protection, immunity, pfizer_vaccine,
reaction, virus, clot, target, gp, supply

15
lockdown, week, month, melbourne, sydney, end, city, weekend,
beach, stage, road, street, exercise, adelaide, town, restriction,
suburb, stayhome, start, curfew, first_time, half, last_year, staysafe,
apartment, rock, melb, sight, stage_lockdown

16
quarantine, home, hotel, police, student, security, parent, facility,
place, hotel_quarantine, room, care, program, staff, purpose, force,
airport, guard, adult, member, breach, station, protocol, inquiry,
two_week, standard, fine, requirement

17
government, auspol, morrison, plan, australian, govt, failure, policy,
leadership, power, responsibility, labor, disaster, leader, action,
blame, federal_government, politician, deal, attack, excuse, crisis,
insider, lack, lie, climate, minister, vaccine_rollout, credit, recession
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