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ABSTRACT: An efficient method is described for generating a fragmented,
permutationally invariant polynomial basis to fit electronic energies and, if available,
gradients for large molecules. The method presented rests on the fragmentation of a
large molecule into any number of fragments while maintaining the permutational
invariance and uniqueness of the polynomials. The new approach improves on a
previous one reported by Qu and Bowman by avoiding repetition of polynomials in the
fitting basis set and speeding up gradient evaluations while keeping the accuracy of the
PES. The method is demonstrated for CH3−NH−CO−CH3 (N-methylacetamide) and
NH2−CH2−COOH (glycine).

1. INTRODUCTION

Developing high-dimensional, ab initio-based potential energy
surfaces (PESs) is a long-term and currently very active area of
theoretical and computational research. In the past 15 years,
significant progress has been made in the development of
nonparametric, machine learning approaches to fit large data
sets of electronic energies for polyatomic molecules and
clusters.1−15 These approaches include several that have been
extensively applied to date. They are permutationally invariant
polynomials (PIPs),1,14 Neural Networks (NN),3−6,16−19 NN
with PIP inputs,10−13,20,21 Gaussian Process regression
(GPR),8,15,22 and GPR with PIP inputs.23 There is a major
motivation to extend these methods to large molecules of
interest in chemistry, biochemistry, and materials science.
However, there are significant challenges in doing this for the
various approaches.
Our group has developed the PIP approach over the last 15

years to represent high dimensional PESs of molecules and
molecular clusters with numerous applications.1,14,24−26 This
method makes use of Morse variables, which are transformed
internuclear distances. In 2003 the approach was first applied
to the CH5

+ cation to construct a global PES that is invariant
with respect to the 120 possible permutations of the five
equivalent H atoms.27 Generally the data sets consist of 104−
105 scattered electronic energies, typically obtained at the
CCSD(T) level of theory. Here “scattered” means nongrid
based energies; typically, the data are from a number of low-
level direct dynamics trajectory calculations run at different
total energies and in some instances from very different initial
configurations. More details can be found elsewhere.1 This
approach has been applied to obtain PESs for more than 50
molecules, including reactive systems, and molecular clusters.14

Of particular interest to this paper, there are PESs for 7, 8, 9,
and 10 atom systems, e.g., CH3CHO, with many minima and

saddle points,28 CH3CHOO,
29 malonaldehyde,30 and the ten-

atom formic acid dimer,31 respectively.
There are bottlenecks for the PIP methods as the molecular

size increases, and these have been discussed previously.32 To
recap these briefly, the inputs are the values of all the Morse
variables and the number of variables grows as order N2. For
the PIP-NN approach the input is the minimum number of
PIPs to correctly describe the symmetry of the molecule. This
number is larger than the number of Morse variables and
grows rapidly with the number of atoms. The growth in the
size of PIP bases with the number of atoms depends on both
the total polynomial order and the order of symmetric group.1

As noted above, the PIP approach has been applied for
molecules with as many as 10 atoms and this value has been
cited in the literature as the practical limit for the PIP, while
the PIP-NN approach has been applied to the seven atom OH
+ CH4 reaction.

33

The “ten-atom limit” using the PIP approach was broken for
the 12-atom trans-N-methylacetamide (trans-NMA).32 The
major point of that paper, which is preliminary to the present
one, was to describe a fragmented PIP approach able to extend
the PIP method to larger molecules. As an aside, we mention
that the 10-atom limit was also just exceeded using PIPs in the
construction of an interaction surface for the CH4−H2O−H2O
system,34 and in a calculation of anharmonic rovibrational
partition functions including torsional motion.35
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As for ML approaches, we note that they have been
extensively developed and applied mainly in the context of
materials chemical physics.4,7,36 These approaches have in
common the development of either a NN or GPR of the
atomic energy of each atom. Thus, these methods have been
extended to large numbers (e.g., hundreds) of atoms at the
cost of a large number of NN or GP evaluations. A recent
paper comparing important aspects of atom-based NN and
PIP-NN approaches for several molecules37 indicates that for
“small” molecules the PIP approach is probably the preferred
one.
There is, we reasoned,32,38 a regime for molecules with more

than 10 atoms and probably less than hundreds of atoms where
the PIP approach could be extended. The basic observation
that enables this extension is that Morse variables go
asymptotically to zero at large internuclear distances. Thus,
for large molecules many Morse variables are essentially zero
and thus any PIP basis function containing these variables is
zero and can be dropped from the total basis. This observation
allows one to fragment the larger target molecule into smaller
moieties for which PIP basis sets can be generated
efficiently.32,38 The pruning approach is indeed successful
and it was used with recent, extended MSA software that
includes gradient data for fits.39 However, several issues with
the algorithm used were noted. These included redundant
terms in the basis and also the cost of evaluating gradients, as
described in detail below.
New software, described in this paper, solves these two

problems. To begin, recall that the PIP approach represents the
potential as follows, using compact notation:

V c p
i

n

i i
1

p

∑=
= (1)

where ci are coefficients, pi are permutationally invariant
polynomials, denoted as PIPs (the basis set), and np is the total
number of polynomials for a given maximum polynomial
order. The pi are typically functions of Morse variables, which
themselves are functions of the interatomic distances, rα,β (by
the usual exponential relationship exp(−rα,β/λ), where λ is
commonly chosen to be equal to 2 bohr). Following the
practice of the MSA software, Morse variables are in this work
denoted by xl. We further stipulate that the basis functions
should be chosen to maintain permutational invariance among
identical atoms, or at least some of them. The linear
coefficients are obtained using standard least-squares fits to
large data sets of electronic energies at “scattered” geometries.
In standard PIP approaches, the computational issue arises

when the basis set for the parent molecule is completely
unwieldy, too big to be useful in practical terms, either because
calculating the proper basis set takes too long or because the
number of coefficients is so large that the least-squares
optimization becomes problematic. The size of the basis varies
in a complicated and generally nonlinear way with respect to
the number of Morse variables, the maximum polynomial
order, and the order of the symmetric group.1 This growth in
the size of the PIP basis is the basic consideration in stating the
10-atom limit for the approach.
However, as noted above, the fragmented basis approach is

an effective way to break this limit. Clearly, by fragmenting a
parent molecule into groups of smaller molecular moieties the
basis for each smaller moiety can be calculated rapidly and
then combined with those of other fragments to provide a

compact and hopefully still precise representation of the
potential energy.32 To be specific, consider a simple example of
a five-atom molecule with atoms labeled as 1−5 and a scheme
in which the molecule is fragmented into three fragments, e.g.,
{1, 2, 3}, {2, 3, 4}, {3, 4, 5}. In this three-fragment scheme the
potential is given compactly by

V c p c p c px m x m x m( , ) ( , ) ( , )
i

i i
j

j j
k
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where {p}, {p′}, and {p″} are PIP bases for the nth fragment,
(n = 1, 2, 3), {c}, {c′}, {c″} are the corresponding linear
coefficients, xn represent the set of corresponding Morse
variables, and mn indicate a set of monomials built from the
Morse variables. Morse variables between atoms 1 and 4,
atoms 1 and 5, and atoms 2 and 5 are assumed to be zero and
hence not in the fragmented bases. In this example there are
some Morse variables in common among the fragments, and it
should be clear that there are indeed some redundant basis
functions in this expression in terms of common Morse
variables.
These issues were pointed out previously;32,38 however, they

were not “fatal” ones, because the linear least-squares method
used was able to deal with a modest number of identical basis
functions. Nevertheless, there is compelling motivation to
eliminate these redundant basis functions and thereby reduce
the size of the basis. We do note the redundant-term issue is
similar to an issue identified earlier for developing PIP
representations of interaction potentials that should rigorously
vanish in asymptotic regions where there is no interfragment
interaction. In that case the issue concerned basis functions
involving Morse variables of fragments that do not go to zero
at large internuclear distances where rigorously there is no
interfragment interaction. An effective “empirical” pruning
procedure was then employed to eliminate such basis functions
and applied to several systems.34,40,41

An “empirical” pruning approach is also developed here as a
postprocessing task performed on the standard complete PIP
bases of the fragments. The entire computational approach is
described in detail in the next section followed by illustrations
for N-methylacetamide (NMA) and glycine. These are not
large molecules; however, they serve to test the effectiveness of
various fragmentation approaches, as full PIP basis fits can be
done for these molecules. NMA does contain a low-barrier
methyl rotor and so this example should be relevant to many
large molecules with methyl rotors. We will make further
comments and suggest some guiding principles on how
fragmentation of the basis might be applied to challenging
molecules that undergo isomerization and/or unimolecular
breakup.

2. COMPUTATIONAL METHODS
Following the work of Xie and Bowman,42 Xie has provided
software43 based on a monomial symmetrization approach
(MSA) that generates the permutationally invariant basis set
for many permutational symmetries and polynomial orders.
The monomials are functions of the Morse variables and are
combined to form permutationally invariant polynomials up to
a select order in a clever and efficient system that allows each
polynomial to be recursively determined from simple sums of
products of previously calculated monomials or polynomials.
In this way, the specific polynomials pi = pi(x, m) in eqs 1 and
2 are calculated from the monomials, m, as well as from other
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polynomials pj with j < i rather than from the repetitive and
more complicated evaluation of functions of the Morse
variables, x. For example, the MSA program may determine
that p128 may be written as p128 = p32p61 + m4. At the time when
p128 is evaluated, the components p32, p61, and m4 have already
been calculated, making the computation of p128 very efficient.
A Perl program, postemsa.pl, is used to convert the recursion
relationships determined by the MSA software to a Fortran
program bemsa*.f90, where * stands for the permutational
symmetry numbers and the desired fit order. In addition to
subroutines that efficiently calculate the monomial and
polynomial basis function values, the Fortran program also
includes a function that uses these to calculate the energy
based on a list of coefficients and the inputs of Cartesian
coordinates for each atom rigorously entered in the order of
the chosen permutational symmetry. The coefficients are
determined by using the bemsa*.f90 program to fit a number
of known energies for different geometries. (This software was
recently extended to obtain gradient of the energy as well.44)
As mentioned in the Introduction, it is often quite time-
consuming to generate the MSA output, particularly for large
molecules. For example, using a single Intel xeon16 (1.2 GHz)
processor, our calculation of a basis for 10-atom glycine, with
maximum total polynomial order of 4 took more than 12 days.
This basis contains 46 654 polynomials. Fragmentation of the
parent compound can speed up this process substantially and
provide an efficient basis set that allows for faster energy
evaluation without sacrificing accuracy. This has been
demonstrated already.32,38 However, as anticipated, an issue
of replicated basis functions was noted.
Owing to the efficient recursive algorithm in the MSA

software it is not trivial to identify and eliminate replicated
basis functions, and then reorder the basis. We do that here
with new Mathematica software.45 This software starts with the
bemsa*.f90 files created by the MSA software for each of the
fragments and generates a list of the unique Morse variables,
monomials, and polynomials (here denoted collectively as “(x,
m, p)”) while maintaining permutational invariance. Mathe-
matica was chosen because it has both the tools to do
complicated string manipulations and the ability to turn strings
of texts into commands that can be immediately evaluated.
Thus, the MSA Fortran program can be read as a string, the
strings can be converted to Mathematica format, and the
Mathematica format can then be evaluated. Conversely, once a
new recursive scheme has been developed combining the
fragment basis sets and eliminating duplicate variables, it can
then be converted to a text string, translated into Fortran
format, and output as the Fortran program (DuplicatesDele-
tedbemsa.f90). Additionally, if desired, the new recursive
scheme can efficiently incorporate fitting of gradients if these
are available. In summary, there are two main goals of the
Mathematica program: (1) to increase efficiency by eliminating
duplicated Morse variables, monomials and polynomials in the
basis set of the ensemble of fragments and (2) to provide an
efficient method for calculating derivatives of the energy as a
function of the Cartesian coordinates. We outline the methods
for achieving these goals next.
As for point 1, we developed two strategies for deleting

duplicate Morse variables, monomials, and polynomials: a
sequential method, and a pairwise method. Further details of
the two methods are included in section S1 of the Supporting
Information.

The second goal of our program is to provide an efficient
approach for calculating derivatives of the energy with respect
to all Cartesian coordinates of all atoms at the geometry
corresponding to the energy. The straightforward method for
doing this is relatively easy but inefficient; that is, one
mechanically takes the derivatives of all monomials (assigned
to variables dmi) and polynomials (assigned to variables dpi)
and uses these to evaluate the derivative of the potential energy
with respect to each of the Cartesian coordinates of the atoms.
This is the method used successfully by Qu and Bowman32 and
by Nandi, Qu, and Bowman.38 One main reason why the
inefficiency comes about is that, while there are up to N(N −
1)/2 interatomic distances (where N is the number of atoms in
the parent), the coordinates of a given atom occur only in N −
1 of these. Thus, most of the derivatives with respect to a
Cartesian coordinate of a particular atom are zero; there is no
reason to calculate them, especially because each calculation
involves evaluating many members of the basis set. Specifically,
if aj,k with j = 1, N and k = 1, 3 represents the kth Cartesian
component of the jth atom, then the derivative of eq 1 can be
written as

V
a

c
p

x
x

a
d

d

d

d
d

dj k i

n

i
l

i

l

l

j k, 1 ,

c

∑ ∑=
= (3)

where l enumerates the Morse variables. If the Morse variable

xl do not depend on aj,k, then x
a

d
d

l

j k,
is zero and the lth

contribution to the second sum does not need to be evaluated.
Our program avoids these “zero” calculations by branching to a
separate calculation of eq 3 for each atom j. These separate
calculations are initiated by setting all variables dpi to zero and
then calculating only the terms in the second sum for which

0x
a

d
d

l

j k,
≠ for at least one combination of l, j, and k.

Prior to running the Mathematica program, one needs to
assign a numbering scheme to the parent molecule; each atom
should receive an integer number between 1 and N, the total
number of atoms in the parent. The ordering of the atoms can
be whatever is convenient, but, once established, that
numbering needs to be consistent throughout the program
and the simulations. The atoms of the fragments need to have
the same numbers as they do in the parent, and the order in
which the geometries are entered as input to the final Fortran
program for calculating the energies and derivatives must be
the same as the numerical order of the atoms. The inputs and
outputs of the Mathematica program are described in section
S2 of the Supporting Information. A Mathematica Notebook
showing examples and a Wolfram Language Function set are
also available in the Supporting Information
An important point concerns the selection of the permuta-

tional symmetry for the fragments; it can rarely be the highest
symmetry for the fragment considered individually. Consider a
parent molecule with a fragment that has among others one
atom A and two atoms B. Considered by itself, this fragment
would produce a monomial in which the two AB bonds were
treated as symmetrical and interchangeable. Now consider
another fragment of the same parent that has among others the
same atom A and one of the atoms B. Considered by itself, this
fragment would produce a monomial that treats the AB bond
without any symmetry; it would not be interchangeable with
any other bond. When these two fragments are combined, the
composite basis set could not have permutational symmetry
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concerning the two B atoms. This leads to the following rule:
In order to maintain permutational invariance for the final
basis set, atoms that are assigned to permute with one another
must appear together whenever they appear in any of the
fragments.
We end this section by noting that once one has a fit,

generated either from the original MSA software or from the
new MSA_FRAG software here introduced, it is relatively easy
to either add or subtract polynomials in order to increase the
accuracy or increase the speed, respectively. The principle for
selecting the polynomials is as follows. First, determine the
maximum value of all the Morse variables among all the
geometries in the ab initio data set. In order to add polynomials
for increased accuracy, consider all those polynomials already
used in the existing fit, make all combinations of these up to
the desired order, discard those combinations already in use,
evaluate all the new combinations using the maximum values
of the Morse variables, and add those combinations to the
basis set that have the largest values. In order to delete
polynomials for increased speed, evaluate all the existing
polynomials using the maximum values of the Morse variables
and discard as many as desired starting from the lowest and
moving to the highest. In the latter case, the new set of
polynomials will need to be examined for (new) duplicates,
and in both cases the polynomials and monomials will need to
be renumbered. The new set will retain any permutational
invariance that was present in the original set. It is important to
point out that for large molecules it is typically not possible to
generate the MSA output for the parent compound; one needs
to fragment the molecule to get the number of original
polynomials (coefficients) down to a manageable number.

3. RESULTS AND DISCUSSION
The fragmentation approach32 is relatively new, so that at this
point determination of the best fragmentation approach is still
an art rather than a science. One objective of this paper is to
make the approach easier for others to use so that collective
intuition can be developed. Nonetheless, a few principles are
clear, although these involve more mathematical intuition than
chemical. The goal is to include those Morse variables with
large values and to exclude those that will always have small
values. Recall that the Morse variables have values between 1
and 0 and fall off exponentially with the distance between the
two atoms. First, we note that there is no particular need for
the fragments to be connected in a way that reflects the parent
molecule; what one seeks is to have those atoms that are close
to one another (and whose pairs have relatively large Morse
values) included in at least one fragment. Morse variables
involving distant atoms will be small, and these can be omitted
by never including the relevant atoms in the same fragment.
We note, however, that even if all Morse variables are included,
the number of monomials and polynomials in the fragmented,
permutationally invariant basis set will still be smaller in
fragmentation than in the parent compound because the
fragmentation reduces the cross terms between these variables.
If one desires particular cross terms, then the relevant atoms
for the Morse variables should be included in at least one
fragment. Finally, fragments will often have atoms in common,
atoms that have large Morse variables with others in each
fragment, even though other atoms between the fragments may
not have large Morse values. The overlap is often needed and
should not be shunned. The Delete Duplicates program
ensures that Morse variables, monomials, and polynomials

based on the same pair of atoms are not included more than
once.

3.1. CH3−NH−CO−CH3 (N-methyl Acetamide, NMA).
In order to test the outcomes of our program we chose to
calculate results for CH3−NH−CO−CH3 (NMA) because this
molecule had already been studied by Qu and Bowman and
results on accuracy were available from their work.32 They
reported results for the full parent molecule, for two fragments,
CH3−NHC−CO and C−NH−CO−CH3, and for three
fragments, CH3−NH−C, N−CO−CH3, and C−NH−CO−
C. We also here report results for a five-fragment calculation
where the fragments are CH3−NH−C, N−CO−CH3, C−
NH−CO−C, and H3−O−C, C−H−H3. We followed the same
numbering scheme, shown in Figure 1, and used exactly the

same ab initio data set for fitting as Qu and Bowman.32 The
data set consisted of 3000 energies and 3000 × 36 = 108 000
Cartesian gradient components. Both energies and gradients in
the data set have been fitted.
By the example of NMA, we also hope to clarify issues

concerning inputs 3 and 4 (described in Section S2 of the
Supporting Information) by considering in detail the permuta-
tional symmetry and atom entries for the two-fragment and
three-fragment cases. In the two-fragment case, we have
CH3NHCOC and CNHCOCH3. In order to maintain
permutational invariance for the composite fragmented system,
the H atoms on either methyl can be assigned to permute with
one another because they always appear together, but those on
the two methyls may not be assigned to permute between one
another because one methyl is missing from each fragment. By
our rule (see above), it would be possible to allow the three
carbons in the set of common atoms to permute with one
another because they appear in both fragments, but we may
not allow the H on the N to permute with any other H atoms
because in each fragment some of the other H atoms are
missing. Following Qu and Bowman, we choose to ignore the
carbon permutation, so that only the three H atoms on the
methyl group of either fragment permute with one another;
also there is no permutation of H atoms between the two ends.
The permutational symmetry for each fragment is thus {3, 1, 1,
1, 1, 1, 1}, and a possible atom listing is {1, 2, 3, 4, 5, 6, 7, 8, 9}
for the first fragment and {10, 11, 12, 4, 5, 6, 7, 8, 9} for the
second fragment. The notation here indicates that in the first
fragment, for example, atoms 1, 2, and 3, the hydrogens on the
left-hand methyl, permute among one another and that none of

Figure 1. Numbering scheme used in text for NMA. H, C, O, and N
atoms are white, gray, red, and blue, respectively.
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the other atoms permutes. Note that there are many possible
atom listings because the ordering within one symmetry
element is irrelevant and the ordering between groups of the
same symmetry is also irrelevant. Thus, for the first fragment
the atom listing {2, 1, 3, 5, 9, 7, 4, 8, 6} would also work. The
two-fragment case essentially assumes that there is no
interaction between the hydrogens on one end and those on
the other; thus 9 Morse variables are neglected.
For the three-fragment case, we have CH3−NH−C, N−

CO−CH3, and C−NH−CO−C. In order to maintain
permutational invariance for the composite fragmented system,
we may allow the H atoms on either methyl to permute with
one another, since they always appear together when they are
present, but no permutation may be assigned between the H
atoms on opposite methyls, as in the two-fragment case. The
carbons may not be allowed to permute, because the first
fragment has the left and middle one, which do not appear in
fragment 2, while the second fragment has the middle and right
one, which do not appear in fragment 1. The H on the NH is
similarly not assigned to permute with any other H atoms,
because they are not present, for example, in fragment 3. The
permutational symmetry for the first and second fragments is
{3, 1, 1, 1, 1}, with atom assignments of, for example, {1, 2, 3,
4, 5, 6, 8} and {10, 11, 12, 5, 7, 8, 9}, while the third fragment
has symmetry {1, 1, 1, 1, 1, 1} with an atom assignment of, for
example, {4, 5, 6, 7, 8, 9}.
We note that Nandi et al.46 have recently extended the

previous study of the NMA PES to the cis isomer and
transition states. They used the above two-fragment case and a
different three-fragment case which consists of the previous
and present two-fragment case plus nonoverlapping fragments
consisting of the three H atoms on each methyl group. This
six-atom fragment basis was denoted as {3, 3}. This work
demonstrates that the fragmentation approach can describe
isomerization.
Table 1 shows the results of our work in comparison to

those of the previous study.32 For the full molecule there are

66 Morse variables and 8040 polynomials. The root-mean-
square errors for the energies and gradients, as compared to
the ab initio data set are provided. The times listed are those
for evaluating 3000 energies and 3000 × 36 gradients on an
intel i7 (2.7 GHz) processor. The two-fragment results are
given in columns 3 and 4. The results from the previous work32

take about half the evaluation time as the full set. The results of
our basis set and derivative evaluation method provide exactly
the same RMSE and RMSG but take only about 75% as much
time as the previous two-fragment calculation. There are 57
Morse variables in both cases, but there are 13.5% fewer
polynomials in our basis set due to the deletion of duplicates.

Similarly, for the three-fragment case the RMSE and RMSG
results are identical, but the size of our basis set is 8.5% smaller
and the time required is 24% lower. The five-fragment result
provides a basis set that is between that of the two-fragment
and three-fragment ones, with correspondingly intermediate
RMS error values and timings.
It appears from these tests that our program has achieved

the desired results of deleting duplicates and accelerating the
calculation. In all cases, our program tested the results to be
sure that there were no remaining duplicated monomials or
polynomials, and it also tested to confirm that the basis set
maintained permutational invariance.

3.2. NH2−CH2−COOH (Glycine). Glycine is the smallest
amino acid and one of the building blocks of proteins. Its
biological importance as a precursor of life has triggered the
search for it in the interstellar medium through exprimental
spectroscopic investigations which require theoretical valida-
tion.47 For this reason, different theoretical approaches have
been undertaken in the attempt to clarify glycine spectral
features and describe accurately its elusive isomers and
complicated potential energy surface. The surface and
frequencies of vibration have been described in several ways
ranging from reduced-dimensional models48 to harmonic
approximations49 and from semiempirical electronic structure
methods50 to static and dynamical ab initio approaches.51−53 In
spite of all the interest around this amino acid, to best of our
knowledge an accurate (and possibly permutationally invari-
ant) potential energy surface is missing, probably due to its
topological complexity and the nontrivial number of atoms to
deal with. In the following we will contribute to partially fill
this gap by focusing on the global minimum well.
The glycine minimum energy structure and the (arbitrary)

numbering used here are shown in Figure 2. The equilibrium

geometry is of Cs symmetry and often conformationally
referred to as an all-trans (ttt) structure,54,55 with reference
respectively to the relative positions of hydrogens (atoms 2−5)
in the H−N−C-H bond chain (2−1−4−5), NH2 (1−2−3),
and OH (9−10) groups with respect to the C−C bond (4−7),
and the hydroxy hydrogen (10) relative to the C atom (4) with
respect to the C−O bond involving the hydroxy group (7−9).
We considered six potential energy surfaces for glycine, three

with basis set polynomials to third-order and three with basis
set polynomials to fourth order. In both fourth-order and third-
order potential energy surfaces we considered basis sets
corresponding to the complete molecule, to two fragments,
and to three fragments. For each surface, the minimum energy

Table 1. NMA Results (RMSE in cm−1; RMSG in cm−1/
bohr)

ref 32
this
work ref 32

this
work ref 32

this
work

fit order 3 3 3 3 3 3
frags full 2 2 3 3 5
Morse vars 66 57 57 45 45 57
Polys 8040 5240 6056 1806 1974 1936
RMSE 26.8 34.3 34.3 148.9 148.9 93.1
RMSG 54.7 67.4 67.4 171.8 171.9 141.8
time/s 6.611 2.450 3.281 0.830 1.056 0.914

Figure 2. Numbering scheme used in the text for Glycine. H, C, O,
and N atoms are white, gray, red, and blue, respectively.
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geometry was determined by a gradient method and the
harmonic vibrational frequencies were calculated through
diagonalization of the mass-scaled Hessian matrix of the
potential at the equilibrium geometry.
The data set used for fitting the surfaces consists of 3100

energies and 3100 × 30 = 93 000 gradient components. Three
thousand geometries were chosen from ab initio molecular
dynamics simulations at energies ≤10 000 cm−1, while 100
geometries were chosen randomly on a grid centered at the
temporary minimum located on the surface fitted to the
preliminary 3000 geometries. A histogram of the 3100 energies
along with the approximate energies of the minimum energy
structure, the low-energy isomers, and the transition states
between them is shown in Figure 3. The molecular dynamics

was performed under conditions similar to those used
previously for NMA,32 and the Molpro calculations were
performed using DFT with hybrid B3LYP functional and
Dunning’s aug-cc-pVDZ basis set; both energies and gradients
were obtained. The same Molpro software was used to get the
ab initio minimum energy geometry, its energy, the set of
gradients, and the benchmark harmonic vibrational frequen-
cies.
For the surfaces corresponding to the nonfragmented

molecule, we took the symmetry basis set to be {2, 2, 2, 1,
1, 1, 1}, allowing the H atoms on NH2 to permute with one
another, the H atoms on CH2 to permute with one another,
and the two O atoms to permute with one another. We
omitted the carbon atom permutations and permutation of the
COOH hydrogen in order to be consistent with the
fragmentation symmetries to follow. In the two-fragment
cases, the fragments are NH2−CH2 and CH2−COOH. The H

atoms on CH2 may permute with one another, because when
they appear, they always appear together. Similarly, the H
atoms on NH2 may permute with one another for the same
reason, but the H atoms on NH2 may not be assigned to
permute with those on CH2 because the NH2 atoms do not
appear in fragment 2, whereas the CH2 ones do. The COOH
H atom may not be allowed to permute with the H atoms on
either the CH2 or the NH2 because the second fragment lacks
the NH2 and the first fragment lacks the COOH. The two
oxygens, when they appear, always appear together, so they
may be allowed to permute. The two carbon atoms may not be
assigned to permute because only one of them appears in each
fragment. The permutational symmetry of the first fragment is
{2, 2, 1, 1} with an atom assignment, for example, of {2, 3, 5, 6,
1, 4}. The permutational symmetry of the second fragment is
{2, 2, 1, 1, 1} with an atom assignment, for example, of {5, 6, 8,
9, 4, 7, 10}.
In the three-fragment cases, we add the fragment NH2−

COOH to the two from the two-fragment case. Again, the H
atoms on NH2 may be allowed to permute with one another,
the H atoms on the CH2 may be allowed to permute with one
another, and the O atoms of COOH may be allowed to
permute with one another. The permutational symmetry of the
third fragment is {2, 2, 1, 1, 1} with an atom assignment, for
example, of {2, 3, 8, 9, 1, 7, 10}; the permutation symmetries
and atom assignments for the first two of the three fragments
remains unchanged from the two-fragment case.
Table 2 shows the results of our glycine calculations. The

RMS values for energies and gradients, as compared to those of

the fitting data set, are listed. Vibrational frequencies were
calculated for the minimum energy structure of each surface.
The comparison of these frequencies to those determined by
Molpro for the minimum-energy structure is given by the
Mean Absolute Error (MAE) row, based on the 24 frequencies
calculated. The RMS values were used for the energies and
gradients because these are determined by least-squares
methods. We used MAE values for the vibrational frequencies
because these do not over emphasize a few worse matches. The
vibrational frequencies for the ab initio surface, for the third-
order full molecule surface, and for the third-order, 3-fragment
surface are provided in Table 3.
As expected, the fourth-order, full molecule calculation

(Table 2, column 5) not only provides the most accurate
results but also takes the most time for the evaluation of 3100
energies and 3100 × 30 gradients (compare across the last
row). The third-order, full molecule fit is more than ten times
faster with only modest loss of accuracy.
The advantages of fragmentation in glycine (10 atoms) are

not as prominent as those in NMA (12 atoms) partly because
the full molecule basis set can still be calculated reasonably

Figure 3. Histogram of energies for geometries used as the data set
for glycine. The bin size for the abscissa is 100 cm−1. Most energies
are for configurations close to that of the global minimum.

Table 2. Glycine Results (RMSE and MAEvib in cm−1;
RMSG in cm−1/bohr)

fit order 3 3 3 4 4 4
frags full 2 3 full 2 3
Morse vars 45 33 45 45 33 45
Polys 4683 1022 1704 46654 5348 9337
RMSE 20.1 131.6 82.9 7.5 109.3 30.8
RMSG 59.6 354.7 189.3 1.3 257.6 77.2
MAEvib 11.1 31.2 17.5 7.2 27.3 13.6
time/s 2.193 0.408 0.708 23.869 2.192 3.982
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rapidly, at least at third order. However, if one were to consider
a somewhat larger amino acid or even a small peptide, it would
be impractical to calculate the basis for the molecule without
fragmentation. One aim of research in the future should be to
see how fragmentation might help in these larger systems.
As mentioned in the section on Computational Details, it is

possible once a fit has been found to add or delete polynomials
to or from the basis set in order to achieve increased accuracy
or shorter execution times, respectively. Figure 4 shows an
example, based on the fourth-order, three-fragment fit in the
last column of Table 2. From the left, the number of
coefficients for each set of points at a particular time is 6443,
7986, 9337, 10 001, and 11 001. As can be seen from the
figure, the time and accuracy generally both increase with the
number of coefficients. One can thus suggest a “figure of merit”
for the fit as the product of the average of the RMSE values for
the potential or the gradients in cm−1 times the time for
execution of the computational test in s; the smallest value is
desired. This figure of merit for the five cases is, from left to
right, 188, 201, 215, 75, and 78, suggesting that the fit with a
computational time near 4.4 s and with 10001 coefficients
gives the best compromise between accuracy and time. Of
course, depending on the application, one might still prefer a
faster fit, or perhaps a more accurate one. The adding and
pruning of polynomials offers a method to determine a
potential fit that has the desired trade-off between accuracy
and time.

4. CONCLUSIONS
The program we have created provides an efficient and
practical way to incorporate fragmentation in the choice of

basis functions for calculating large-molecule potential energy
surfaces. We have tested it against previous (and less efficient)
methods for NMA with encouraging results; energies and
gradients are exactly reproduced in less time. We have used it
to calculate and compare several potential energy surfaces for
glycine global minimum conformer. It is practical both because
it incorporates all fragments in a single code with relatively
simple input parameters and because the outputs include a
Fortran program that can be used for fitting the coefficients or
using them to calculate energies and gradients.
Glycine was chosen because it is the simplest amino acid,

and it is often studied in supramolecular systems of biological
interest involving other glycines, water, or hydrogen molecules.
For our glycine database we have employed a set of energies up
to 10 000 cm−1 sampled from trajectories mainly confined
within the global minimum well. This choice was driven by the
goal of demonstrating the effectiveness of the new software
rather than by the necessity to develop a global surface for
glycine. The latter would require additional characterization of
a number of shallow wells and energetically low-lying transition
states, which is not reported here and left for future work. We
believe that the present work opens a route to the study of
other amino acids, peptides, nucleobases, and more compli-
cated biological structures.
We note that in the examples we have used the increase in

speed is modest, but this is because the molecules and
fragments are relatively small. For example, there are only 816
duplicated polynomials in the two-fragment NMA case, so the
decrease in CPU time is only a bit over 25%. For large
molecules with more fragments, the savings in CPU time is
expected to be much greater.
More work is needed to develop an understanding of which

fragmentation schemes are most effective for different systems.
Isomerization has already been shown to be described by the
fragmentation approach. Chemical reactions may be more
difficult to tackle with fragmentation, as these can involve very
large amplitude motion. Of course, the applicability of the
approach would be system dependent and we see no reason in
principle why it cannot succeed. It is fairly obvious, as shown
by both molecular examples here, that when the molecule can

Table 3. Glycine Results: Vibrational Frequencies for the ab
Initio Frequencies for the Glycine Global Minimum
Provided by Molpro Compared to Those for the Third-
Order, Full Molecule, and the Third-Order, Three-
Fragment Surfaces (All Energies in cm−1)

mode ab initio third-order, full mol third-order, three-frag

1 61.7 100.1 34.7
2 211.6 231.2 209.9
3 256.0 260.6 238.6
4 461.3 466.1 459.3
5 512.3 526.0 531.6
6 630.2 631.6 574.2
7 648.4 647.7 641.6
8 816.9 820.6 810.7
9 908.3 906.5 898.5
10 912.2 918.4 942.2
11 1122.6 1124.4 1129.3
12 1160.9 1161.0 1148.4
13 1176.2 1178.2 1158.1
14 1297.8 1291.0 1288.2
15 1371.8 1370.1 1357.7
16 1385.0 1379.0 1374.2
17 1437.3 1444.4 1443.7
18 1656.6 1664.2 1674.6
19 1803.6 1793.3 1787.7
20 3045.9 3037.3 3017.7
21 3083.7 3041.3 3058.7
22 3493.8 3466.4 3457.3
23 3567.1 3547.5 3540.6
24 3735.2 3704.1 3719.5

Figure 4. RMSE values for the fourth-order, three-fragment fit for
glycine vs the time for calculation of energy and gradients (see text for
details). The original fit from the last column of Table 2 is shown by
the points near 4.0 s on the abscissa. Points to the left of these are for
pruning the number of coefficients back from 9337 to, from the left,
6433 or 7986, or by adding polynomials to give the points to the right,
with 10 001 and 11 001 coefficients.
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bend back on itself it is important to include interactions
between the two ends of the molecule. Thus, treating the
molecule as a circle and dividing into overlapping fragments
around the circle is a good strategy. However, when the
molecule is fairly rigid, it is more likely that end-to-end
interactions can be neglected, so that dividing the molecule
into overlapping fragments along the line and neglecting long-
range interactions will be most efficient. It will take some
practice and experience to uncover more subtle aspects of the
fragmentation method.
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