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Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, China

Type 1 diabetes (T1D) is a multifactorial autoimmune disease mediated by genetic,

epigenetic, and environmental factors. In recent years, the emergence of high-throughput

sequencing has allowed us to investigate the role of gut microbiota in the development of

T1D. Significant changes in the composition of gut microbiome, also termed dysbiosis,

have been found in subjects with clinical or preclinical T1D. However, whether the

dysbiosis is a cause or an effect of the disease remains unclear. Currently, increasing

evidence has supported a causal link between intestine microflora and T1D development.

The current review will focus on recent research regarding the associations between

intestine microbiome and T1D progression with an intention to evaluate the causality. We

will also discuss the possible mechanisms by which imbalanced gut microbiota leads to

the development of T1D.
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INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease characterized by insufficient insulin production,
which is caused by autoreactive T-cell-mediated partial or complete destruction of islet beta cells
in patients (1, 2), with a high incidence in children and young adults (3). Genetic factors play
important roles in T1D etiology, and a number of genetic loci associated with T1D have already
been identified (4). Environmental factors are also a pivotal contributor to the disease (5, 6), which
is evidenced in these observations that fewer than 10% of genetically predisposed individuals
develop the disease (7), the increasing frequency of lower-risk genotypes in diagnosed patients
(8, 9), the disparate incidence of diabetes in monozygotic twins (10), and the substantially risen
prevalence in recent decades (11).

In recent years, gastrointestinal microbiota has been recognized as one of the key environmental
factors associated with the development of T1D. Microbes in the human gut make up to 100
trillion cells, 10 times the number of human cells (12). More than 95% species of gut microbiota
can be classified into four major microbial phyla: Firmicutes, Bacteroidetes, Actinobacteria, and
Protecteobacteria (13, 14). The intestinal microbiota is sometimes described as a “hidden organ”
(15) based on their capacity to perform diverse physiological functions comprising fighting against
pathogens (16), producing energy (17), maintaining intestinal epithelial integrity (18, 19), and
regulating immunological activities (20). There is a mutualistic relationship between the human
host and the intestinal flora to maintain homeostasis (21).

A perturbation to the normal composition of commensal communities, also termed dysbiosis,
may break the homeostasis and lead to various autoimmune diseases (15, 22). With the
introduction of high-throughput sequencing technologies, accumulating evidence has shown that
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there are remarkable differences in the intestinal microbial profile
between T1D patients and healthy controls, indicating a close
interplay between diabetes development and gut microbiota
(23). In addition, a growing number of evidence suggests
that compositional changes in gut microbiota may be involved
in the pathophysiology of T1D, and gut dysbiosis-mediated
immunological deregulation and gut leakiness are the possible
pathogenic mechanisms. However, whether these microbial
changes are causal, responsive, or both so far has not been
completely elucidated. Once the causal role of gut community
in the onset of T1D is determined, it will provide a new
opportunity for preventative or therapeutic strategies for T1D
on account of the modifiable nature of gut microbiota. In this
review, we will elaborate on common compositional changes of
intestinal microbiome associated with T1D patients and review
the evidence supporting a causal role of intestinal microbiome
in the onset and progression of the disease. Furthermore,
we will discuss the possible mechanisms whereby intestinal
microbiome influences the T1D progression, which holds the
key to unravel the complex interaction between microbiota
community and host.

To determine whether there is objective evidence supporting
a causal role of gut community in the onset of T1D,
we reviewed literatures from different databases including
MEDLINE, EMBASE, Web of Science, and the Cochrane
Library. The search strategy used a combination of MeSH
terms and keywords pertaining to gut microbiota and T1D.
The inclusion criteria were as follows: (1) case–control or
cohort studies comparing gut microbiota in patients with T1D
or islet autoimmunity and healthy controls and (2) well-
controlled intervention studies in human and murine models
detecting the bacterial changes in fecal or mucosal samples.
Studies that did not assign a control group were excluded. Two
investigators independently performed the literature search and
assessed the eligibility of selected studies based on the established
inclusion criteria. Any discrepancies between investigators were
resolved by discussion until consensus was reached. Then, we
proposed the possible mechanisms whereby aberrant microbiota
composition influences the T1D development.

ABERRANT GUT MICROBIOTA
COMPOSITION IN HUMAN T1D

Previous studies have found large significant differences in
the microbial composition between subjects with T1D or islet
autoimmunity and healthy controls (Table 1). Most of the
findings originated from cross-sectional studies, which cannot
directly determinize causality, but still an important initial
step toward evaluating the causal role of gut microbiota in
T1D pathogenesis.

One case–control study analyzed the gut microbiota in 16
children with T1D and 16 unaffected children. Compared with
healthy control group, the Firmicutes/Bacteroides (F/B) ratio in
T1D patients was significantly reduced (24). A reduction in
F/B ratio was also seen in other studies. Recent studies have
identified that the intestinal community profile of T1D patients
in China and Turkey is also characterized by a decreased F/B

ratio in comparison to healthy subjects (25, 41). Additionally,
a cohort study revealed that the F/B ratio declined over time
as children developed islet autoimmunity and autoimmune
diabetes ultimately (26). However, conflicting data with regard
to F/B ratio in individuals diagnosed with T1D have been
published too (28, 29), which may be attributed to different
sample sizes, data analysis approaches, and geographical location.
Another common gut microbiome shift associated with the T1D
development is the decreased microbial diversity, which has been
reported both in T1D children (30, 31) and in autoantibody-
positive children (26, 27, 32). It was further found that the
decline in bacterial diversity was specific to seroconverters
that eventually developed into T1D but not in undeveloped
seroconverters (33). Moreover, metagenomic data from several
studies showed a significant reduction in the abundance of
butyrate producers such as Clostridium clusters IV and XIVa and
mucin-degrading bacteria such as Prevotella and Akkermansia in
T1D patients. A study comparing gut microbiota composition
between 28 children with new-onset T1D and 27 age-matched
unaffected children revealed that control children exhibited a
higher number of butyrate-producing species within Clostridium
clusters IV and XIVa compared to corresponding diabetic
children (34). Children with new-onset T1D in another study
also showed a similar trend regardingClostridium clusters IV and
XIVa (35). In addition, the decreased butyrate-producing species
have been documented in adults with longstanding T1D (36) and
children with pancreas autoimmunity (27, 32). In line with the
reduction in butyrate-producing species that can induce mucin
synthesis, Brown and colleagues have identified that Prevotella
and Akkermansia, as perspective signatures of elevated mucin
synthesis, were substantially lower in seropositive individuals
than in healthy children (27). A decrease in Bifidobacterium
was also reported in T1D subjects by several studies. In a study
investigating the bacterial compositional differences among
children with T1D and maturity-onset diabetes of the young
2 (MODY2) and healthy control subjects by 16S ribosomal
RNA (rRNA) gene sequencing, the authors concluded that T1D
children presented with a reduced level of Bifidobacterium,
and perhaps even more interestingly, it was observed that the
intestinal microbiota profile of T1D patients was different from
not only healthy subjects but also subjects with MODY2 (30).
Another study also using 16S rRNA gene sequencing concluded
the similar trends regarding Bifidobacterium (37). Additionally,
a lower proportion of Bifidobacterium in T1D patients was
also detected by other techniques including analysis of the
microbial proteome (38) and stool cultures (39). Additionally, the
colonization of intestinal Candida albicans was also reported to
be positively linked to T1D development (39, 40).

EVIDENCE SUPPORTING THE CAUSAL
ROLE OF GUT MICROBIOTA IN THE
PATHOGENESIS OF T1D

Evidence From Animal Studies
In the past decade, a growing number of animal studies
have suggested a causal link between intestine microflora
and T1D development. This may be due to the fact
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TABLE 1 | Gut microbiota changes in preclinical and clinical type 1 diabetes (T1D).

Subjects studied Methods Changes in gut microbiota References

16 Caucasian children with T1D and 16 healthy Caucasian

children

PCR-DGGE

RT-qPCR

↓Firmicutes to Bacteroidetes ratio

↑Clostridium, Bacteroides, and Veillonella

↓Lactobacillus, Bifidobacterium, Blautia coccoides/Eubacterium

rectale group, and Prevotella

(24)

12 Han Chinese subjects with T1D and 10 healthy Han

Chinese subjects

16S rRNA gene

sequencing

↑Bacteroidetes/Firmicutes ratio (25)

4 children with beta-cell autoimmunity and 4 age-matched,

genotype-matched, non-autoimmune individuals

16S rRNA gene

sequencing

↑Bacteroidetes to Firmicutes ratio

↓Microbial diversity ↓Microbial diversity

↓Butyrate-producing species

↓Prevotella and Akkermansia ↑Bacteroides, Veillonella, and Alistipes

(26, 27)

8 Mexican children with T1D at onset, 13 children with T1D

after 2 years treatment, and 8 healthy controls

16S rRNA gene

sequencing

↑Bacteroides genus (28)

Biopsies of the duodenal mucosa of 19 patients with T1D, 19

patients with celiac disease, and 16 healthy control subjects

16S rRNA gene

sequencing

↑Firmicutes and Firmicutes/Bacteroidetes ratio

↓Proteobacteria and Bacteroidetes

(29)

15 children with T1D, 15 children with maturity-onset

diabetes of the young 2, and 13 healthy children

16S rRNA gene

sequencing

↓Microbial diversity

↑Bacteroides, Ruminococcus, Veillonella, Blautia, and

Strepto-coccus genera

↓Bifidobacterium, Roseburia, Faecalibacterium, and Lachnospira

(30)

13 children at the T1D onset and 13 healthy children

as control

PCR-DGGE

RT-qPCR

↓Microbiota diversity

↑Bacteroides clarus, Alistipes obesi, and Bifidobacterium longum

↓Bacteroides vulgatus, oleiciplenus, coprophilus, and dorei

(31)

18 children with diabetes-associated autoantibodies, 18

autoantibody-negative children matched for age, sex,

HLA-DQB1 genotype and early feeding history

16S rRNA gene

sequencing

↓Lactate-producing and butyrate-producing species

↓Bifidobacterium adolescentis and Bifidobacterium

pseudocatenulatum ↑Bacteroides genus

↓Microbial diversity

(32)

11 infants with diabetes-associated autoantibodies and 22

autoantibody-negative controls matched for gender, HLA

genotype, and country

16S rRNA gene

sequencing

↓Microbial diversity (33)

28 children with new-onset T1D and 27 age-matched

healthy controls

Human intestinal

tract chip analysis

↑Bacilli (notably streptococci) and the phylum Bacteroidetes

↓Butyrate-producing species within Clostridium clusters IV and XIVa

↑Microbial diversity

(34)

73 children and adolescents shortly after T1D onset and 103

matched control subjects of similar place of residence and

age

16S rRNA gene

sequencing

↓Clostridium clusters IV or XIVa

↑Escherichia

↓Eubacterium and Roseburia

(35)

53 adults with longstanding T1D without complications or

medication and 50 healthy controls matched for age, sex,

and BMI

16S rRNA gene

sequencing

↓Butyrate-producing species (36)

20 patients with T1D and 28 healthy control subjects 16S rRNA gene

sequencing

↑Bacteroides vulgatus, Bacteroides rodentium, Prevotella copri, and

Bacteroides xylanisolvens

↓Bifidobacterium and Roseburia

(37)

Fecal protein collected from 3 T1D children and 3

control children

Combination of

two-dimensional

gel electrophoresis

and spectral

counting

↑Clostridial cluster XVa and cluster IV and Bacteroides

↓Bifidobacteria

(38)

35 patients with newly diagnosed T1D and 35 healthy

subjects who were randomly selected and had similar

demographics

Stool cultures ↓Bifidobacterium

↑Candida albicans and Enterobacteriaceae other than

Escherichia coli

(39)

42 patients with newly diagnosed T1D and 42

healthy subjects

Stool cultures ↑Candida albicans (40)

PCR, polymerase chain reaction; DGGE, denaturing gradient gel electrophoresis; RT-qPCR, real-time quantitative polymerase chain reaction.

that, in contrast to human studies, the gut microbiota
in murine models can be disturbed under strictly
controlled conditions to minimize confounding factors
(42). Non-obese diabetic (NOD) mice (43) and bio-
breeding diabetes-prone (BB-DP) rats (44) are two widely
studied animal models of autoimmune diabetes. Both

models carry the risk genes of T1D and develop T1D
spontaneously (43, 45, 46).

Antibiotic intervention modulates the bacterial composition
by selective removal of certain microbial lineages. It was reported
that the alterations of bacterial profile in the gut induced
by vancomycin remarkably increased the incidence of T1D
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in NOD mice (47, 48), while in another study, vancomycin
displayed T1D-protecting effect in NODmice (49). Other specific
antibiotics or combinations of antibiotics have also been found to
cause distinct alterations in gut microbial composition compared
to untreated control NOD mice and subsequently delayed or
accelerated disease progression (50–52). The types of antibiotics
or the time of administration were different in each study, which
may account for their disparate outcomes.

Probiotic supplement is another important intervention to
change the composition of intestinal flora in NOD mice or BB-
DP rats. Probiotics are defined as specific live microorganisms
that can create a favorable gut environment when administered
in sufficient amounts (53). Probiotics were proved to prevent
diabetes development in animal models, indicating that altered
intestinal microbiome has a role in manipulating the onset
of T1D. A published study showed that oral administration
of VSL#3, a combination of several probiotics, could prevent
diabetes in NOD mice when administrated from 4 weeks of
age (54). The protecting effect of VSL#3 in NOD mice was
further confirmed by another study performed by Dolpady et al.
(55). Probiotics Clostridium butyricum CGMCC0313.1 were also
demonstrated to suppress the onset of T1D in NOD mice by
selectively modulating the structure of gut microbiota, including
increasing the F/B ratio, Clostridium, and butyrate-producing
bacteria (56). Conferred protection against diabetes by probiotics
was also shown in BB-DP rats (57).

Fecal microbiota transplantation (FMT) also can change the
risk of progression to T1D by altering the gut microbiome
profile in NOD mice. A study demonstrated that intestinal
microflora transferred from diabetes protective NOD mice,
which are genetically deficient in myeloid differentiation primary
response gene 88 (MyD88), could stably alter the gut bacterial
composition and eventually reduced insulitis significantly and
delayed the onset of T1D in wild-type NOD mice (58). It is well-
established that NOD mice harbor more diabetogenic microbes
in the gut compared with non-obese diabetes-resistant (NOR)
mice. A study found that the FMT from NOD mice to NOR
mice elicited insulitis in NOR mice (59). Nevertheless, a recent
study found that the transfer of the whole microbiota from
the low- to the high-incidence colony of NOD mice did not
reduce diabetes incidence. Intriguingly, single symbionts transfer
of Akkermansia muciniphila could delay diabetes development
in the high-incidence NOD colony, suggesting that individual
microbiota members might have potential significance in the
pathogenesis of T1D (60).

Animal studies have indicated that dietary factors such
as gluten and fiber may change the incidence of T1D
by altering the composition of gut microbiota. A gluten-
free diet has been shown to reduce diabetes incidence in
NOD mice along with elevated Akkermansia and reduced
Bifidobacterium, Tannerella, and Barnesiella species compared
to gluten-containing diet. Notably, adding gluten to the gluten-
free diet reversed the antidiabetogenic effect as a result of
reversing the gut bacterial composition (61). A study conducted
by Toivonen et al. noted that the two fermentable fibers, pectin
and xylan, exerted diabetes-promoting effect in NOD mice by
significantly enhancing the level of Bacteroides and depleting

the mucin-degrading bacteria such as Verrucomicrobiales and
Prevotellaceae (62). Moreover, a recent study showed that the
low esterified pectin, a novel dietary fiber, could decrease
the diabetes incidence in NOD mice by selectively enriching
specific microbial species that produce short-chain fatty acids
(SCFAs) (63).

Evidence From Human Studies
This chicken–egg situation (causal or consequence) can be
partially clarified in several cohort studies, which have identified
that the changes in gut microbiota composition occurred before
the T1D development (26, 27, 32, 33). Although these prospective
studies will provide a timeline of disease progression associated
with microbial dysbiosis, a causal contribution can only be
derived from intervention studies.

It was reported that breast milk, as an independent protective
factor, could lead to a drop in the incidence of T1D (64), and
themicrobial composition of breast-fed infants was characterized
by a more stable gut microbiome dominated by Bifidobacteria
compared to infants who were not breastfed (65). Studies
showing the protective effects of probiotics on T1D in humans
are limited. One well-known study is that of Uusitalo, who
previously reported that early supplementation of probiotics
during the first four postnatal weeks reduced the risk of beta
cell autoimmunity in infants genetically susceptible to T1D
compared to those with no supplementation (66). Recently,
a single-center, randomized, double-blind, placebo-controlled
pilot study in children with T1D for at least 1 year showed
that consumption of prebiotics could alter the gut microbiota
composition and decrease the intestinal permeability, leading to
improved beta cell function. However, there was no improvement
in glycemic control in the prebiotic group, possibly due to
the small sample size and relatively short intervention time
(67). In addition, Groele et al. are conducting a double-
blind, randomized, placebo-controlled study to discuss whether
probiotics will improve beta-cell function by modulating the
immune system in children with newly diagnosed T1D (68).
Nevertheless, such randomized controlled clinical trials are still
rare, and to date, there are no studies in humans supporting the
link between FMT or antibiotics-induced microbial changes and
T1D risk. Overall, although interventional human studies show
a hint of promise, a causal relationship still cannot be concluded
due to the lack of large-scale prospective studies demonstrating
that long-term changes in the bacterial composition alter T1D
risk. Further randomized controlled studies in large human
cohorts will need to be undertaken.

Collectively, the evidence generated from well-controlled
intervention studies in murine models is promising for
establishing a causal relationship. However, conclusions from
animal studies must be interpreted with caution, as animal
models have a number of limitations, making it difficult to
translate to humans. In addition, human studies showing a clear
association between the long-term changes of gut microbiota and
altered T1D risk are still lacking. Thus, the evidence supporting
causative relationship summarized above is inconclusive and
needs to be further confirmed.
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THE POSSIBLE MECHANISMS WHEREBY
GUT MICROBIOTA INFLUENCES THE T1D
DEVELOPMENT

Immunological Deregulation and Leaky
Gut Are Involved in T1D Development
There was a proposed complicated interaction between intestinal
microbiota, immune system, and gut permeability (69). A large
body of evidence suggested that defective profile of intestinal
microbiome may influence the pathogenesis of T1D by affecting
immune homeostasis and/or gut permeability (Figure 1) (70).

Gastrointestinal microbiota has been considered as the largest
organ of the immune system (71) owing to their ability
to constantly interact with immunological cells (20). It was
demonstrated that there are disorders of the mucosal immune
system in NOD mice before diabetes onset (72). Gastrointestinal
microflora plays an essential role in the development and
maturation of the immune system, and early stages of life are the
critical time window for the establishment of immune tolerance
(13, 73). According to the Hygiene Hypothesis, it is the lack of
microbial stimulation in early childhood resulting from advances
in medicine and improved sanitation that leads to the rise in the

prevalence of immune-related disorders (74). Thus, the infants,
who can benefit from early exposure to specific microorganisms,
may be much less likely to develop autoimmune diseases later
in life (75, 76). The Hygiene Hypothesis has been supported
by murine studies. For example, NOD mice were more likely
to develop diabetes when they lived in a clean environment,
and it was reported that infection of NOD mice with various
bacteria in early life could prevent T1D development (77,
78). In general, hence, it seems that gut microbiome-mediated
appropriate immune maturation during early life is critical to
prevent T1D development (79). Conversely, alterations of gut
microbiota composition will lead to a poorly educated immunity
and eventually result in insulin-secreting beta cell damage and
the onset of T1D in genetically predisposed subjects (80, 81).

Another proposed T1D pathogenesis associated with
microbial dysbiosis is the increased intestinal permeability,
often referred to as a “leaky gut” (69), which may act either
independently or coincidently with the immunological
deregulation (82). A “leaky gut” in T1D has been observed
from both human studies and animal research (83–86),
indicating that the barrier dysfunction is a primary feature of
T1D. Some researchers argued that hyperglycemia and insulitis

FIGURE 1 | The possible mechanisms whereby gut microbiota influences the type 1 diabetes (T1D) development. The gut microbiota plays a decisive role in the

maturation of immune system in early life. Gut dysbiosis will lead to the dysregulation of immune response including both innate and adaptive immune system,

eventually resulting in beta cell destruction and the onset of T1D in genetically susceptible individuals. On the other hand, the gut dysbiosis can lead to the

disassembly of tight junctions, thereby disrupting the integrity of intestinal barrier. The enhanced intestinal permeability will allow unregulated passage of microbial

antigens such as microbiota and their products. These antigens escaping from intestinal tract could be untaken by antigen-presenting cells (APCs), which can process

and present antigens to autoreactive T cells and subsequently promote the destruction of pancreatic beta cells in genetically predisposed individuals.
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may contribute to the enhanced leakiness of the gut epithelial
barrier in T1D (87). Nevertheless, other researchers favor the
notion that the “leaky gut” may be more of a cause than an
effect, as a highly permeable gut has been observed before the
development of both insulitis and clinical onset of T1D (88, 89).
One of the most cited studies is that of Bosi et al., who measured
intestinal permeability of 81 subjects at different stages of T1D
as well as 40 healthy controls. They found that the increased gut
permeability occurred before the manifestation of the disease
(90). Similarly, a recent study performed by Harbison and others
observed that children at risk for T1D had higher intestinal
permeability and were associated with gut microbiota dysbiosis
(91). Furthermore, administration of hydrolyzed casein diet has
been reported to be able to protect from T1D by improving the
gut integrity in BB-DP rats (92), indicating that the melioration
of increased gut permeability can protect against autoimmune
diabetes development. In line with this notion, infection with
barrier-disrupting C. rodentium accelerated insulitis in NOD
mice, while NOD mice failed to develop insulitis when infected
with theDeltaespF strain, which cannot disrupt gut integrity (93).
These studies support the concept that such a “leaky gut” could
be a component within the natural history of T1D progression
and perhaps is the initial steps of evolution to the disease. It
was suggested that the enhanced intestinal permeability, as
a consequence of impaired integrity of the intestinal barrier
(94), might allow unregulated passage of exogenous antigens
especially the microbial components (95). The translocation of
these microbial components to systemic compartment could
trigger systemic inflammation and autoimmune progression by
directly damaging pancreatic beta cells (96). Alternately, these
microbial components could be untaken by antigen-presenting
cells (APCs), which can process and present the antigen to
autoreactive T cells (87, 97), leading to the destruction of islet
beta cells (57, 89). Another possible mechanism by which these
translocated microbial antigens initiate the diabetes onset is
molecular mimicry. Some microbial antigens have homology
with islet self-antigen and may result in the destruction of islet
beta cells by T-cell cross-reactivity (98). A recent study reported
that oral administration of Bacteroides fragilis under loss of
gut barrier integrity condition induced by chemical approach
could lead to rapid disease progression in NOD mice, further
highlighting the role of microbial translocation in contributing
to T1D (99).

Understanding such mechanisms through which gut
microbiota influences the T1D development is of great
importance for developing novel prevention and treatment
strategies of autoimmune diabetes. However, before making
much research effort on microbiota-based therapies, it would
seem to be pivotal to uncover first whether and how dysbiotic
gut microbiota contributes to immunological aberrancies and
gut leakiness.

Impact of Gut Microbiota on the Immune
System
Alterations of the intestinal microbiota during early life have
been hypothesized to impact T1D pathogenesis by disturbing the

normal pattern of immunological maturation (81), and various
bacterial taxa and bacterial metabolites as well as bacteria-derived
components, which were able to affect immune responses, have
been identified (100, 101).

Impact of Gut Microbiota on the Innate Immune

System
Innate immunity plays an essential role in the etiology of T1D,
and investigations showed that interaction of commensal bacteria
with the innate immune system was involved in the onset
and progression of T1D (3). Toll-like receptors (TLRs), known
as important players in the innate immunity, are critical for
intestinal homeostasis. TLRs as one of pathogen recognition
receptors (PRRs) expressed on immune and non-immune cells
can recognize pathogen-associated molecular patterns (PAMPs)
derived from microbiota (102) and enable the initiation of
the innate immune system (103). There are many different
microbes that can facilitate or inhibit autoimmunity of T1D
by signaling through different receptors of the TLR family
(104–108). The first attempt to investigate innate immune
pathway associated with microbial exposure in T1D was
conducted in MyD88-deficient NOD mice. MyD88 is an adaptor
protein of multiple TLRs that can recognize microbial stimuli
and contribute to downstream signaling pathways of TLRs
(102, 109). NOD mice deficient in molecule MyD88 were
completely protected from T1D under conventional conditions,
and the protective effect was derived from beneficial microbial
composition, which differed from that of wild-type controls,
indicating that the composition of microbiota was changed
by host MyD88 deficiency (3). Conversely, MyD88-deficient
mice had an increased risk of developing T1D under germ-
free (GF) conditions, while the incidence of diabetes was
reduced in these mice when exposed to a defined microbial
mixture, which further supports the intimate interaction between
microbial community and host innate immune system (3). A
recent study conducted by Gulden and colleagues unraveled
a novel innate immune pathway influenced by gastrointestinal
microbiota in T1D development. They found that the deletion
of the Toll/interleukin-1 receptor (TIR)-domain-containing
adapter-inducing interferon-β (TRIF), another critical adaptor
protein downstream of TLRs, could protect NOD mice from
diabetes. Importantly, a different microbiota profile was found
in TRIF-deficient NOD mice compared to wild-type NOD
mice, suggesting that the protective effect of TRIF deficiency
is through changing microbial composition (110). In addition,
a recent study performed by Simon et al. found that NOD
TLR4−/− animals had an increased risk of progression to
diabetes along with higher abundance of Bacteroidetes and
lower Firmicutes in the large intestine before the onset of
T1D when compared to NOD TLR4+/+ mice, indicating
that TLR4 expression status determined early alterations of
gut microbial composition (111). NOD-like receptors (NLRs),
another important PRR, have also been reported to be involved in
T1D development through the recognition of bacterial products.
Costa et al. found that NOD2 receptor could be activated by
translocated gut bacteria in pancreatic lymph nodes (PLNs)
of streptozotocin (STZ)-treated mice and contribute to the
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pathogenesis of T1D, while broad-spectrum antibiotics treatment
and NOD2 receptor deletion could protect STZ-treated mice
from T1D (112). Additionally, it has been documented that
early-life gut microbiota is critical to the development and
function of APCs (113). Studies conducted by Hu et al. found
that antibiotic-treated NOD mice displayed protective effect
for T1D primarily achieved by the generation of immune-
tolerogenic APCs, which possessed the impaired self-antigen
presentation function and eventually led to reduced activation
of cytotoxic CD8+ T cells. Interestingly, the tolerogenic APC-
mediated diabetes protection was able to be transferred to the
second generation (48, 50). This mechanism of tolerogenic
APCs induced by changes in the intestinal microbiome is
reinforced by a study investigating macrophages, a potent
subset of APCs, in which these cells showed hyporesponsiveness
to lipopolysaccharide (LPS) stimulation in streptomycin and
cefotaxime-treated mice, whose gut microorganisms were
nearly completely eliminated after 3 weeks treatment (114).
Dendritic cells (DCs), another major subset of APCs, have
also been demonstrated to become tolerogenic when exposed
to specific microbial stimuli including Lactobacillus reuteri
(115) and a mixture of Bifidobacteriaceae, Lactobacil-laceae, and
Streptococcus (55).

Impact of Gut Microbiota on the Adaptive Immune

System
Intestinal immune health is achieved, in part, through the
development of adaptive immune response (116), while
perturbations in the composition of gut microbiome can affect
the adaptive immune system development at multiple levels
including CD4+ T cells, CD8+ T cells, mucosal-associated
invariant T (MAIT) cells, and invariant natural killer T
(iNKT) cells.

T helper 1 (Th1) and T helper 2 (Th2) cells as major
components of the adaptive immune response are vital for
controlling the autoimmune reactions (117). An imbalanced
Th1/Th2 response has been reported to be involved in the
damage of islet beta cells in T1D (117). It has been demonstrated
that the commensal community has a decisive role in establishing
this equilibrium (118, 119). For instance, GF mice present with
a highly Th2-skewed cytokine profile (120, 121), and a shift
from Th2 to Th1 immune response has been identified to be
promoted by exposures to microorganisms early in life (118).
The maturation of regulatory T cells (Tregs) expressing Foxp3
transcription factor is crucial for immune homeostasis and
induction of tolerance (122). Numerous studies have revealed
that reduced frequency or function of Foxp3+ Tregs in NOD
mice is a major susceptibility factor for T1D (123–125). Notably,
the Foxp3+ Tregs in mesenteric lymph nodes of GF mice showed
a significant reduction in relative and total numbers as well as an
impaired regulatory function, indicating a critical role of the gut
microbiota in regulating Tregs development (126). Interestingly,
monocolonization of GF mice with B. fragilis, a member of the
Bacteroidetes phyla, could restore the differentiation of Foxp3+

Tregs (121, 127). Other defined bacterial strains that have
the capacity to increase Foxp3+ Tregs number and function

in GF mice are Roseburia faecis (a member of Clostridium
cluster XIVa) and Faecalibacterium prausnitzii (a member of
Clostridium cluster IV) (128). It has been postulated that these
microbes induce Tregs by producing butyrate (129). Intestinal
commensal microorganisms can ferment the dietary fibers and
produce SCFAs such as acetate, propionate, and butyrate (130).
Butyrate can not only provide energy for colonic epithelial
cells (131) but also enhance the abundance and function of
splenic and colonic Foxp3+ Tregs via histone modification (15,
132). Th17 cells have also been considered crucially involved
in the etiology of T1D (133, 134). The main function of
Th17 cells is producing interleukin (IL)-17 and clearing the
extracellular pathogens during infection, while an excessive
inflammatory response triggered by Th17 cells may promote
autoimmunity (135). However, much uncertainty still exists
about its role in autoimmune diabetes because a diabetes-
protective effect of Th17 immunity has also been reported
in T1D (136). Alam et al. found that the level of IL-17
expression was decreased in the small intestinal lamina propria
of GF mice (137). Of note, the reduced frequencies of Th17
cells in GF mice could be restored upon colonization with
segmented filamentous bacteria (SFB) (138). At the same time,
it was demonstrated that SFB colonization could protect male
GF NOD mice from diabetes development and conferred a
protective effect in female NOD mice when there were other
intestinal microbes (139). Moreover, there are other Th17 cells
inducers such as altered Schaedler flora (ASF). ASF, a mixture
of eight intestinal bacterial species, also has the capacity of
inducing the Th17 responses in GF mice (140). CD8+ T cells
are essential for beta cell destruction (141). A recent study
revealed that insulin-reactive pathogenic CD8+ T cells were
activated as a result of bacterial composition change caused
by antibiotic treatment and thus led to the acceleration of
diabetes progression in a NOD transgenic mouse model (142),
suggesting that compositional change are likely responsible for
CD8+ T cells regulation. Recently, Rouxel et al. suggested
that MAIT cells known as innate-like lymphocytes might exert
protective impact on T1D by maintaining gut integrity and
controlling anti-islet autoimmune responses (143). It has been
reported that the number of MAIT cells in GF mice was lower
than that of specific pathogen-free mice, indicating a close
interplay between MAIT cells and gut commensals (144). The
iNKT cells have also been recently considered to play a key
pathogenic role in the development of T1D since the cytokine-
secretion phenotype of iNKT17 cells, mainly IL-17-producing
phenotype, could directly trigger autoimmune diabetes (145). It
was identified that the gastrointestinal microbiota could promote
iNKT17 cell differentiation and acquire a specific cytokine-
secretion phenotype (146). One piece of evidence supporting this
notion is that GF mice displayed less mature and hyporesponsive
iNKT cells (147, 148). In addition, De Giorgi et al. found
that the increase in iNKT17 cell differentiation in NOD mice
correlated with specific intestine bacterial composition, which
was characterized by increased microbial richness, elevated
frequency of Bacteroidales, and reduced relative abundance of
Clostridiales strains (149).
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Impact of Gut Microbiota on Intestinal
Permeability
There is emerging evidence suggesting that the permeability of
the intestinal barrier can be regulated by microbial community
(72, 150–153). Several commensals have been demonstrated to
have a beneficial impact on mucosal barrier integrity, while some
other bacteria exert adverse effects (154).

In recent years, a considerable amount of studies have
recognized a negative correlation between butyrate-producing
species and the risk of T1D, as already mentioned above
(27, 32, 34, 36). These butyrate-producing species have been
reported to have a pivotal role in the maintenance of intestinal
barrier integrity. It was identified that butyrate could reduce
gut permeability by promoting the assembly of tight junctions
(TJ) (155) as well as inducing mucin synthesis (131), and
the role of butyrate in restoring TJ barrier was achieved by
affecting the expression of TJ proteins comprising claudin-
2, occludin, cingulin, and zonula occludens (ZO) proteins
(156). Despite the great variability of intestinal microbiota
associated with T1D, most published studies have found that
Bacteroides were positively associated with T1D development
(24, 27, 28, 30, 32, 34, 38). These bacteria are able to
ferment glucose and lactate to propionate, acetate, and succinate
(157), which cannot induce the biosynthesis of mucin-like
butyrate (158). Conversely, these bacteria would reduce the
assembly of TJ and generate an increase in gut permeability,
eventually promoting the T1D-associated autoimmunity (27,
150). Collectively, the bacteria capable of converting lactate
to butyrate contribute to increased mucin synthesis and TJ
formation, thereby facilitating gut health. In contrast, bacteria
metabolizing lactate to other SCFAs are related to impaired TJ
with a consequential increase in gut permeability and result
in the onset of T1D (27). Certain producers of lactate may
produce net butyrate (159); thus, these bacteria may also be
of great significance for the intestinal barrier function. For
instance, Bifidobacterium longum subspecies infantis, lactate-
producing bacteria, were demonstrated to have the capacity
to protect intestinal permeability (160). Several bacteria with
probiotic effect including Lactobacillus johnsonii N6.2 (57), B.
lactis (161), Lactobacillus rhamnosus and Lactobacillus reuter
(162), and Lactobacillus plantarum (163) were also reported to
be able to decrease intestinal permeability (164).

However, as yet, the mechanisms underlying the modulation
of epithelial barrier function by gut microbiota are complex and
remain unclear (152). One of the potential pathways through
which gut microbiota affects intestinal permeability appears to
be dependent on high levels of zonulin, whose production can
be regulated by bacterial colonization (165, 166). Zonulin has
been discovered to reversibly regulate intestinal permeability

by modulating TJ (95, 167, 168). It was reported that there
was increased zonulin release coincident with an increased
permeability before the onset of clinically evident T1D (5). It
was supposed that imbalanced microflora colonization could
induce the upregulation of zonulin into gut lumen (7). The
released zonulin was then recognized by receptors on the
surface of intestinal epithelial cells and elicited changes in TJ
dynamics including the remodeling of cytoskeleton and the
phosphorylation of ZO-1 and occludin (169). In the end, gut
permeability was enhanced as a consequence of the disassembly
of TJ (169, 170).

CONCLUSIONS

A large number of studies have demonstrated that the altered
abundance of specific members or reduced diversity of gut
microbiota was associated with the progression of T1D. However,
the exact role of gut microbiota in the pathogenesis of
T1D remains controversial. Up to now, the most convincing
evidence for a causal link between intestinal microbiome and
the disease comes from well-controlled intervention studies
in murine models. These studies illustrated the efficacy of
probiotic supplement, antibiotic use, FMT, and diet intervention
in modifying the risk of T1D via changing the gut colonization
patterns. Furthermore, increasing evidence has indicated that
the involvement of intestinal microflora in T1D pathogenesis
may be through exerting impact on immune homeostasis and/or
gut permeability. Taken together, these findings reviewed here
underscore the importance of maintaining healthy microbial
composition and provide a new insight into T1D prevention
or treatment measures. However, translating these insights into
feasible therapeutic measures might be challenging. Further
randomized controlled studies in large human cohorts are needed
to help answer this chicken–egg question and confirm the efficacy
of microbiota-based therapeutic approaches.
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