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The process dissociation procedure (PDP) of implicit sequence learning states that
the correct inclusion-task response contains the incorrect exclusion-task response.
However, there has been no research to test the hypothesis. The current study used
a single variable (Stimulus Onset Asynchrony SOA: 850 ms vs. 1350 ms) between-
subjects design, with pre-task resting-state fMRI, to test and improve the classical
PDP to the mutually exclusive theory (MET). (1) Behavioral data and neuroimaging data
demonstrated that the classical PDP has not been validated. In the SOA = 850 ms
group, the correct inclusion-task response was at chance, but the incorrect exclusion-
task response occurred greater than chance. In the SOA = 850 ms group, the two
responses were not correlated, but in the SOA = 1,350 ms group and putting the two
groups together, the two responses were in contrast to each other. In each group,
brain areas whose amplitude of low frequency fluctuations (ALFFs) in the resting-
state related to the two responses were either completely different or opposite to one
another. However, the results were perfectly consistent with the MET proposed by the
present study which suggests that the correct inclusion-task response is equal to the
correct exclusion-task response is equal to C + A1, and the incorrect exclusion-task
response is equal to A2. C denotes the controlled response and A1 and A2 denote
two different automatic responses. (2) The improved PDP was proposed to categorize
the 12 kinds of triplets as delineating four knowledge types, namely non-acquisition
of knowledge, uncontrollable knowledge, half-controllable knowledge, and controllable
knowledge with the MET. ALFFs in the resting-state could predict the four knowledge
types of the improved PDP among two groups. The participants’ control of the four
knowledge types (degree of consciousness) gradually improved. Correspondingly, the
brain areas in the resting-state positively related to the four knowledge types, gradually
changed from the sensory and motor network to the somatic sensorimotor network,
and then to the implicit learning network, and then to the consciousness network. The
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brain areas in the resting-state negatively related to the four knowledge types gradually
changed from the consciousness network to the sensory and motor network. As SOA
increased, the brain areas associated with almost all the four knowledge types changed.
(3) The inhomogeneous hypothesis of the MET is best suited to interpret behavioral and
neuroimaging data; it states that the same components among the four knowledge
types are not homogeneous, and the same knowledge types are not homogeneous
between the two SOA groups.

Keywords: the classical PDP, the mutually exclusive theory, the improved PDP, four knowledge types, ALFFs in
the resting-state

INTRODUCTION

The Process Dissociation Procedure
(PDP) in Implicit Sequence Learning
Consciousness is fundamental to an individual’s survival,
learning and development. When unconscious knowledge
advances to conscious knowledge, it can be flexibly controlled,
integrated, and transferred (Dehaene et al., 2011, 2014). Implicit
sequence learning is an important paradigm to reveal the
mechanisms of consciousness emergence and change (Fu and
Fu, 2006; Voss and Paller, 2009; Zhang et al., 2016). It involves
a sequence rule in a certain dimension of stimulus such as its
location, but the participants do not know the sequence rule and
they are just asked to respond to the location of the stimulus;
therefore, they perform an implicit sequence learning rather than
an explicit sequence learning. The common used sequence is
the SOC sequence such as 3-4-2-3-1-2-1-4-3-2-4-1 (Reed and
Johnson, 1994), whereby each location is completely determined
by the previous two locations, so three consecutive locations
constitute a smallest-rule unit, namely a triplet. As the implicit
sequence learning proceeds, different participants can generate
knowledge at different levels of consciousness for the sequence
(Norman et al., 2006; Fu et al., 2013; Zhang et al., 2014), and
a participant can also generate knowledge at different levels
of consciousness for different parts of the sequence (Zhang,
2015). Therefore how to define and measure the levels of
consciousness is the premise of consciousness research in implicit
sequence learning.

A classic method to measure consciousness in implicit
sequence learning is the process dissociation procedure (PDP)
obeying oppositional logic (Jacoby et al., 1989; Jacoby, 1991).
Oppositional logic defines consciousness as a controlled response
(shorthand for C) which can be regulated by explicit policies,
and unconsciousness as an automatic response (shorthand for A)
which cannot be regulated by explicit policies. They work against
each other in exclusion task, but work together in inclusion
task (see below). Destrebecqz and Cleeremans (2001, 2003)
introduced PDP into implicit sequence learning consciousness
research for the first time and created a free-generation task.
Wilkinson and Shanks (2004) changed the free-generation task to
a trial-by-trial generation task, and Fu et al. (2010) improved it,
as follows: after implicit SOC sequence learning, the participants
were presented with two trials of sequence fragments, and
were asked to respond to the target as quickly and accurately

as in the learning phase. Then, four boxes with a question
mark inside each were shown to them. In the exclusion task,
participants needed to select a location that did not conform
to the sequence rules. If participants wrongly select a location
that did conform to the sequence rules, this incorrect exclusion-
task response constitute the automatic response (A) driven by
unconscious familiarity. On the contrary, in the inclusion task,
the participants were asked to choose the location that conformed
to the sequence rules. They could use the controlled response
(C) by conscious extraction and the automatic response (A) by
unconscious familiarity at the same time. Therefore, the incorrect
exclusion-task response (A) is contained within the correct
inclusion-task response (C + A). The PDP provides continuous
scale indicators to quantify consciousness in implicit sequence
learning; accordingly, it is widely used (Destrebecqz et al., 2005;
Norman et al., 2006; Fu et al., 2010, 2013; Yonelinas and Jacoby,
2012; Zhang et al., 2014).

Questions About the Validity of the PDP
in the Current Study
However, we thought that the PDP is not established. First, we
explored this topic from the perspective of logic and operations
of the inclusion/exclusion task. On the one hand, the PDP states
that, because the exclusion task requires participants to choose
locations that do not conform to rules, the controlled response
helps to avoid choosing locations that conform to the rules, while
the automatic response remains in conflict with the controlled
response to facilitate choosing locations that conform to the rules.
One the other hand, in the inclusion task, the PDP suggests
that the automatic and controlled responses synergistically lead
to correctly choosing locations that conform to rules (Jacoby,
1991). This logic is apparently contradictory with its operations
of inclusion and exclusion tasks. In the exclusion task, in order
to choose locations that do not conform to rules, participants
must first determine locations that conform to rules to avoid
choosing them; so they must first incorporate both automatic
and controlled responses to determine locations that obey rules
(Fu et al., 2010, 2013). Obviously, cognitive activities by which
participants determine locations that obey rules in exclusion tasks
are identical to those in inclusion tasks. That is, the correct
exclusion-task response and the correct inclusion-task response
are basically the same. The incorrect exclusion-task response
should completely differ from both the correct exclusion-task
response and the correct inclusion-task response. Thus, the PDP
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is not validated by logical analysis, which considers that the
incorrect exclusion-task response (A) is contained by the correct
inclusion-task response (C + A). A more logical relationship
would be that the correct inclusion-task response is equivalent
to the correct exclusion-task response, which is equivalent to
C + A1, and the incorrect exclusion-task response is equivalent
to A2; that is, the correct inclusion-task response and the
incorrect exclusion-task response are mutually exclusive, and
there is no intersection between them. We call it the mutually
exclusive theory (MET).

Second, we explored this topic from the perspective of
knowledge. Horga and Maia (2012) and Kiefer (2012) reviewed
implicit cognitive control studies and suggested that implicit
knowledge may be either automatic or controlled. Fu et al.
(2010) asked participants to report subjective knowledge types
such as guess, intuition, rule or memory (Dienes and Scott,
2005) in an inclusion/exclusion task, and found that there
exists automatic implicit knowledge, such as a guess, whose
structure (sequence rules) and judgment knowledge (selecting
rule locations) are unconscious. By contrast, there exists
controlled implicit knowledge, such as intuition, whose structure
knowledge is unconscious, but judgment knowledge is conscious.
That is, implicit knowledge is not characterized only by the
automatic response. The PDP hypothesizes only one implicit
knowledge type such as the automatic response; this hypothesis
is inconsistent with the abovementioned studies. However, in the
MET, A2 is automatic implicit knowledge against the exclusion
task requirement, and A1 is controlled implicit knowledge
meeting the inclusion task requirement, which is consistent with
the above mentioned studies.

Neuroimaging Studies About
Consciousness and the PDP in Sequence
Learning and Their Shortcomings
To date, not only is there a lack of studies providing experimental
evidence to validate the PDP, but there is also a dearth of
neuroimaging studies that test it. However, there is a wealth of
neuroimaging literatures regarding implicit sequence learning
and its consciousness.

Penhune and Steele (2012) found that the cerebellum is
responsible for motor formatting optimization, motor control,
and error correction; the primary motor cortex (M1) is
responsible for storing sequence knowledge; and the striatum
is responsible for stimulus-response connection learning and
location prediction. Hardwick et al. (2013) conducted a meta-
analysis of implicit motor-sequence learning studies, and found
that motor regions (premotor area, primary motor cortex, and
cerebellum), primary somatosensory regions, and the striatum
were activated during such learning.

Almost all neuroimaging studies of consciousness in sequence
learning have used the following dichotomy: they defined explicit
sequence learning as a conscious activity and implicit sequence
learning as an unconscious activity. The regions of the brain
which are involved in consciousness were found by comparing
the brain areas active during explicit and implicit sequence
learning. Such studies found that conscious processing occurs

in the medial temporal lobe, including hippocampus (Reber
and Squire, 1994; Gagnon et al., 2004; Squire, 2009; Wilkinson
et al., 2009), prefrontal lobe (Rose et al., 2005; Carter et al.,
2006; Guo et al., 2008; Rünger and Frensch, 2008; Chu and Liu,
2010), and insula (Yang and Li, 2012). However, this dichotomy
did now allow the distinction between learning processes and
consciousness, and more importantly, there was a failure to
recognize that implicit sequence learning could produce many
knowledge types, including consciousness. For example, Rose
et al. (2010) and Wessel et al. (2012) showed that when
unconscious knowledge became conscious in implicit sequence
learning, there existed functional connectivity between the right
ventrolateral prefrontal cortex and ventral striatum. However,
these studies did not examine whole brain, and did not use
the PDP. Thus, the dichotomy could not generate a continuous
behavior or neuroimaging scale to quantify consciousness of
implicit sequence learning (Zhang et al., 2015).

Although the PDP provides a continuous behavior scale to
quantify consciousness of implicit sequence learning, to date
only two studies have used this method with neuroimaging
techniques to assess inclusion and exclusion tasks, after
participants completed implicit sequence learning. Destrebecqz
et al. (2005) considered the incorrect exclusion-task response as
the automatic response, and the correct exclusion-task response
as the controlled response. They for the first time found that
striatum activity was positively related to the incorrect exclusion-
task response, and anterior cingulate/central prefrontal cortex
(ACC/MPFC) activity was positively related to the correct
exclusion-task response. They further examined consciousness
differences between RSI (response-stimulus interval) = 0 ms
and RSI = 250 ms. In each group, there were more correct
inclusion-task response than incorrect exclusion-task response,
which indicated the presence of controlled response. However,
at RSI = 0 ms, the incorrect exclusion-task response occurred
greater than chance, which indicated that the automatic response
occurred, whereas at RSI = 250 ms, there was no such automatic
response. Consistent with the behavioral results, only in the
exclusion task at RSI = 250 ms was there functional connectivity
between the ACC/MPFC and striatum. That is, the ACC/MPFC
controlled activity of the striatum (responsible for sequence
knowledge), and the ACC/MPFC were related to consciousness.
However, the study did not examine the whole brain, nor did it
identify brain areas associated with inclusion tasks. Because of
this omission, it could not test the relationship between inclusion
and exclusion tasks, nor test the PDP via brain imaging.

With task-state fMRI, Huang et al. (2017) found that, for the
850 ms SOA group, beta-value difference of left medial frontal
gyrus (training phase 2 minus phase 1) positively correlated to the
correct inclusion-task response. For the 1,350 ms SOA group in
training phase 2, beta values of the left inferior parietal lobule and
the left middle frontal gyrus positively correlated with the correct
inclusion-task response, but beta values of the right inferior
parietal lobule negatively correlated with the incorrect exclusion-
task response. For the 1,350 ms SOA group in training phase 3,
beta values of left lingual gyrus and left inferior frontal gyrus
negatively correlated to the incorrect exclusion-task response.
In fact, these results showed that brain areas related to the
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correct inclusion-task response and the incorrect exclusion-task
response were completely different. However, the study did not
point this out, and only used PDP to define consciousness as the
correct inclusion-task response minus the incorrect exclusion-
task response. Because of this omission, it did not test the PDP
via neuroimaging.

A method suitable for studying consciousness is resting-
state fMRI, which investigates spontaneous activity or functional
connections within the brain at rest. If a certain cognitive task
is associated with activity in certain brain areas in the resting-
state, then these brain areas are associated with the cognitive
task. If brain areas whose activity in the resting-state related to
two cognitive tasks differ, the brain mechanisms of these two
cognitive tasks are different. The rationale is as follows: in the
resting-state, participants do not perform any cognitive task, so
the spontaneous activity of a brain area is its baseline activity
and its functional strength index. If it is related to a cognitive
task, it indicates that the brain area is related to the cognitive
task; this is to say that if the density and the number of neurons
of a brain area are related to a cognitive task, the brain area is
related to the cognitive task. The rationale is generally accepted
and used by many researchers (Heuvel and Pol, 2010; Li et al.,
2016; Liu et al., 2017; Jiang et al., 2018), and the resting-state brain
areas related to a cognitive task are usually shown to be its task-
state brain areas using task-state fMRI. This means that when the
participants perform the cognitive task, its related resting-state
brain areas are usually activated, as is also seen in the present
study. Therefore, brain spontaneous activity in the resting-state is
a stable index to measure the individual cognitive characteristics
(Liu et al., 2017). One of the classic indexes is ALFFs (the
Amplitude of Low Frequency Fluctuations, 0.01 ∼ 0.1 HZ),
including most of the psychological cognitive processes. The
higher and lower amplitudes are background noises, including
physiological activity.

Resting-state studies of sleep and disturbed consciousness
have confirmed that there is a global network for consciousness
named the “rich club,” including the dorsolateral prefrontal
cortex, inferior parietal lobe, middle temporal lobe, precuneus,
insula, thalamus, and brainstem (van den Heuvel and Sporns,
2011; Schröter et al., 2012; van den Heuvel et al., 2012; Dehaene
et al., 2014). However, there is no resting-state research in implicit
sequence learning consciousness. One related dichotomy study is
that of Sami et al. (2014), who used pre- and post-task changes
to study the differences between implicit and explicit sequence
learning. Functional connections between the caudate nucleus
and cingulate cortex were enhanced following implicit sequence
learning in the post-task resting-state compared to pre-task
resting-state, but functional connections among attention and
cognitive control networks were enhanced in explicit sequence
learning. Because pre- and post-task resting states changes
contained two components, namely learning and consciousness,
and the study did not assess consciousness, it could not separate
learning from consciousness.

Improvements Made in the Current Study
To summarize, the PDP has not yet been tested via behavioral or
neuroimaging data. It was found that the PDP is not established

after our analysis of logic, operations of the inclusion/exclusion
task and implicit knowledge type. The MET proposed by
the current study considered that a more logical relationship
would be that the correct inclusion-task response does not
contain the incorrect exclusion-task response in either behavioral
or neuroimaging data, that is, the two responses are either
independent or in opposition to each other. The correct
inclusion-task response is equivalent to the correct exclusion-
task response, which is equal to C + A1, and the incorrect
exclusion-task response is equal to A2.

How might we test our reasoning? Because the PDP assumes
that the incorrect exclusion-task response is contained by the
correct inclusion-task response, we can infer that the former
must occur as or less frequently than the latter in behavioral
data. Further, brain areas related to the incorrect exclusion-
task response must, in part, overlap with brain areas related
to the correct inclusion-task response in neuroimaging data. If
either of these inferences are not supported, this would provide
evidence against the PDP. The response-stimulus interval (RSI)
affects sequence knowledge representation and consciousness
(Destrebecqz and Cleeremans, 2001, 2003; Destrebecqz et al.,
2005; Norman et al., 2006; Fu et al., 2010; Zhang et al., 2014),
according to Cleeremans and Jiménez (2002) representation
quality theory; hence, two stimulus onset asynchrony SOAs
(similar to RSI) were set up to test the PDP in different situations.

The current study used the PDP to test its validity. In the case
that the experiments did not support PDP, it was indicated that
its calculation for types of knowledge is flawed, that is, the correct
inclusion-task response might not be equal to C + A, or the
incorrect exclusion-task response might not be equal to A, or the
former one did not contain the latter one; however, this did not
indicate that the inclusion and exclusion tasks have no meaning,
but indicated the cognitive components of the two tasks need new
calculations. Thus, this study aimed at improving the classical
PDP through new calculation in accordance with the MET.

MATERIALS AND METHODS

Participants
Fifty college students participated in the experiment. All
participants were right-handed, with normal or corrected-to-
normal vision, normal color perception, normal physical and
mental health, were not taking psychotropic drugs, and had never
previously participated in any implicit-learning experiment. All
participants met the criteria for functional magnetic resonance
imaging (fMRI) scanning, namely that they had no metal
implants, were not claustrophobic, and had a head size
compatible with the head coil. The participants volunteered to
take part in the experiment. Each participant completed an
informed consent form before the experiment and received a 100-
yuan compensation after the experiment. The experiments were
in accordance with the ethical guidelines of the Declaration of
Helsinki and were approved by the Scientific Review Committee
of Faculty of Psychology, Southwest University, China.

The data of two participants in each group were removed.
Three participants of these had an accuracy of less than 90% in
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the implicit sequence learning phase (Weiermann et al., 2010),
and one participant had head motion greater than 2 mm in
the pre-task resting state. Finally, 46 participants’ data were
effective (SOA = 850 ms group: n = 23, 8 male, 15 female, age
M ± SD = 21.30 ± 1.96; SOA = 1,350 ms group: n = 23, 9 male,
14 female, age M ± SD = 20.91 ± 1.56). Age difference between
the two groups was not significant, p = 0.459 > 0.05. There was no
significant difference in Big Five personality dimensions between
the two groups (for N, E, O, A, C, ps = 0.159, 0.572, 0.727, 0.062,
0.672 > 0.05).

Materials
The materials used in implicit sequence learning were four blue
circles (4.6 cm in diameter), which were arranged horizontally.
The centers of adjacent circles were 6.9 cm apart, and the two
circles on the left were symmetrical to the two circles on the
right, relative to the center of the screen. Only the target circle
was filled with blue color; the other circles were outlined in blue,
with unfilled centers. The target-circle location order followed the
SOC sequence rule: 3-4-2-3-1-2-1-4-3-2-4-1 (Reed and Johnson,
1994), in which each target location was determined by two prior
target locations, and three target locations formed a smallest-rule
unit, namely a triplet.

Design and Procedure
This study used a single variable (SOA: 850 vs. 1350 ms),
between-subjects design. The experimental procedure is shown
in Figure 1.

When the participants were placed in the fMRI scanner, they
were asked to place their hands beside their body, and to put the
middle finger and index finger of their left hand on the left mouse
buttons 1 and 2, and the index finger and middle finger of their
right hand on the right mouse buttons 3 and 4, corresponding to
the horizontal positions of the stimulus circles.

In the implicit sequence learning phase, participants
completed implicit sequence learning while receiving task-
state scanning. The task-state data were discussed in another
article (Huang et al., 2017). The instructions stated that the
experiment measured response speed and accuracy of pressing
a target-location button. The task was to immediately press
the button corresponding to the position of the solid circle as
quickly and accurately as possible. The participants were told
to strictly follow the instructions, otherwise they would not
receive payment. In the practice stage, there were 24 trials that
obeyed the SOC rule. A random sequence was not used to avoid
its influence on implicit sequence learning as a novel stimulus.
Further, there were 15 blocks of implicit sequence learning. Each
block was composed of 48 trials with a different target-location
in the first trial to avoid participants easily noticing the sequence
rules. The SOC rule cycled 4 times in each block. Before the
start of each block, a fixation cross was presented for 13.2 s as a
baseline. Five blocks formed an fMRI scanner run. Before each
run, a fixation cross was shown for 7.5 s, to allow the scanner
to stabilize. There was a 40 s rest period between runs. In the
SOA = 850 ms condition, a solid circle and three unfilled circles
were presented for 600 ms, followed by four unfilled circles for
250 ms. Participants were required to make their selection within
850 ms. In the SOA = 1,350 ms condition, a solid circle and three
unfilled circles were also shown for 600 ms, followed by four
unfilled circles for 750 ms; participants were required to make
their selection within 1,350 ms.

After the learning phase, participants sat in front of a
computer, with their eyes 70 cm from the center of the screen.
A custom experimental program ran under E-prime 2.0 on a PC
(Lenovo LX-GJ556D), with a 17-inch color display (resolution
1,024 × 768, refresh rate 60 Hz). The consciousness-assessment
stage included a written-report task, an inclusion task, and
an exclusion task. In the written-report task, the participants
were asked to write down on a piece of paper all thoughts

FIGURE 1 | (A) Flow chart of all experiments; (B) stimulus presentation of implicit sequence learning.
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they had while they were taking part in the experiment. The
inclusion/exclusion task was the same as that in Fu et al. (2010,
2013). Additionally, in the third element of each triplet, when
four boxes with a question mark inside each were shown,
participants could not choose the same location as the second
element. Therefore, there were only three locations they could
choose, and the chance performance level was one-third. The
inclusion/exclusion tasks consisted of 72 triplets of the sequence,
such that the full set of 12 kinds of triplets of the SOC rule were
repeated 6 times.

Resting-State Data Collection and
Analysis
The participants adopted an eyes-closed resting-state. Because
no prior resting-state research has considered implicit sequence
learning consciousness, the whole brain was examined, i.e., we
did not limit consideration to consciousness-related areas found
in extant studies. Stimulus onset asynchrony SOA (similar to RSI)
was used to fit nuclear magnetic scans.

The fMRI data were collected using a Siemens 3.0 T magnetic
resonance imaging scanner and an 8-channel phased front head
coil. Pre/post-task resting-state imaging used a gradient echo
(GRE) single-excitation echo-planar imaging (EPI). The scan
parameters were as follows: TR = 2,000 ms, TE = 30 ms, FA = 90◦,
FOV = 220 mm × 220 mm, matrix size = 64 mm × 64 mm,
depth = 3 mm, planar resolution = 3.13 mm× 3.13 mm, interval
scanning, 33 layers, layer spacing = 0.6 mm, total 240 layers.
Structural imaging used a 3D TlWI (MP-RAGE) sequence with
sagittal scans. Scan parameters were the following: TR = 2,600 ms,
TE = 3.02 ms, FA = 8◦, no interval, FOV = 256 mm × 256 mm,
matrix size = 256 mm× 256 mm, total 176 layers.

Pretreatment and analysis of resting-state data used DPARSF
3.0 Advanced Edition Calculate (Yan et al., 2016) in Original
Space (Warp by DARTEL), following standard procedures: First,
conversion of raw DICOM-format data to NIFTI format. To
allow for signal stabilization of the image, the first 10 TR images
were removed, after which time layer correction (slice timing)
and head movement correction (realign) were conducted. If
head movement greater than 2 mm occurred during resting-
state, the data were deleted. Second, the new segment and
DARTEL was used to split the structural T1 data without
standardization, and register the T1 split data directly to the
resting-state functional images. Before registration of structural
and functional data, the AC-PC line of each participant’s
T1 image and the resting-state function was registered, and
then automatic registration was applied. Thus, the resting-state
analysis took place in the original T1 space. Third, we adjusted
for head motion (adopting Friston 24), linear drift, white matter,
and cerebrospinal fluid via regression. Fourth, low frequency
fluctuations ALFFs (filter range: 0.01–0.1 Hz) were calculated.
Fifth, the resting-state function was registered to the standard
MNI space (normalization), using a 3 mm× 3 mm× 3 mm voxel
size, with 4 mm × 4 mm × 4 mm full width at half maximum
(FWHM) smoothing.

REST1.8 (Song et al., 2011) was first used to extract ALFFs
during pre-task resting state in 116 Anatomical Automatic

Labeling (AAL) brain areas. For brevity, the pre-task resting-
state was called resting-state, the same as follows. Then, SPSS19.0
was used to implement Pearson correlation analyses between
ALFFs in 116 AAL brain areas and the correct inclusion-task
response/the incorrect exclusion-task response. Finally, SPSS19.0
was used to generate Pearson correlation analyses between ALFFs
in 116 AAL brain areas and the improved PDP. Since the original
ALFF for each AAL brain area (the average/total ALFF of its
all voxels) was extracted (Wang, 2009; Li, 2015; Tang et al.,
2018), multiple comparisons correction was not required for the
correlation analyses above.

Data Analysis Steps
There were two data analysis steps: (1) the classical PDP was
tested by behavioral and neuroimaging data; (2) if the results
were inconsistent with the classical PDP, the improved PDP
was necessarily established in accordance with the MET, and its
related brain activity was detected.

RESULTS

Testing the Classical PDP by Behavioral
and Neuroimaging Data
Behavioral Results of the Classical PDP Analysis for
Generation Tasks
To investigate consciousness in pure implicit sequence learning,
none of the novel stimuli, such as improbable sequences or
transfer blocks, were presented in the learning phase (Rünger
and Frensch, 2008; Rünger, 2012; Huang et al., 2015). Therefore,
there was no reaction-time difference between probable and
improbable sequences to analyze the extent of learning. Because
of practice and fatigue effects, reaction-time difference between
block 1 and 15 could not serve as a measure of learning. Instead,
we used indexes in the generation tasks to estimate learning.

Because both the correct inclusion-task response and the
incorrect exclusion-task response are measures of the learning
degree, the greater of the two was used to understand the extent of
learning (see Table 1). For example, if the number of the correct
inclusion-task response of one participant was greater than or
equal to the number of the incorrect exclusion-task response,
the former was used as his/her extent of learning; otherwise, the
latter was used.

There was no difference for the two responses and the
extent of learning between the two groups by one-way ANOVA
(ps = 0.196, 0.207, 0.508 > 0.05). Chance performance for the
inclusion/exclusion tasks were one-third. There were 72 triplets
in the inclusion/exclusion tasks, so that the chance performance

TABLE 1 | Indexes of generation tasks (M ± SD).

SOA = 850 ms
(n = 23)

SOA = 1,350 ms
(n = 23)

The correct inclusion-task response 29.00 ± 12.84 33.70 ± 11.35

The incorrect exclusion-task response 28.83 ± 7.11 25.52 ± 10.14

Extent of learning 35.13 ± 4.34 36.43 ± 8.32
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was 24 responses. The single-sample t-test was used to determine
which of the indexes was greater than 24.

In the SOA = 850 ms group, the extent of learning was greater
than chance, t(1,22) = 12.30, p = 0.000 < 0.001, Cohen’s d = 2.56,
which suggests that implicit sequence learning did occur. The
correct inclusion-task response was not greater than chance,
p = 0.075 > 0.05, but the incorrect exclusion-task response was
greater than chance, t(1,22) = 3.25, p = 0.004 < 0.01, Cohen’s
d = 0.68, which indicates that there were no correct inclusion-
task response, but there were incorrect exclusion-task response.
However, the classical PDP states that the correct inclusion-task
response contains the incorrect exclusion-task response (Jacoby,
1991); that is, the correct inclusion-task response should be
greater than or equal to the incorrect exclusion-task response.
Thus, the classical PDP was inconsistent with the outcomes.

In the SOA = 1,350 ms group, the extent of learning
was greater than chance, t(1,22) = 7.17, p = 0.000 < 0.001,
Cohen’s d = 1.49, which suggests that implicit sequence learning
occurred. The correct inclusion-task response was greater than
chance, t(1,22) = 4.10, p = 0.000 < 0.001, cohen’ d = 0.85,
but the incorrect exclusion-task response was not greater than
chance, p = 0.479 > 0.05, which indicates that there were
only correct inclusion-task response, but no incorrect exclusion-
task response.

Further, the correct inclusion-task response and the incorrect
exclusion-task response were not associated in the SOA = 850 ms
group, p = 0.148 > 0.05, but were negatively associated in the
SOA = 1,350 ms group, r(21) = −0.56, p = 0.005 < 0.01. Putting
the two groups together, the two responses were negatively
associated, r(44) =−0.46, p = 0.001. The classical PDP states that
the correct inclusion-task response (C + A) contains the incorrect
exclusion-task response (A); that is, they can be either positively
(most likely), negatively or not associated, which depends on
the relationship between C and A. Although the classical PDP
could explain the lack of correlation and negative correlation
results, the results could not validate the classical PDP. It was seen
that the MET was better suited for the results, which states that
the correct inclusion-task response (C + A1) and the incorrect
exclusion-task response (A2) are mutually exclusive; that is, they
can only be either negatively associated (most likely) or not
correlated (because of random error), but they can never be
positively associated.

Resting-State Brain Activity Related to the Classical
PDP
Although both the correct inclusion-task response in the
SOA = 850 ms group and the incorrect exclusion-task response
in the SOA = 1,350 ms group were at chance, there might
exist individual differences. Therefore, each SOA group was
split half into high and low subgroups using the two responses
as the criterion: this included high and low correct inclusion-
task response subgroups and high and low incorrect exclusion-
task response subgroups. The high and low subgroups differed
significantly (independent-groups t-test, ps < 0.01), whereby
the high subgroup performed greater than chance (ps < 0.001).
This indicates that individual differences were present for the
two responses, and it was meaningful to carry out Pearson

correlation analyses between the resting-state brain activity and
the two responses in each SOA group. The subgroups were only
made to test the individual differences. Therefore, they were not
further analyzed.

Pearson correlation analyses were made between the resting-
state brain activity and the two responses in each SOA group
(see Table 2). It is clear that in each group, brain areas related to
the correct inclusion-task response and the incorrect exclusion-
task response were either completely different for most brain
areas or opposite for some brain areas, which indicates that
the two responses were independent or competitive. These
results were inconsistent with the classical PDP, which can
be inferred that brain areas related to the two responses
must, in part, overlap with each other, but were perfectly
consistent with the MET, which states that the two responses
are mutually exclusive with each other. Therefore, we analyzed
resting-state brain activity related to the improved PDP in
accordance with the MET.

The Establishment of the Improved PDP
in Accordance With the MET
The Improved PDP Analysis for Generation Tasks
Because the classical PDP did not conform with our results,
we improved the logic and reanalyzed the data with the
MET. There were 12 kinds of triplets in the SOC, each
of which was repeated 6 times in the inclusion/exclusion
tasks in the current study. Further, each of them had a
given number of the correct inclusion-task response and
the incorrect exclusion-task response for a participant, and
chance performance for the inclusion/exclusion tasks would
be one-third, namely 2 times. Using the MET to expand the
classical PDP, we compared the relationship between the two
responses for each triplet and defined four knowledge types
(see Table 3).

(1) If both the two responses for a given kind of triplet were at
chance (i.e., less than or equal to 2), this kind of triplet was
defined as non-acquisition of any knowledge. Figuratively
speaking, it is like a striking donkey who does not work,
whether it is needed or not.

(2) If the correct inclusion-task response for a given kind
of triplet was at chance, but the incorrect exclusion-
task response was greater than chance (i.e., greater
than or equal to 3), this kind of triplet was defined
as uncontrollable knowledge; that is, participants could
not use the knowledge to choose rule-based positions
in the inclusion task, which required participants to
choose rule positions, but the knowledge made participants
automatically choose rule positions in the exclusion
task, which required participants to avoid choosing rule
positions. It is like a naughty donkey, who does not
work when it is needed, but does work when it is not
needed. Uncontrollable knowledge is inconsistent with
the classical PDP.

(3) If both the two responses for a given kind of triplet
were greater than chance, this kind of triplet was
defined as half-controllable knowledge. It is like an overly
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TABLE 2 | Correlations between resting-state ALFFs and the classical PDP.

SOA = 850 ms (n = 23) SOA = 1,350 ms (n = 23)

AAL brain area ALFFs rin rex AAL brain area ALFFs rin rex

Frontal_Inf_Orb_L 0.81 ± 0.09 0.43* Precentral_R 0.94 ± 0.08 −0.45*

Olfactory_L 1.01 ± 0.06 0.56** Frontal_Mid_Orb_L 0.64 ± 0.12 0.47*

Rectus_L 0.94 ± 0.08 0.42* Frontal_Inf_Tri_L 0.84 ± 0.08 0.48* −0.44*

Insula_L 0.96 ± 0.04 −0.51* Frontal_Inf_Orb_L 0.81 ± 0.09 0.58**

Occipital_Sup_R 0.88 ± 0.06 −0.42* Rolandic_Oper_L 0.88 ± 0.06 0.41*

Fusiform_R 0.91 ± 0.05 −0.48* Rolandic_Oper_R 0.93 ± 0.06 0.42*

Postcentral_L 0.85 ± 0.05 0.51* Insula_L 0.96 ± 0.04 0.73**

Angular_L 1.02 ± 0.06 0.43* Insula_R 0.97 ± 0.05 0.46*

Heschl_L 1.09 ± 0.13 −0.44* Cingulum_Ant_R 0.94 ± 0.06 0.52*

Cerebelum_Crus1_L 0.91 ± 0.16 −0.49* Cingulum_Mid_L 0.96 ± 0.04 0.48*

Cerebelum_Crus1_R 0.93 ± 0.14 −0.47* Cingulum_Mid_R 0.96 ± 0.04 0.43*

Cerebelum_4_5_R 1.11 ± 0.1 −0.43* ParaHippocampal_L 1.13 ± 0.09 0.48* −0.55**

Cerebelum_6_L 0.94 ± 0.07 −0.53* Amygdala_L 1.02 ± 0.11 0.42*

Cerebelum_6_R 0.91 ± 0.09 −0.69** Fusiform_L 0.91 ± 0.04 0.44*

Vermis_6 0.89 ± 0.08 −0.64** Postcentral_L 0.85 ± 0.05 −0.48*

Vermis_7 0.8 ± 0.08 −0.56** Paracentral_Lobule_L 0.98 ± 0.1 −0.52* 0.43*

Paracentral_Lobule_R 1.15 ± 0.23 −0.44*

Pallidum_L 0.81 ± 0.05 0.49*

Pallidum_R 0.8 ± 0.05 0.45*

Heschl_L 1.09 ± 0.13 0.43*

Temporal_Sup_L 1.04 ± 0.06 −0.43*

Temporal_Pole_Sup_R 1.05 ± 0.12 −0.45*

Temporal_Pole_Mid_L 0.78 ± 0.14 −0.43*

Temporal_Pole_Mid_R 0.66 ± 0.1 −0.47*

Vermis_7 0.8 ± 0.08 0.44*

rin is the correlation between resting-state ALFFs and the correct inclusion-task response; rex is the correlation between resting-state ALFFs and the incorrect exclusion-
task response. *p < 0.05, **p < 0.01. The p-values of correlations are in the Appendix.

TABLE 3 | Four knowledge types of the improved PDP.

Types of knowledge The correct
inclusion-task response

The incorrect exclusion-task
response

SOA = 850 ms
(M ± SD, n = 23)

SOA = 1,350 ms
(M ± SD, n = 23)

Non-acquisition of knowledge ≤2 ≤2 2.83 ± 1.90 2.87 ± 1.71

Uncontrollable knowledge ≤2 ≥3 3.87 ± 1.60 2.96 ± 2.03

Half-controllable knowledge ≥3 ≥3 1.65 ± 1.56 1.74 ± 1.66

Controllable knowledge ≥3 ≤2 3.65 ± 2.40 4.43 ± 2.81

enthusiastic donkey, who always works, whether it is
needed or not. Half-controllable knowledge is consistent
with the classical PDP.

(4) If the correct inclusion-task response for a given kind of
triplet was greater than chance, but the incorrect exclusion-
task response was at chance, this kind of triplet was defined
as controllable knowledge. It is like a well-trained donkey,
who works when it is needed, and does not work when
it is not needed.

The participants’ control of the four knowledge types (degree
of consciousness) was gradually improved.

For the SOA = 850 ms group, a repeated-measures
analysis of variance was carried out for the four types of

knowledge. Sphericity was non-significant (p = 0.165 > 0.05),
and there was a significant main effect of knowledge type,
F(3,20) = 4.84, p = 0.004 < 0.01, η2

p = 0.180. After
Bonferroni correction for multiple comparisons, there was
significantly less half-controllable knowledge than uncontrollable
knowledge (p = 0.003 < 0.01) and controllable knowledge
(p = 0.038 < 0.05). A similar analysis for the SOA = 1350 ms
group (sphericity: p = 0.080 > 0.05) revealed a significant main
effect of knowledge type, F(3,20) = 4.76, p = 0.005 < 0.01,
η2

p = 0.178. After Bonferroni correction, there was significantly
less half-controllable knowledge than controllable knowledge
(p = 0.019 < 0.05). There was no difference for the four
knowledge types between the two groups by one-way ANOVA
(ps = 0.935, 0.098, 0.855, 0.316 > 0.05).
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TABLE 4 | Correlations between resting-state ALFFs and the four knowledge types of the improved PDP.

SOA = 850 ms (n = 23) SOA = 1,350 ms (n = 23)

AAL brain area ALFFs rnon run rhalf rcon AAL brain area ALFFs rnon run rhalf rcon

Frontal_Inf_Oper_L 0.84 ± 0.06 −0.42* Frontal_Inf_Tri_L 0.87 ± 0.04 −0.52*

Frontal_Inf_Orb_L 0.81 ± 0.09 0.54** Rolandic_Oper_R 0.88 ± 0.03 0.51*

Olfactory_L 1.01 ± 0.06 −0.44* 0.49* Insula_L 0.92 ± 0.05 −0.47* −0.45* 0.47*

Frontal_Sup_Medial_R 1.01 ± 0.07 0.46* Insula_R 0.99 ± 0.05 −0.49* 0.43*

Rectus_L 0.94 ± 0.08 −0.53** Cingulum_Ant_R 0.9 ± 0.05 −0.48* 0.43*

Rectus_R 0.86 ± 0.07 −0.42* Cingulum_Mid_L 0.96 ± 0.05 −0.48*

Postcentral_L 0.85 ± 0.05 −0.48* 0.55** ParaHippocampal_L 1.12 ± 0.11 −0.51* 0.51*

Precuneus_L 1.09 ± 0.05 0.42* Fusiform_L 0.87 ± 0.03 −0.45*

Paracentral_Lobule_L 0.98 ± 0.1 −0.47* Fusiform_R 0.86 ± 0.03 0.45*

Temporal_Mid_R 0.94 ± 0.04 −0.54** 0.46* Paracentral_Lobule_L 1.01 ± 0.16 0.53** −0.46*

Cerebelum_Crus1_L 0.91 ± 0.16 0.47* Paracentral_Lobule_R 1.11 ± 0.22 −0.42*

Cerebelum_Crus1_R 0.93 ± 0.14 −0.53** Putamen_L 0.78 ± 0.04 0.46*

Cerebelum_6_L 0.94 ± 0.07 −0.43* Pallidum_L 0.83 ± 0.04 0.47*

Cerebelum_6_R 0.91 ± 0.09 −0.52* Pallidum_R 0.81 ± 0.05 0.44*

Vermis_7 0.8 ± 0.08 −0.43* Thalamus_L 1.02 ± 0.1 0.45* −0.50*

Heschl_L 1 ± 0.06 0.48*

Heschl_R 1.09 ± 0.07 0.44*

Temporal_Pole_Sup_L 1.11 ± 0.08 −0.44*

Temporal_Pole_Sup_R 1.01 ± 0.08 −0.43*

Temporal_Pole_Mid_L 0.73 ± 0.09 −0.43*

Temporal_Pole_Mid_R 0.58 ± 0.04 −0.45*

Cerebelum_Crus1_L 0.89 ± 0.11 0.44*

Cerebelum_6_R 0.92 ± 0.06 −0.45*

Vermis_7 0.8 ± 0.05 0.46*

rnon is the correlation between resting-state ALFFs and non-acquisition of knowledge; run is the correlation between resting-state ALFFs and uncontrollable knowledge;
rhalf is the correlation between resting-state ALFFs and half-controllable knowledge; rcon is the correlation between resting-state ALFFs and controllable knowledge.
*p < 0.05, **p < 0.01. The p-values of correlations are in the Appendix.

Resting-State Brain Activity Related to the Improved
PDP
Pearson correlation analyses were made between the resting-state
brain activity and the four knowledge types of the improved PDP
in each SOA group (see Table 4 and Figure 2).

In the SOA = 850 ms group, it was seen that: first,
some frontal lobe (Frontal_Sup_Medial_R) and cerebellum
(Cerebelum_Crus1_L) were positively related to non-acquisition
of knowledge. Some frontal lobes (Frontal_Inf_Oper_L and
Rectus_L and R) and temporal lobe (Temporal_Mid_R) were
negatively related to non-acquisition of knowledge. Second, there
was no brain area positively related to uncontrollable knowledge.
Some frontal lobes (Olfactory_L and Paracentral_Lobule_L),
parietal lobe (Postcentral_L), cerebellum (Cerebelum_Crus1_R
and Cerebelum_6_L and R) and vermis (Vermis_7) were
negatively related to uncontrollable knowledge. Third, the
left precuneus (Precuneus_L) was positively related to half-
controllable knowledge. There was no brain area negatively
related to half-controllable knowledge. Fourth, some frontal
lobe (Frontal_Inf_Orb_L and Olfactory_L), parietal lobe
(Postcentral_L) and temporal lobe (Temporal_Mid_R) were
positively related to controllable knowledge. There was no brain
area negatively related to controllable knowledge. Fifth, most
relevant brain area for the four knowledge types were different,

except that the right middle temporal gyrus was negatively
related to non-acquisition of knowledge, but was positively
related to controllable knowledge; and that left olfactory and
left postcentral gyrus were negatively related to uncontrollable
knowledge, but was positively related to controllable knowledge.

In the SOA = 1,350 ms group, the following observations
were made: first, there was no brain area positively related to
non-acquisition of knowledge. Some insulas (Insula_L and R)
and cingulate gyrus (Cingulum_Ant_R and Cingulum_Mid_L)
were negatively related to no-acquisition. Second, some frontal
lobes (Rolandic_Oper_R and Paracentral_Lobule_L) were
positively related to uncontrollable knowledge. Some frontal
lobe (Frontal_Inf_Tri_L), insula (Insula_L), hippocampal
(ParaHippocampal_L) and fusiform (Fusiform_L) were
negatively related to uncontrollable knowledge. Third, some
fusiform (Fusiform_R), putamen (Putamen_L), pallidum
(Pallidum_L, R), thalamus (Thalamus_L), cerebellum
(Cerebelum_Crus1_L), and vermis (Vermis_7) were positively
related to half-controllable knowledge. Some temporal lobes
(Temporal_Pole_Sup_L and R and Temporal_Pole_Mid_L
and R) were negatively related to half-controllable knowledge.
Fourth, some insulas (Insula_L and R), cingulate gyrus
(Cingulum_Ant_R), hippocampal (ParaHippocampal_L),
and temporal lobes (Heschl_L and R) were positively
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FIGURE 2 | AAL brain areas related to the four knowledge types of the improved PDP. The brain areas were visualized with the BrainNet Viewer
(http://www.nitrc.org/projects/bnv/) (Xia et al., 2013).

related to controllable knowledge. Some frontal lobes
(Paracentral_Lobule_L and R), thalamus (Thalamus_L),
and cerebellum (Cerebelum_6_R) were negatively related to
controllable knowledge. Fifth, most relevant brain areas for
the four knowledge types were different, except that the left
insula was negatively related to non-acquisition of knowledge
and uncontrollable knowledge, but was positively related to
controllable knowledge; the right insula and right anterior
cingulate cortex were negatively related to non-acquisition of
knowledge, but were positively related to controllable knowledge;
the left parahippocampal was negatively related to uncontrollable
knowledge, but was positively related to controllable knowledge,
however, left paracentral lobule was on the contrary; and the left
thalamus was positively related to half-controllable knowledge,
but was negatively related to controllable knowledge.

As SOA increased, it was seen that: first, the brain areas
related to non-acquisition of knowledge changed from frontal
lobes, temporal lobe and cerebellum to insulas and cingulate
gyrus. There were no common relevant brain areas. Second,
the brain areas related to uncontrollable knowledge changed
from some frontal lobes, parietal lobe, cerebellum and vermis
to other frontal lobe, parietal lobe, insula, hippocampal and
fusiform. There was only one common relevant brain area–
the left paracentral lobule, but its correlation coefficient ranged
from negative to positive. Third, the brain areas related
to half-controllable knowledge changed from precuneus to
some fusiform, putamen, pallidum, thalamus, temporal lobes,
cerebellum and vermis. There were no common relevant brain
areas. Fourth, the brain areas related to controllable knowledge
changed from some frontal lobe, parietal lobe, and temporal
lobe to other frontal lobe, some insulas, cingulate gyrus,
hippocampal, thalamus, temporal lobe, and cerebellum. There
were no common relevant brain areas.

DISCUSSION

The Test for the Classical PDP and the
Establishment of the Mutually Exclusive
Theory
The classical PDP states that the correct inclusion-task response
contains the incorrect exclusion-task response (Jacoby, 1991);
that is, the correct inclusion-task response should be greater
than, or equal to, the incorrect exclusion-task response, and they
can be positively (most likely) associated, negatively associated
or not associated, which depends on the relationship between
C and A. The present study found that in the SOA = 850 ms
group, the correct inclusion-task response was at chance, but
the incorrect exclusion-task response occurred greater than
chance, which was inconsistent with the classical PDP, but
was perfectly consistent with the MET. In the SOA = 850 ms
group, the two responses were not correlated; however, in the
SOA = 1350 ms group, and in the two groups together, the
two responses were in contrast to each other, which could
be explained by the classical PDP, but could not prove the
classical PDP. The MET was better suited to explain the
results, which state that the correct inclusion-task response
(C + A1) is mutually exclusive with the incorrect exclusion-
task response (A2); that is, they can only be either negatively
associated (most likely) or not associated (because of random
error), but cannot be positively associated. As SOA increased,
the correct inclusion-task response changed from at chance
to above chance, but the incorrect exclusion-task response
changed from above chance to at chance. This suggests that
higher SOAs increased the level of consciousness, and that the
representation theory quality by Cleeremans and Jiménez (2002)
was applicable to SOA.
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ALFFs in the resting-state could predict the correct inclusion-
task response and the incorrect exclusion-task response of the
classical PDP in the two groups. But in each group, brain areas
related to the two responses were either completely different
(for most brain areas) or opposite (for some brain areas),
which indicates that they were independent or competitive.
These neuroimaging results were also inconsistent with the
classical PDP, which suggested that brain areas related to the
two responses must, in part, overlap. However, the MET was
more suited to explain the neuroimaging results. Some frontal
lobes, parietal lobes, fusiform gyrus, temporal lobes include
the hippocampus, cingulate gyrus, insula, basal ganglia and
cerebellum in the resting-state were related to the correct
inclusion-task response or the incorrect exclusion-task response,
many of which were consistent with the results of the task-state
researches (Destrebecqz et al., 2005; Guo et al., 2008; Wilkinson
et al., 2009; Penhune and Steele, 2012; Yang and Li, 2012;
Hardwick et al., 2013; Huang et al., 2017). It proved that the
rationale of the resting-state was applicable to the present study
of implicit sequence learning consciousness.

In summary, the present study, for the first time tested the
classical PDP by behavior and neuroimaging data, and found
that the results were inconsistent with the model. However, the
results were perfectly consistent with the MET proposed by the
present study. Of course, the MET need to be tested under more
conditions, including task-state fMRI, more RSI (SOA), more or
less blocks, novel stimuli, among others.

The Establishment of the Improved PDP
and Its Component Analysis by the
Mutually Exclusive Theory
For the first time, an improved PDP was created to categorize
the 12 kinds of triplets in the SOC as delineating four knowledge
types, namely non-acquisition of knowledge, uncontrollable
knowledge, half-controllable knowledge, and controllable
knowledge. The participants’ control of the four kinds of
knowledge (degree of consciousness) was gradually improved.
Only half-controllable knowledge was in accordance with
implicit knowledge as defined by the classical PDP, but it
was present to an equal or lesser extent than uncontrollable
knowledge, which is contrary to the classical PDP, but is
consistent with the MET. It is clear that either correct inclusion
response or incorrect exclusion response was a mixture of four
knowledge types.

According to the MET, each of the four knowledge types is
equal to its correct inclusion response (C + A1) plus its incorrect
exclusion response (A2), which is equal to (C + A1) + A2.
A2 is automatic implicit knowledge against the exclusion task
requirement, andA1 is controlled implicit knowledge meeting the
inclusion task requirement.

There were four levels. The first level was as follows:

Non-acquisition of knowledge = (C + A1) + A2 = 0 + 0 = 0,
because both C + A1 and A2 = 0.
Uncontrollable knowledge = (C + A1) + A2 = 0 + A2 = A2,
because C + A1 = 0, but A2 6= 0.

Half-controllable knowledge = (C + A1) + A2 = C + A1 +
A2, because both C + A1 and A2 6= 0.
Controllable knowledge = (C + A1) + A2 = (C + A1) + 0 = C
+ A1, because C + A1 6= 0, but A2 = 0.

If we consider C and A1, the second level was as follows:

Half-controllable knowledge contained three cases: first,
half-controllable knowledge is equal toA1 +A2, whenC = 0,
but A1 6= 0; second, half-controllable knowledge is equal
to C + A1 + A2, when both C and A1 6= 0; third, half-
controllable knowledge is equal to C + A2, when C 6= 0, but
A1 = 0.
Controllable knowledge also contained three cases: first,
controllable knowledge is equal to A1, when C = 0, but A1 6=

0; second, controllable knowledge is equal to C + A1, when
both C and A1 6= 0; third, controllable knowledge is equal
to C, when C 6= 0, but A1 = 0.

The two levels mentioned above assume that neither C nor
A1 was less than 0. If we assume that both C and A1 are less
than 0, the third level was seen to consist of the a state where
the non-acquisition of knowledge might have some knowledge,
when C ≥ 0 (right controlled knowledge) and A1 ≤ 0 (wrong
automatic knowledge), or vice versa. There was a confrontation
between C and A1 in the inclusion task. Similarly, there might be
more complicated cases for the other three knowledge types.

However, all the three levels did not consider the sub-
components of C, A1, or A2. Because the participants
could get the right and wrong knowledge which had
opposite effects on the responses, the forth level was as
follows: each of the four knowledge types were equal to
(Cr − Cw + A1r − A1w) + (A2r − A2w), in which Cr, A1r and A2r
were the right sub-components of C, A1 and A2, and Cw, A1w,
and A2w were the wrong sub-components of C, A1, and A2. The
fourth level is the most complete and detailed, but it needs to be
further explored and validated.

In summary, the improved PDP used by the present study
could help acquire more precise knowledge than the classical
PDP, and the four knowledge types could be explained perfectly
by the MET. There was no behavioral difference of each
knowledge type between two SOA groups.

The Related Brain Areas of the Improved
PDP and Their Interpretation by the
Mutually Exclusive Theory
The improved PDP can facilitate the acquisition more rigorous
and precise knowledge, especially in the study of brain
mechanisms. The ALFFs in the resting-state could predict the
four knowledge types of the improved PDP in two groups.

In the SOA = 850 ms group, the following was noted:
first, some areas of the consciousness network (some frontal
lobe, Destrebecqz et al., 2005; Sami et al., 2014) and some
areas of the motor network (some cerebellum, Penhune and
Steele, 2012; Hardwick et al., 2013) were positively related
to non-acquisition of knowledge, which means that they
were unfavorable for the acquisition of knowledge. It is
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possible that the irrelevant and wrong consciousness and
self-consciousness by frontal lobe and the motor fixation by
cerebelum (fixation on key-press and did not get the rules
between key-presses) hindered knowledge acquisition. Some
areas of the consciousness network (some frontal lobes and
temporal lobe) were negatively related to non-acquisition of
knowledge, which means they were helpful for knowledge
acquisition (Destrebecqz et al., 2005; Squire, 2009). Second,
there was no brain area positively related to uncontrollable
knowledge. Some areas of the consciousness network (some
frontal lobes, parietal lobe) and motor network (some cerebelum
and vermis) were negatively related to uncontrollable knowledge
(Destrebecqz et al., 2005; Huang et al., 2017; Sami et al., 2014).
Third, some areas of the consciousness network (left precuneus,
Dehaene et al., 2014) were positively related to half-controllable
knowledge. There was no brain area negatively related to half-
controllable knowledge. Fourth, some areas of the consciousness
network (some frontal lobe, parietal lobe, and temporal lobe)
were positively related to controllable knowledge. There was
no brain area negatively related to controllable knowledge.
Fifth, most brain areas related to the four knowledge types
were different, which means that the four knowledge types
were mostly independent in terms of the brain areas related
to their particular function. The right middle temporal gyrus
(consciousness area) was helpful for both knowledge acquisition
and controllable knowledge. Uncontrollable knowledge and
controllable knowledge were competitive in Left olfactory and left
postcentral gyrus (consciousness areas).

In the SOA = 1,350 ms group, it was found that: first, there was
no brain area positively related to non-acquisition of knowledge.
Some areas of the consciousness network (some insulas and
cingulate gyrus, Destrebecqz et al., 2005; Yang and Li, 2012) were
negatively related to non-acquisition of knowledge, which means
the insulas and cingulate gyrus facilitated knowledge acquisition.
Second, some areas of the somatic sensorimotor network (right
rolandic operculum and left paracentral lobule) were positively
related to uncontrollable knowledge. Some areas of consciousness
network (some frontal lobe, insula, hippocampal, and fusiform,
Destrebecqz et al., 2005; Squire, 2009; Yang and Li, 2012;
Huang et al., 2017) were negatively related to uncontrollable
knowledge. Third, some areas of the consciousness network
(Some fusiform and thalamus, Schröter et al., 2012; Huang et al.,
2017), some areas of the implicit learning network (putamen
and pallidum, Penhune and Steele, 2012; Sami et al., 2014)
and some areas of the motor network (cerebelum and vermis)
were positively related to half-controllable knowledge. Some
temporal lobes responsible for consciousness were negatively
related to half-controllable knowledge. Further, half-controllable
knowledge contained complex components. Fourth, some areas
of the consciousness network (some insulas, cingulate gyrus,
hippocampal, and temporal lobe) were positively related to
controllable knowledge. Some areas of the consciousness network
(some frontal lobe and thalamus, maybe the irrelevant and
wrong consciousness and self-consciousness) and cerebellum
(responsible for motor process) were negatively related to
controllable knowledge. Fifth, brain areas associated with the
four knowledge types were different, which means that the

four knowledge types were mostly independent in terms of the
brain areas related to their particular function. The left insula
responsible for consciousness was helpful for both knowledge
acquisition and controllable knowledge, but was adverse for
uncontrollable knowledge. Right insula and right anterior
cingulate cortex were helpful for both knowledge acquisition
and controllable knowledge. Uncontrollable knowledge and
controllable knowledge were competitive in left parahippocampal
and left paracentral lobule. Half-controllable knowledge and
controllable knowledge were competitive in the left thalamus.

The participants’ control of the four knowledge types (degrees
of consciousness) gradually improved. Correspondingly, the
brain areas in the resting-state positively associated with the four
knowledge types gradually changed from the sensory and motor
network to the somatic sensorimotor network (right rolandic
operculum and left paracentral lobule), and then to the implicit
learning network (precuneus, fusiform, thalamus, putamen, and
pallidum), and then to the consciousness network (the frontal
lobes, parietal lobes, temporal lobes, cingulate gyrus, and insula);
the brain areas in the resting-state negatively associated with the
four knowledge types gradually changed from the consciousness
network to the sensory and motor network. If the sensory
and motor network of the participants was strong, but the
consciousness network was weak, they could press keys quickly
and smoothly without needing to acquire sequence knowledge.
In the case that the somatic sensorimotor network of the
participants was strong, but the sensory and motor network and
the consciousness network were weak, the participants should
be hijacked by somatic sensorimotor feelings only to acquire the
uncontrollable knowledge. In the case that the implicit learning
network were strong, and the conscious network were weak, half-
controllable knowledge could be acquired. In the case that the
consciousness network was strong, controllable knowledge could
be acquired. The relationship between individual differences in
brain areas and the four knowledge types was revealed, which
indicates that there were different consciousness ability types for
different participants because of their different dominant brain
areas (Woolhouse and Bayne, 2000; Zhang et al., 2014). It would
be useful to further explore this with a large sample in the future.

According to the MET, each of the four knowledge types
is equivalent to (C + A1) + A2 = (Cr − Cw + A1r −

A1w) + (A2r − A2w). Therefore, the brain areas associated with
uncontrollable knowledge were the brain areas related to A2; the
brain areas associated with half-controllable knowledge were the
brain areas relevant to (C + A1) + A2; the brain areas associated
with controllable knowledge were the brain areas related to
(C + A1); and the brain areas associate with non-acquisition of
knowledge (knowledge acquisition) were the brain areas related
to the total of the other three knowledge types. It should be noted
that each of the C, A1, and A2 of the four knowledge types was
not the same one, because they belonged to different triplets.
There are three hypotheses for the relationship of the cognitive
components of the four knowledge types:

(1) The homogeneous hypothesis. The MET holds that
each knowledge type can be separated into three
components (C, A1, and A2), but it is not determined
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whether the components of the four knowledge types
are homogeneous. If they are homogeneous, we can
use the brain areas associated with each of the four
knowledge types to analyze the others. For example,
the brain areas positively associated with uncontrollable
knowledge (A2) were the somatic sensorimotor areas;
so, we can speculate that the somatic sensorimotor
areas were also the brain areas positively associated
with the A2 component of half-controllable knowledge.
The brain areas positively associated with controllable
knowledge (C + A1) were consciousness areas; so, we can
speculate that consciousness areas were also the brain
areas positively associated with the (C + A1) component of
half-controllable knowledge.

(2) The inhomogeneous hypothesis. However, it was found
that the brain areas associated with the four knowledge
types were independent or competitive with each other,
indicating that the same components among the four
knowledge types might not be homogeneous. For example,
the A2 component of uncontrollable knowledge and the
A2 component of half-controllable knowledge were not
homogeneous, among other such instances. Therefore,
we cannot use the brain areas associated with one of
the four types of knowledge to analyze another. Instead,
we should further develop new measurement methods to
isolate the three components of each knowledge type and
then examine brain areas associated with them.

(3) The indivisible hypothesis. The two hypotheses above are
based on the premise that each knowledge type can be split
into three components, according to the MET. The three
components can be further split into sub-components.
However, there is a hypothesis states that they cannot
be separated; instead, they are complete and indivisible,
which was also realized with the neuroimaging results. If
it is true, the MET should be improved. Fortunately, the
incorrect exclusion-task response behaviorally separated A2
component of each knowledge type, suggesting that it was
at least partly separable for each knowledge type, and the
formulae of the MET were partially validated. Some new

behavior measurement methods need to be developed to
divide the correct inclusion-task response into C and A1 of
each knowledge type in order to fully validate the MET. Of
course, there is another hypothesis to be explored, which
states that each knowledge type only can be split intoA2 and
(C + A1), but that (C + A1) cannot be split into C and A1.

As SOA increased, the brain areas associated with almost
all the four knowledge types changed, which means that
SOA changed the brain areas associated with each knowledge
type (Cleeremans and Jiménez, 2002; Destrebecqz et al., 2005;
Huang et al., 2017), and that the same knowledge types
might not be homogeneous among brain mechanisms between
the two SOA groups, although they had similar behavioral
characteristics. Those results can be well interpreted by the
MET to argue that there are many cases for a knowledge
type (see the 2–4 levels in section “The Establishment of
the Improved PDP and Its Component Analysis by the
Mutually Exclusive Theory”). There was one common brain area
associated with uncontrollable knowledge: the left paracentral
lobule; however, its correlation coefficient was ranged from
negative to positive. In contrast, there was no difference in
behavioral data of the four knowledge types between two groups,
which indicates that behavioral data were not sensitive as
neuroimaging data.

In conclusion, the inhomogeneous hypothesis of the MET,
which stated that the components of the four knowledge types
were not homogeneous, and that knowledge types were not
homogeneous between the two SOA groups either, is best suited
to interpret behavioral and neuroimaging data. We can see that
the four knowledge types, their three components and their
behavioral and brain mechanisms were incredibly complicated
and need to be further investigated.

A comparison of the classical PDP and the MET was made
in this study, with many indexes. It is clear that MET is the
better theory (see Table 5). In the future, the MET can also be
applied to explore consciousness of implicit cognition, such as
consciousness of perception, implicit memory, implicit artificial
grammar learning, implicit social cognition, and so on.

TABLE 5 | A comparison of the classical PDP and the MET.

The classical PDP The MET Relationship to the results

Logic and operations The correct inclusion-task response
contain the incorrect exclusion-task
response.

Mutually exclusive MET (consistent)

Implicit knowledge types Only one implicit knowledge type A Many implicit knowledge types A1, A2 MET (consistent)

Quantity of the two responses The correct inclusion-task response
should be greater than or equal to the
incorrect exclusion-task response.

Unrestricted MET (consistent)

Correlation of the two responses Unrestricted Only negatively correlated or
uncorrelated

MET (better suitability)

Brain areas of the two responses Must in part overlap Independent or competitive MET (consistent)

Accuracy and diversity of knowledge General C and A for the total of the 12
triplets

Four knowledge types for each triplet MET (better suitability)

Interpretation of behavioral and
neuroimaging results of the improved
PDP

None Each knowledge type = (C + A1) + A2 =
(Cr − Cw + A1r − A1w) + (A2r − A2w).
Inhomogeneous hypothesis

MET (consistent)
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CONCLUSION

The present study used behavioral and resting-state
neuroimaging data to test and improve the classical PDP to the
mutually exclusive theory (MET) in implicit sequence learning.

(1) Behavioral data and neuroimaging data demonstrated
that the classical PDP has not been validated. In the
SOA = 850 ms group, the correct inclusion-task response
was at chance, but the incorrect exclusion-task response
occurred greater than chance. In the SOA = 850 ms
group, the two responses were not correlated, but in the
SOA = 1,350 ms group and putting the two groups together,
the two responses were in contrast to each other. In
each group, brain areas whose amplitude of low frequency
fluctuations (ALFFs) in the resting-state related to the two
responses were either completely different or opposite to
one another. However, the results were perfectly consistent
with the MET proposed by the present study which suggests
that the correct inclusion-task response is equal to the
correct exclusion-task response is equal to C + A1, and the
incorrect exclusion-task response is equal to A2. C denotes
the controlled response and A1 and A2 denote two different
automatic responses.

(2) The improved PDP was proposed to categorize the 12 kinds
of triplets in the SOC as delineating four knowledge types,
namely non-acquisition of knowledge, uncontrollable
knowledge, half-controllable knowledge, and controllable
knowledge with the MET. ALFFs in the resting-state
could predict the four knowledge types of the improved
PDP among two groups. The participants’ control of
the four knowledge types (degree of consciousness)
gradually improved. Correspondingly, the brain areas in
the resting-state positively related to the four knowledge
types, gradually changed from the sensory and motor
network to the somatic sensorimotor network, and then
to the implicit learning network, and then to the
consciousness network. The brain areas in the resting-
state negatively related to the four knowledge types
gradually changed from the consciousness network to
the sensory and motor network. As SOA increased, the
brain areas associated with almost all the four knowledge
types changed.

(3) The inhomogeneous hypothesis of the MET is best
suited to interpret behavioral and neuroimaging data;
it states that the same components among the four
knowledge types are not homogeneous, and the

same knowledge types are not homogeneous between
the two SOA groups.
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APPENDIX

APPENDIX TABLE 1 | The p-values of correlations between resting-state ALFFs and the classical PDP.

SOA = 850 ms (n = 23) SOA = 1,350 ms (n = 23)

AAL brain area ALFFs pin pex AAL brain area ALFFs pin pex

Frontal_Inf_Orb_L 0.81 ± 0.09 0.040 Precentral_R 0.94 ± 0.08 0.030

Olfactory_L 1.01 ± 0.06 0.005 Frontal_Mid_Orb_L 0.64 ± 0.12 0.024

Rectus_L 0.94 ± 0.08 0.044 Frontal_Inf_Tri_L 0.84 ± 0.08 0.020 0.038

Insula_L 0.96 ± 0.04 0.014 Frontal_Inf_Orb_L 0.81 ± 0.09 0.004

Occipital_Sup_R 0.88 ± 0.06 0.049 Rolandic_Oper_L 0.88 ± 0.06 0.050

Fusiform_R 0.91 ± 0.05 0.022 Rolandic_Oper_R 0.93 ± 0.06 0.045

Postcentral_L 0.85 ± 0.05 0.013 Insula_L 0.96 ± 0.04 0.000

Angular_L 1.02 ± 0.06 0.039 Insula_R 0.97 ± 0.05 0.026

Heschl_L 1.09 ± 0.13 0.038 Cingulum_Ant_R 0.94 ± 0.06 0.010

Cerebelum_Crus1_L 0.91 ± 0.16 0.019 Cingulum_Mid_L 0.96 ± 0.04 0.020

Cerebelum_Crus1_R 0.93 ± 0.14 0.023 Cingulum_Mid_R 0.96 ± 0.04 0.041

Cerebelum_4_5_R 1.11 ± 0.1 0.040 ParaHippocampal_L 1.13 ± 0.09 0.019 0.007

Cerebelum_6_L 0.94 ± 0.07 0.010 Amygdala_L 1.02 ± 0.11 0.047

Cerebelum_6_R 0.91 ± 0.09 0.000 Fusiform_L 0.91 ± 0.04 0.037

Vermis_6 0.89 ± 0.08 0.001 Postcentral_L 0.85 ± 0.05 0.020

Vermis_7 0.8 ± 0.08 0.006 Paracentral_Lobule_L 0.98 ± 0.1 0.010 0.039

Paracentral_Lobule_R 1.15 ± 0.23 0.038

Pallidum_L 0.81 ± 0.05 0.017

Pallidum_R 0.8 ± 0.05 0.030

Heschl_L 1.09 ± 0.13 0.039

Temporal_Sup_L 1.04 ± 0.06 0.043

Temporal_Pole_Sup_R 1.05 ± 0.12 0.032

Temporal_Pole_Mid_L 0.78 ± 0.14 0.043

Temporal_Pole_Mid_R 0.66 ± 0.1 0.025

Vermis_7 0.8 ± 0.08 0.037

pin is the p-value of correlation between resting-state ALFFs and the correct inclusion-task response; pex is the p-value of correlation between resting-state ALFFs and
the incorrect exclusion-task response.
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APPENDIX TABLE 2 | The p-values of correlations between resting-state ALFFs and the four knowledge types of the improved PDP.

SOA = 850 ms (n = 23) SOA = 1,350 ms (n = 23)

AAL brain area ALFFs pnon pun phalf pcon AAL brain area ALFFs pnon pun phalf pcon

Frontal_Inf_Oper_L 0.84 ± 0.06 0.045 Frontal_Inf_Tri_L 0.87 ± 0.04 0.011

Frontal_Inf_Orb_L 0.81 ± 0.09 0.008 Rolandic_Oper_R 0.88 ± 0.03 0.012

Olfactory_L 1.01 ± 0.06 0.037 0.018 Insula_L 0.92 ± 0.05 0.025 0.032 0.024

Frontal_Sup_Medial_R 1.01 ± 0.07 0.026 Insula_R 0.99 ± 0.05 0.017 0.042

Rectus_L 0.94 ± 0.08 0.010 Cingulum_Ant_R 0.9 ± 0.05 0.022 0.043

Rectus_R 0.86 ± 0.07 0.045 Cingulum_Mid_L 0.96 ± 0.05 0.020

Postcentral_L 0.85 ± 0.05 0.019 0.006 ParaHippocampal_L 1.12 ± 0.11 0.014 0.013

Precuneus_L 1.09 ± 0.05 0.045 Fusiform_L 0.87 ± 0.03 0.031

Paracentral_Lobule_L 0.98 ± 0.1 0.025 Fusiform_R 0.86 ± 0.03 0.032

Temporal_Mid_R 0.94 ± 0.04 0.008 0.028 Paracentral_Lobule_L 1.01 ± 0.16 0.009 0.028

Cerebelum_Crus1_L 0.91 ± 0.16 0.024 Paracentral_Lobule_R 1.11 ± 0.22 0.048

Cerebelum_Crus1_R 0.93 ± 0.14 0.009 Putamen_L 0.78 ± 0.04 0.026

Cerebelum_6_L 0.94 ± 0.07 0.043 Pallidum_L 0.83 ± 0.04 0.025

Cerebelum_6_R 0.91 ± 0.09 0.010 Pallidum_R 0.81 ± 0.05 0.034

Vermis_7 0.8 ± 0.08 0.042 Thalamus_L 1.02 ± 0.1 0.031 0.016

Heschl_L 1 ± 0.06 0.021

Heschl_R 1.09 ± 0.07 0.036

Temporal_Pole_Sup_L 1.11 ± 0.08 0.034

Temporal_Pole_Sup_R 1.01 ± 0.08 0.038

Temporal_Pole_Mid_L 0.73 ± 0.09 0.040

Temporal_Pole_Mid_R 0.58 ± 0.04 0.030

Cerebelum_Crus1_L 0.89 ± 0.11 0.036

Cerebelum_6_R 0.92 ± 0.06 0.033

Vermis_7 0.8 ± 0.05 0.027

pnon is the p-value of correlation between resting-state ALFFs and non-acquisition; pun is the p-value of correlation between resting-state ALFFs and uncontrollable
knowledge; phalf is the p-value of correlation between resting-state ALFFs and half-controllable knowledge; pcon is the p-value of correlation between resting-state ALFFs
and controllable knowledge.
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