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Abstract: Cancer is the second leading cause of death globally, and breast cancer (BC) is the second
most reported cancer. Although the incidence rate is reducing in developed countries, the reverse
is the case in low- and middle-income countries. Early detection has been found to contain cancer
growth, prevent metastasis, ease treatment, and reduce mortality by 25%. The digital mammogram
is one of the most common, cheapest, and most effective BC screening techniques capable of early
detection of up to 90% BC incidence. However, the mammogram is one of the most difficult medical
images to analyze. In this paper, we present a method of training a deep learning model for BC
diagnosis. We developed a discriminative fine-tuning method which dynamically assigns different
learning rates to each layer of the deep CNN. In addition, the model was trained using mixed-
precision training to ease the computational demand of training deep learning models. Lastly, we
present data augmentation methods for mammograms. The discriminative fine-tuning algorithm
enables rapid convergence of the model loss; hence, the models were trained to attain their best
performance within 50 epochs. Comparing the results, DenseNet achieved the highest accuracy of
0.998, while AlexNet obtained 0.988.

Keywords: breast cancer; deep convolution neural network; discriminative fine-tuning; mammogram;
mixed-precision training

1. Introduction

Cancer is the second leading cause of death globally, accounting for about one in every
six deaths reported worldwide. Breast cancer (BC) is the second most reported cancer,
with about 2.09 million reported cases and 627,000 deaths in 2018 alone [1]. Although
the incidence rate is reducing in developed countries, the reverse is the case in low- and
middle-income countries; for instance, African countries accounted for 50% of the reported
cases and 58% of deaths in 2018. Moreover, BC survival rate has increased to about 80%
in North America (70% among black women on the continent) and 60% in Sweden and
Japan, whereas it remains less than 40% in low-income countries [1]. This is because the
low- and middle-income countries have inadequate health management facilities such as
diagnosis and treatment facilities; this results in late detection and late-stage treatment
among women with the disease [2].

Breast cancer is common among women, although a few cases among men have been
reported [3]. BC is a malignant growth that starts from either the lobules or the milk duct
of the breast. Ductal carcinoma in situ (DCIS) is a precancerous condition that begins its
growth and is contained in the milk duct; it is considered the earliest appearance of BC and
is easily detected by breast exam. Similarly, lobular carcinoma in situ (LCIS) is an abnormal
growth that begins and is contained in the milk-producing lobule cells but does not invade
or spread to other parts of the breast. However, unlike DCIS, LCIS is not easily detected
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by breast exam. BC can be invasive; a cancer that begins in the milk duct but spreads to
other parts of the breast is called invasive ductal carcinoma (IDC), while one that grows
from the lobule cells and then spreads to the other parts of the breast is called invasive
lobular carcinoma (ILC). Lastly, BC can be metastatic when the cancer cells penetrate the
circulatory or lymph system, spreading to other parts of the body via the bloodstream.

Early diagnosis of BC has been found to constrain cancer growth, prevent spreading,
ease treatment, and reduce the mortality rate by 25% [4,5]. BC diagnosis techniques
include breast exams, biopsy, mammograms, breast ultrasound, and magnetic resonance
imaging (MRI). Digital mammographic screening is the most common, cheapest, and
most effective BC screening technology capable of detecting up to 90% BC even before
a lump can be felt by breast exam [6]. It uses a low-dose X-ray imaging of the breast
where tissues in the breast, including tumors, appear as different shades of gray on the
image. This makes mammogram screening the choice diagnostic technique in low- and
middle-income countries.

In diagnosing BC from a mammogram, radiologists look for specific abnormalities
such as architectural distortion of breast tissue, alignment of the two breasts, masses, and
calcification. Mammograms of the two breasts are taken from two views—the craniocaudal
view (top-bottom view) and mediolateral oblique (MLO) view—to give the radiologist
a comprehensive view for the examination (see Figure 1). Radiologists interpret their
diagnosis using a standardized breast imaging reporting and data system (BI-RADS) scale
developed by the American College of Radiology (ACR) [7]. The BI-RADS scale ranges
from categories 0 to 6 detailed in Table 1.
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However, due to low contrast, mammogram images are among the most difficult
medical images to analyze. The sensitivity of mammograms is greatly affected by breast
density and fats, which are radiolucent; hence, their appearance is similar to mass or
calcification in the image [6]. As a result, the sensitivity of mammograms to early detection
and accurate diagnosis has been estimated at 85–90% [8]. Today, medical centers face
the challenge of screening an increasingly high volume of mammograms for accurate
diagnosis, including early detection. To assist the radiologist, computer-aided diagnostic
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(CAD) systems have been proposed to reduce misdiagnosis. The developed CAD systems
are based on different machine learning techniques [9–11]. However, the most successful of
these techniques are based on deep convolution neural networks (CNNs) for the detection
of mammograms [12,13]. While this method has produced very commendable results, it
suffers from data availability. Deep CNN models require substantial training data (in order
of hundreds of millions) to achieve high accuracy, sensitivity, and specificity; meanwhile,
the medical image dataset is usually scanty (available in tens of thousands). In addition to
data availability, deep CNN requires high computational power. This twin problem has
greatly limited the clinical application of these models.

Table 1. Description of BI-RADS categories.

Category Diagnosis Description

0 No findings
The mammogram does not provide sufficient information or findings

are inconclusive.
Follow-up examination may be recommended.

1 Negative No BC traces or findings, although routine screening is recommended.

2 Benign Confirmation of benign finding; routine screening is recommended.

3 Probably benign Findings that have high probability
(>0.98) of being benign; 6 month interval follow-up is recommended.

4 Suspicious
abnormality Probable (0.3–0.94) malignant growth; a biopsy is recommended.

5 Highly suspicious
of malignancy

Abnormal growth that has high probability (≥0.95) of being malignant;
doctor’s decision should be sought.

6 Proven cancer Biopsy-confirmed malignant growth.

In this paper, we show that this twin problem can be addressed by a data- and
computation-efficient method of fine-tuning deep learning models. We propose layer-wise
discriminative fine-tuning and mixed-precision training, which both enhances high-speed
convergence and improves accuracy. Lastly, we compare the performance of five top
deep learning models trained on these techniques. Thus, in addition to implementing
discriminative fine-tuning and mixed-precision training for super-convergence, this pa-
per aims to demonstrate, by experiment, the best deep CNN models for mammogram
classification, especially when data are scanty, to inform and guide future research and
development properly.

The remainder of this paper is organized as follows: the theoretical framework and a
review of related works are presented in Section 2; the dataset augmentation technique, dis-
criminative fine-tuning, and mixed-precision training are presented in Section 3 along with
the architecture of models employed in transfer learning; lastly, the results are presented
in Section 4.

2. Review of Related Works

It has been shown that the generalization error of deep CNN increases substantially
when the training example is small [14]; accordingly, all the state-of-the-art models were
trained on a very large dataset (typically hundreds of millions of training data points) to
ensure their training, validation, and test accuracy. However, medical images are available
in a limited number (fewer than hundreds of thousands). Therefore, an effective algorithm
needs to be developed to adapt a network trained on domains with voluminous training
data to the small dataset available in the medical domain. Domain adaptation techniques
are effective since they provide a mechanism of transferring knowledge from a source
domain (for instance, domain with voluminous training examples) to a target domain
(where training data are scarce) by exploring domain-invariant structures that underline
distribution discrepancy in the two domains. Transfer learning, an example of a domain
adaptation technique, is a method of retraining a previously trained deep CNN (base
model) in a way that facilitates the reuse of its learned features and applying them to a new
task (target model) by fine-tuning their fully connected layers only [15].
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2.1. Methods of Transfer Learning

Transfer learning involves retraining a previously trained model (base model) on a
new dataset from the current problem (target) domain. Depending on the similarity of
the target domain and the domain where the base model is trained (usually called source
domain), transfer learning can be feature extraction or fine-tuning. Feature extraction is
usually applied when the target domain dataset is scanty and similar to the source domain.
This is achieved by replacing the last fully connected layer of the base model architecture
with a new layer corresponding to the target output, initializing the other layers with the
weights from the previous training scenario, and retraining only the newly added layer.
On the other hand, fine-tuning is applied either when the dataset is scanty or when the
problem domains are different. This is achieved by replacing the last layer of the base
model with a new layer corresponding to the target output, initializing the other layers
with weights from the previous training scenario, and training the entire network again.

There are various methods of performing transfer learning to avoid overfitting the
model, a few of which are as follows:

a. Self-tuning transfer learning [16]: this method combines semi-supervised learning
(SSL) with transfer learning. The SSL creates a pseudo-labeled dataset by exploring
the latent structure of an unlabeled dataset which is then used to fine-tune the base
model. The self-tuning transfer learning (STTL) algorithm enables a joint exploration
of labeled and unlabeled datasets to create a larger dataset for transfer learning of a
pretrained base model. However, since a model is as good as its labeled data, this
method could introduce inaccurately labeled data into the dataset, which significantly
limits its use in a medical scenario.

b. Adversarial fine-tuning [17]: this method provides a fine-tuning technique for ad-
versarial training (AT). AT introduces adversarial attacks into deep learning data,
making the model robust to noise. However, training AT from scratch (just like any
other deep learning method) incurs a high computational cost and, when using few
data, could result in extreme overfitting. Adversarial fine-tuning (AFT) presents a
transfer learning method in AT by optimizing the learning rate. Using a slow to
fast learning rate scheduling during AT [17] demonstrates a significant reduction
in computational cost and improved model accuracy. This method was applied to
skin cancer detection in [18] to achieve an improved sensitivity of +5.67% but a slight
improvement (+0.78%) in accuracy compared to other methods [18].

c. Intra fine-tuning [19]: while transfer learning can be achieved regardless of the
problem domain of the base model, the intra fine-tuning (IFT) method is applied in a
non-distance dataset, i.e., intra-domain. Compared to a transfer learning from Ima-
geNet, IFT showed a significant reduction in computational time but no improvement
in training and validation accuracy [19].

d. Image-specific fine-tuning [20]: this method provides image-specific adaptation to
unseen object classes, i.e., zero-shot learning for image segmentation. Like STTL, this
method also explores both supervised and unsupervised labeling approaches for
image bounding boxes. Moreover, it uses a weighted loss function for interaction-
based uncertainty in the fine-tuning process to limit the effect of the inaccurate label.

e. Learning to Reweight [21]: this method uses meta-learning to reassign weights to
the deep learning model on the basis of the direction of their gradient flow. A meta
gradient descent step was performed on each mini-batch example to minimize the
loss and validated on the validation set. The authors claimed that the method needs
no additional hyperparameter tuning and is robust to class imbalance. Although
this method has not been applied to computer vision, it reportedly achieved a boost
improvement in natural language processing.

In summary, while traditional transfer learning can be computationally intensive, take
a considerable time to converge, and is prone to overfitting, the above methods carefully
avoid that. This shows that a careful fine-tuning of a deep learning model could improve
generalization and allow faster convergence. However, the methods reviewed above are
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limited in scope, applicability, significant improvement, and generalization. In this work,
we present discriminative fine-tuning, which dynamically assigns different learning rates
and momentum to each layer of the network, unlike AFT which performs a learning rate
schedule. DFT has a wide range of applications; it can be applied to different domains,
image segmentation, language models, etc. It also works with any optimizer, as well as
additional regularization techniques.

2.2. Mammogram Classification Using Transfer Learning

Many researchers have exploited these mechanisms to obtain good classification
results from medical images, especially mammograms; some also compared the results of
different base models. The detection of calcification and masses was presented in [22] using
the feature extraction approach. Four state-of-the-art (SOTA) CNN models were trained as
feature extractors by freezing all but the last layer of the models. In addition, instead of
training on a full mammogram image, the models were trained on patches with the aim of
localizing the abnormalities; a total of 2500 patches were used to train the models. After
training, VGG achieved the highest overall accuracy of 92.53%, while AlexNet, GoogleNet,
and ResNet achieved 91.23%, 91.10%, and 91.80%, respectively [22]. Although the author
performed feature extraction, which trained only the last layer of the networks, the training
demanded high computational power (a workstation with an NVIDIA GeForce TITAN X
GPU was used) and longer compute time (up to 8 h for VGG).

Classification of mammograms into benign calcification, malignant calcification, be-
nign mass, and malignant mass was presented in [23]. The ResNet50 model was fine-tuned
in two stages. In the first stage, patches from the curated breast imaging subset of the digital
database for screening mammography (CBIS-DDSM) were used to fine-tune the model.
This fine-tuning was carried out using three-stage learning rate schedules: (1) learning
rate was set to 10−3, and only the last layer was trained for three epochs, (2) learning rate
was set to 10−4, and only the last 46 layers were trained for ten epochs, and (3) learning
rate was set to 10−5, and all the layers were trained for 37 epochs. In the second stage, the
whole mammogram was trained using two-stage schedules: (1) learning rate was set to
10−4, with a weight decay of 0.001, and only the last layer was trained for 30 epochs, and
(2) learning rate was set to 10−5, with a weight decay to 0.01, and all layers were trained
for 20 epochs. A mean accuracy of 99% was achieved at the 99th epoch of training the
ResNet50 model. The model was trained on a workstation with an NVIDIA 8 GB Quadro
M4000 GPU (indicating a high computation demand). However, it can be seen that the
learning rate schedule strategy of fine-tuning paid off, as shown by good improvement
within a few epochs of training compared to [22].

Classification of whole mammograms using the transfer learning approach was pre-
sented in [24]. The authors used mammograms acquired from the University of Kentucky
Medical Center to fine-tune AlexNet and ResNet50 models. The models were trained using
two groups of four NVIDIA 8 GB GTX 1080 GPUs (illustrating the high computational
demand of the fine-tuning process). The model achieved the best AUC of 0.7274 with
AlexNet [24]. Similarly, a performance comparison of the SOTA CNN model on the CBIS-
DDSM dataset was presented in [25]. The study aimed to show the improvement of the
transfer learning method over training from scratch. The author trained five SOTA models
using a fixed learning rate. Although all models achieved an improved performance above
training from scratch, the highest accuracy of 75.5% was obtained by ResNet152, and the
best AUC of 0.804 was obtained by ResNet50 [25]. From these results, we note that not only
does the traditional transfer learning approach demand high computational power, but it
is also prone to overfitting, as shown by the AUC obtained.

A deep adversarial domain adaptation for breast cancer screening was presented
in [26]. A model trained on CBIS-DDSM was adapted to new data acquired from West China
Hospital. A two-stage approach was adopted. In the first stage, adversarial adaptation
was performed where the input was CBIS-DDSM, which was used to train the adversarial
network. By fixing the generator, the classifier was updated by maximizing the discrepancy
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ratio of the target domain; subsequently, the classifier was fixed so that the generator could
be updated by minimizing the discrepancy on the target domain. In the second stage, the
performance of the model on the target domain was improved by performing a case-level
end-to-end training that extracted additional features and fused them with features learnt
from the source domain. Although the target domain had a smaller dataset, the model
achieved the highest accuracy of 85.15% with ResNet34 and the best AUC of 0.86 with
ResNet101 [26]. This process was quite complex and demanded high computational power;
the model was trained on a Tesla K40m 12 GB GPU for 400 epochs. In this paper, we show
that better results can be achieved within a few epochs, conserving energy and demanding
low compute power.

In [27], breast cancer classification from breast ultrasound using probability-based
deep learning feature fusion was presented. A pretrained DarkNet53 model was used for
feature extraction; these features were reduced using reformed differential evaluation and
reform gray wolf algorithms. The best features were then fused using a probability-based
serial approach. These features were then fed into different machine learning classifiers.
The cubic support vector machine (C-SVM) classifier obtained the highest accuracy of 99.3%
on the dataset.

Most of the papers reviewed used the CBIS-DDSM dataset; the work of [28] was
validated on the INBreast dataset, which serves as a good comparison and benchmark
for our method. In [28], feature extraction was performed using multifractal dimensions
to extract multiple features from five different regions of interest blocks. The extracted
features were reduced using a genetic algorithm; then, the reduced features were used
to train the artificial neural network. The method was validated on four popular mam-
mogram datasets, and the best result was obtained on the INBreast dataset. The highest
accuracy of 99% (binary classification) was obtained, with sensitivity and specificity of
98.44 and 100%, respectively.

Table 2 shows a summary of the related works considered. From the table, most
fine-tuning algorithms demand high computational power, as evident by powerful GPUs,
with longer training episodes. The DFT presented in this work is capable of obtaining the
best performance within a few epochs of training with low computational demand and low
memory footprint, facilitated by mixed-precision training. In addition, most works focused
on the binary classification of CBIS-DDS, which is not quite informative to the radiologist.
In this work, we consider classifying mammograms using the BI-RAD numbers, which is a
diagnostic and reporting standard among radiologists.

Table 2. Summary of related works.

Reference Method Dataset Limitations

[22], 2018 Traditional feature extraction CBIS-DDSM High computational demand and long training
episode (8 h)

[23], 2019 Gradual fine-tuning with episodes of
learning rate annealing schedules CBIS-DDSM High computational demand and long training

episode (99 epochs)

[24], 2018 Traditional fine-tuning CBIS-DDSM High computational demand, low AUC,
and overfitting

[25], 2019 Traditional fine-tuning CBIS-DDSM High computational demand, low AUC,
and overfitting

[26], 2021 Deep adversarial domain adaptation CBIS-DDSM Complex algorithm with high computational
demand and long training episode (400 epochs)

[27], 2022

Feature extraction plus feature selection
using twin algorithms: reformed

differential evaluation and reformed
gray wolf algorithm.

Breast ultrasound images Long training episodes and additional computation
burden introduced by feature selection algorithms

[28], 2021
Multifractal dimension feature

extraction, feature reduction using GA,
and classification using ANN

DDSMMini-
MIASINBreastbreast cancer

digital repository

Not end-to-end trained; each algorithm introduced
computational bottlenecks that aggregated to high
computational demandNot compatible with SOTA

CNN models
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3. Materials and Methods

The summary of this work is presented in the block diagram of Figure 2. The details
of the block diagram are presented in this section. The dataset is discussed in Section 3.1,
followed by data augmentation, while the SOTA CNN models used are discussed in
Section 3.3. The discriminative fine-tuning technique and mixed-precision training are
discussed next, giving the complete training process. Validation and a discussion of the
results are presented in the next section.
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3.1. Dataset

To demonstrate how a small dataset can be utilized to achieve great training and
validation accuracy, the INBreast dataset was used [7]. The dataset was gathered at the
Breast Center, Porto, with permission from the Hospital’s Ethics Committee and National
Committee of Data Protection. The dataset consists of 117 cases, out of which 90 cases have
two views (CC and MLO views) of the breast pair, and 25 cases underwent mastectomy
leaving only one breast for the two views. The total number of images in the dataset is
410. The images are available in the standardized digital imaging and communication in
medicine (DICOM) format, in which medical images are stored with the patient’s details
and medical history. However, all confidential information was removed in line with data
protection protocol. The nonconfidential information available was the breast description
and BI-RADS category, as summarized in Figure 3.
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3.2. Data Augmentation

In addition to being a small dataset, the INBreast dataset is highly biased toward a
particular breast finding and BI-RADS category (see Figure 3); this is usually referred to
as a class imbalance problem. The category or class with a higher number in the dataset
is called the majority group, whereas the that in a smaller number is called the minority
group. Class imbalance presents a challenge to the deep learning model; it results in over-
classification of the majority group, while the minority class is misclassified as belonging to
the majority group.

Techniques for handling class imbalance include random minority oversampling,
random majority undersampling, and cost-sensitive learning [29]. Cost-sensitive learning
presents additional computational cost to the training algorithm, whereas random majority
undersampling leads to the loss of valuable data. Hence, random minority oversampling
was employed in this work to even out the imbalance.

On the other hand, training a deep convolution network with a small training dataset
leads to overfitting. To prevent this, data augmentation is very imperative. Augmentation
in this project was conducted with two goals: increasing the dataset and increasing variance
within the dataset. We noted that the mammographic image quality was affected by con-
trast, sharpness, exposure, and noise, all of which depended on the machine. Therefore, we
simulated these factors and synthesized additional images to augment our scanty dataset.

The additional images were synthesized by randomly performing Gaussian blurring,
intensity shifting, internal rotation, and mild white noise.

Gaussian blurring applies two-dimensional Gaussian filters on the input image to
remove noise; however, in this case, Gaussian blurring was used to add within-class
variance to the dataset. The filter is developed as an extension of one-dimensional Gaussian
filter, given by

G(x) =
1√

2πσ2
e−

x2

2σ2 (1)

Thus, the two-dimensional Gaussian filter is given by

G(x, y) =
1√

2πσ2
e−

x2+y2

2σ2 (2)

where σ2 is variance of the Gaussian filter. It can be noticed that Equation (2) is a product
of two Gaussian filters. Applying Equation (2) as an image filter to pixel coordinate (r,c)
according to [30] yields

G(r, c) = e
||r−c||2

v (3)

where r is the row, and c is the column coordinate. From Equation (3), Gaussian blurring
works by adjusting the Euclidean distance between neighboring pixel intensities. Blurring
is a common phenomenon encountered in medical images. It is usually introduced during
the process of capturing the mammographic image. Thus, introducing Gaussian blurring
to the training dataset increases the dataset and increases the variance within the dataset,
making the model more robust.

The image intensity shifting was simulated to reflect poor mammogram exposure,
which could affect the performance of both the radiologist and our algorithm. Gamma
intensity transformation was employed here; it is mathematically given by

I0 = cIγ, (4)

where c and γ are nonzero constant values, and I0 is the new intensity shifted by c and γ.
Likewise, image rotation is achieved by randomly adding or subtracting a small angle

ϕ from the coordinate of the original image; this is mathematically given by

(r0,c0) = rcosϕ ± csinϕ. (5)
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The overall augmentation algorithm was as follows: an image was randomly picked
(with replacement) from the dataset. The three augmentation transformations to be per-
formed were defined, and then a pipeline of these augmentation transformations was
formed, which was then randomly selected from and applied to the image. After the
transformation was applied to the image, the new augmented image was then saved to
disk. Pseudocode 1 for this algorithm is summarized below.

Pseudocode 1: Data augmentation algorithm.

Input: (D : Dataset,
T : list of augmentation transformations)
Output: Daug : Augmented Dataset

Step 1: Randomly select an image I from D
Step 2: Randomly select an augmentation transformation F from T
Step 3: Randomly select the parameter P for F
Step 4: Apply the augmentation transformation F on the image I using the parameter P
Step 5: Save the image I in the augmented dataset Daug

3.3. CNN Model Architecture

To test the hypothesis, transfer learning was performed using popular pretrained
CNN models. In this project, AlexNet, VGG, ResNet, DenseNet, and SqueezeNet were
used; the architectures, as well as the central design idea of each of these networks, are
discussed below.

AlexNet [31]: this model is an eight-layer network consisting of five convolutional
layers and three fully connected layers, pretrained on the high-resolution ImageNet dataset.
AlexNet, developed by Alex Krizhevsky, Geoffrey Hinton, and Ilya Sutskever, won the
2012 ImageNet competition with a 15.3% top five error rate and has since become one of
the baseline models in CNN history.

VGG [32]: this model is a 16-layer CNN developed by the Visual Geometry Group,
Oxford University. The model was pretrained on the ImageNet dataset for the ImageNet
competition. VGG was the first runner-up of the 2014 ImageNet classification task. VGG
is desired for its uniform 3 × 3 convolution kernel used in building the model’s archi-
tecture; due to its simple kernel structure, it has become a favorable model for feature
extraction tasks.

SqueezeNet [33]: this model achieves similar performance to AlexNet but with 50%
fewer parameters. The parameter reduction was achieved using 1 × 1 filter instead of
larger filters and decreasing the number of input channels to their 3 × 3 filters. This follows
from [32,34] where smaller filters were shown as an approximation of larger filters. Thus,
instead of using larger filters, smaller filters are repeatedly used throughout the network,
guaranteeing parameter reduction. On the other hand, the accuracy is maintained by
ensuring that each convolution layer receives large activation maps from the previous layer;
that is, pooling (or downsampling) is not applied to earlier layers of the network. These key
intuitions are implemented in the fire module of the network, which comprises a squeeze
module (1× 1 filter) and an expand module (which has a 1× 1 filter followed by 3 × 3 filter).
The model was trained using similar parameters to AlexNet, and its performance was
benchmarked against AlexNet. It was found that SqueezeNet performs as well as AlexNet,
despite its fewer parameters [34].

ResNet [35]: generally, deeper convolutional networks outperform their shallow
counterparts [36]; however, training a deeper model increases the training error rate due
to the vanishing gradient problem. To solve this, ResNet introduced the residual block
(Equation (6)), which creates a connection between the output of a convolutional layer
and the original input to the layer using identity mapping [35]. Thus, the activation of a
residual block is given as

al = U(al − 1) + al − 1, (6)

where al is the activation of layer l, U(·) is a nonlinear convolutional transformation of the
layer, and al − 1 is the activation of previous layer l − 1. The skip connection of Equation (6)
enables more layers to be stacked on each other, resulting in a deep network. ResNet152, a
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152-layer convolutional network, won the 2015 ImageNet competition with a 3.57% top
five error rate, higher than human-level performance. In this work, ResNet101, a 100-layer
convolutional network pretrained on the ImageNet dataset, was used.

DenseNet [37]: it is possible to train a much deeper network with fewer parameters
and better accuracy than ResNet, by implementing a dense block (Equation (7)) instead of
a residual block (Equation (6)). The dense block creates a form of connection that allows
any layer within the network to be connected to all layers that follows it [32]. That is, layer
l receives feature activations from all its preceding l − 1 layers as follows:

al = T([a0, a1, . . . , a(l− 1)]), (7)

where a is the activation of the l-th layer, [a0, a1, . . . , a(l − 1)] is a concatenation of all the
previous layer activations which can be seen as a form of collective information gathered by
the network up to layer l − 1. T(·) is a nonlinear transformation that maps the concatenated
activation to the activation of layer l. Comparing Equations (6) and (7), the element-wise
operation of the skipped connection in Equation (6) results in a parameter increase in
O(C × C), whereas Equation (7) results in fewer parameters of O(l × k × k), where C
is the number of channels, k is the growth order of the dense connection, and l is the
number of layers. For example, ResNet101, a 101-layer convolutional network, has 10.2 M
parameters, while DenseNet-BC (with k = 12), a 100-layer convolutional network, has
0.8 M parameters [37].

3.4. Discriminative Fine-Tuning and Mixed-Precision Training

To obtain a good generalization, deep learning models must be trained on a large,
well-labeled training dataset, using a high-specification computer with graphics processing
units for a very long time. Hence, the state-of-the-art models in computer vision were
trained on ImageNet Large Scale Visual Recognition Challenge (ILSVRC) data, consisting
of hundreds of millions of well-labeled training data. When such huge training data are
not available or computational power is limited, the usual practice is to perform transfer
learning (see Section 2).

Because fine-tuning involves training the entire network all over again, the perfor-
mance of the model on the current problem depends on how well the training is conducted,
in addition to the high demand for computational power, as shown in Section 2.2. Overfit-
ting is one of the primary reasons for the poor performance of fine-tuned models. Over-
fitting occurs when a model performs very well on the training set but poorly on the test
and validation set; such model performs woefully when deployed and should be avoided,
especially in medical applications. Methods of overcoming overfitting include training
with an extensive training set, data augmentation, and regularization. Regularization refers
to techniques that make slight modifications to the learning algorithm such that the model
generalizes better on the unseen dataset. Regularization can be achieved by optimizing
hyperparameters such as learning rates, weight decay, batch size, and dropout.

In our previous work [29], we introduced discriminative fine-tuning, where we as-
signed different learning rates and momentum to each layer of the network. The idea is
that we found that each layer of the network is learning different features and, as such, has
different objectives. Hence, it would be good to tune each layer with different learning rates
and momentum to facilitate the learning process without getting stuck in a local minimum
or saddle point.

Mathematically, the parameter update scheme of the stochastic gradient descent (SDG)
is given as

θt+1 = θt − α
dJ(θt)

dθt
, (8)

where θt and θt+1 are the network parameters in the previous iteration t and new iteration
t + 1; the parameters are adjusted by the gradient of the network objective J(θt), scaled
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by the learning rate α. The network objective is a function of network loss and the weight
penalty (regularizer) given as

J(θ) =
1
D
D
∑
i=1
L(F (xi, θ), yi) + λΩ(θ), (9)

where L(·) is the loss function, F (·) represents the network output with a target or training
label represented by yi, and Ω(·) represents the regularization function scaled with λ.

By modifying Equation (8) such that each layer of the network parameters is fine-tuned
with different learning rates, the network would converge more rapidly.

θl
t+1 = θl

t − αl
dJ
(

θl
t

)
dθl

t
. (10)

By fine-tuning each layer at a different learning rate, we facilitate each network layer
to focus on learning its separate objective. This follows Zeiler and Fergus, who showed that
each layer of the deep CNN learns different features, with earlier layers learning primitive
features while later layers learn complex features.

Discriminative Learning Rate

How then do we select the learning rate for each network layer? The general wisdom
is to select a smaller learning rate for earlier layers. Since a pretrained network has already
learned primitive features, it is required to learn and select a larger learning rate for later
layers for faster convergence.

In this work, the selection of optimal learning rates was applied experimentally. We
designed a one-epoch training experiment where we varied the learning rate of the model
for each iteration in the epoch and observed the resulting network loss. Then the value
of the loss was plotted against the learning rate. The learning rates in the range of the
steepest slope (highest derivative) of loss were selected. These learning rates were then
distributed within the network layers, with the lowest value assigned to the earliest layer
and the highest value assigned to the latest layer. The layers in between were assigned
values according to a triangular law that increased the learning rate.

αl =

{
αmin +

αmax−αmin
αmax

l i f κlmax ≥ l < lmax

αmax − αmax−αmin
αmax

l i f κlmax ≤ l < lmax
, (11)

where αmax and αmin are the upper and lower bounds of the learning rate range determined
from the experiment, l is the layer, and κ is a random number used to linearly vary the
layers from lowest to highest layer. This idea was found to produce a better result and a
good generalization [38,39]. The complete Algorithm 1 is listed below.
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Algorithm 1: Discriminative fine-tuning algorithm.

1: Procedure DFT

2: Input:

(αmin : minimum learning rate,
αmax : maximum learning rate,
mmin: minimum momentum,
mmax : maximum momentum,
D: size of dataset,
batch_size)

3: Output: (θ : Network parameters)
4: t ← D

batch_size
5: κ ← rand(0, 1) //κ determines how rapidly the learning rate increase or reduces

while κt < 1
2 tmax

6: for t in each iteration do:
7: for l in each layer do:
8: αl

t ← αmin +
(

αmax−αmin
αmax

)
l //increase learning rate per layer

9: ml
t ← mmin +

(mmax−mmin
mmax

)
l //increasing the momentum per layer

10: vl
t+1 ← ml

tv l
t − αl

t
dJ(θl

t)
dθl

t

11: θl
t+1 ← θl

t +
l
t+1 //update the layer

parameters
12: end for
13. end for
14. end while
15. while 1

2 t ≤ κt < tmax
16. for t in each iteration do:
17. for l in each layer do:
18. αl

t ← αmin −
(

αmax−αmin
αmax

)
l //increase learning rate per layer

19. ml
t ← mmin −

(mmax−mmin
mmax

)
l //increasing the momentum per

layer
20. vl

t+1 ← ml
tv l

t − αl
t

dJ(θl
t)

dθl
t

21. θl
t+1 ← θl

t +
l
t+1 //update the layer parameters

22. end for
23. end for
24. end while
25. end Procedure

3.5. Experiment Setup

This experiment aimed to show the performance of different network architectures
when trained with a small dataset following our proposed data augmentation technique
and DFT. To achieve this, we trained five large CNN architectures using the transfer learning
approach. As a result of the limited computation resources, some constraints were fixed
while training. The constraints include (1) a reduction in the number of epochs ≤50, (2) a
reduction in training time, and (3) Optimal performance of the model before the end of
training time These constraints were achieved during training by adopting the DFT and
mixed-precision training [40].

To implement DFT, a single-epoch trial experiment was first carried out. In the
experiment, the learning rate was gradually increased for each new iteration, and the loss
of the model was observed. The range of learning rate where the gradient of the loss was
high was then taken as the learning rate for the discriminative fine-tuning. The result of
this experiment is discussed in Section 4.

In addition to DFT, we implemented mixed-precision training to account for the
training deep learning model’s huge computation and memory demand. The following
variables usually demand large memory storage during training: weights, activation, input
image, and output. These variables are usually stored using 32 bit IEEE single-precision
floating point (FP32) numbers with 32 bit memory for every number in the tensor. Using
FP32 results in high-precision operations at the cost of memory. By contrast, half-precision
stored numbers using only 16 bit (FP16) requires less memory than FP32. Unlike the
single-precision format, which is the de facto approach for training a large neural network,
half precision has been shown to lead to faster training, achieving 2–8 times improvement
while achieving comparable results [40]. Hence, in this work, mixed-precision training was
used to accelerate training time without losing network performance.
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Lastly, for the actual training of the deep CNNs, images in the dataset were first
converted from DICOM format to portable graphic network (PNG) format, and then they
were resized to 400 × 400 from their original resolution to reduce memory implications.
Then augmentation algorithm presented in Pseudocode 1was implemented on these resized
images; a total of 18,200 images were saved to disk after careful visual inspection. The
dataset was cleansed of repeated images, images that did not preserve breast anatomy
chirality, and so on. Finally, the new dataset contained 11,234 images. Then, the new
dataset was divided into training, validation, and testing subsets using a ratio of 80:15:5.
Mixed-precision training reduced the memory demand; hence, we increased the batch
size to 64, which accelerated the training and validation. The setup was implemented on
PyTorch and trained on an Asus laptop with an NVIDIA RTX 2070, Intel Core i7-8750H,
and 16 GB of RAM.

4. Results

The experimental results are presented in this section. With the experimental setup
discussed earlier, the state-of-the-art performance was obtained in just 50 epochs of training,
with each epoch running for an average of 90 s. This epoch runtime resulted from mixed-
precision training, which yielded a reduction in memory usage, allowing us to use a larger
batch size than if the training was conducted in FP32 precision; this eventually accelerated
the epoch runtime and training time. Likewise, the discriminative fine-tuning process
allowed us to dynamically assign a learning rate to each layer of the model, resulting in
quick convergence and high accuracy without overfitting.

The choice of the learning rate for the DFT algorithm was accomplished by running
a single-epoch trial experiment using different learning rates and observing how the loss
function increased or decreased during this epoch. The single-epoch trial experiment was
carried out for each model to guide our selection of the optimal learning rate used to train
each model. The learning rate selected was within the range where the slope of the loss
function reduced sharply (showing a high gradient). Figure 4 presents the result of this
trial experiment obtained for each model; the red bounding box represents the learning
rate selected for the model.

The training was achieved using the DFT approach (see Algorithm 1), and the results
of each model (the accuracy, precision, and recall) are presented in Table 3. A comparison
of each model’s accuracy is graphically presented in Figure 5.

The confusion matrix for each model is presented in Figure 6. We adopted the multi-
class sensitivity and specificity criteria in interpreting this confusion matrix. In multiclass
classification, the sensitivity of a model is its ability to predict a particular class correctly. In
contrast, sensitivity is the ability of the model to correctly predict that an image does not
belong to a particular class [41]. This is mathematically given as

MSNi =
TPi

TPi + FNi
, (12)

MSPi =
TNi

TNi + FPi
, (13)

where
TPi = Cij

∣∣
i=j,

FPi = ∑
i
Cij − TPi,

FNi = ∑
j
Cij − TPi,

TNi = ∑
i

∑
j
Cij − TPi − FNi − FPi,

(14)

where TPi is the true positive rate for class i which measures the number of images correctly
classified as class i, whereas TNi is the true negative rate for class i which measures the
number of images that is rightly classified as non-member of class i. Conversely, FPi is the
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false positive rate of class i which quantifies the total number of images that are wrongly
predicted to belong to class i, whereas FNi is the false negative rate which gives the total
number of images that belong to class i but the model predicted to belong to another class.

Table 3. Training results of each model.

Model Name Accuracy (%) Precision (%) Recall (%)

AlexNet 98.88 98.84 98.82
SqueezeNet 97.19 97.16 97.04

VGG 99.28 99.3 99.15
ResNet 99.5 99.7 99.5

DenseNet 99.8 99.82 99.77
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5. Discussion of Results

The Breast Imaging Reporting and Data System (BI-RADS) lexicon is a comprehensive,
standardized breast imaging report developed by the American College of Radiology and
widely adopted by radiologists. Hence, we think a good computer-aided diagnosis system
should report a mammogram classification using the BI-RADS standard. However, many
research works in developing a CAD system for breast cancer diagnosis are limited to
binary classification (benign or malignant) partly because of the small dataset and the
resulting curse of dimensionality.

This paper developed a fine-tuning algorithm that works well with SOTA CNN models
for multiclass classification using the BI-RADS numbers. Our algorithm achieved good
classification accuracy and high precision and performed well with other metrics, as shown
in Figure 7. The plots were generated from the confusion matrices shown in Figure 7 with
formulae presented in Equations (12)–(14). On each plot, the CNN models are on the x-axis,
while the BI-RADS class is on the y-axis.
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The numbers of false positives (FPs) and false negatives (FNs) are presented in Fig-
ure 7a,b, respectively, showing the misclassification of the model output for each BI-RADS
class. The FPs and FNs are of great interest in a medical diagnosis, especially cancer
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classification. The FP shows the number of cancers that can be reported as noncancerous,
resulting in late treatment and eventual death of the patient. Conversely, the FN is the
number of noncancerous (mild) cases falsely reported as cancerous; this could result in
overdiagnosis, mistreatment, and physiological stress on the patient. Hence, FPs and FNs
on an excellent CAD system should be minimal. As shown in Figure 7a,b, AlexNet and
SqueezeNet presented high FPs and FNs. Furthermore, the figure shows that BI-RADS
classes 2 and 5 were misdiagnosed because fatty breasts were sometimes misclassified
as cancerous. Lastly, class 6 showed no sign of FNs in all models, while all models but
SqueezeNet also showed no sign of FNs for class 6. This is because class 6 is known cancer
with a well-defined tumor that can hardly be misdiagnosed.

Model sensitivity measures how often a model correctly identifies the cancer classes.
This can be used to forecast how well the model will behave when deployed. The sensitivity
of each model to the BI-RADS classes is presented in Figure 7c. The model’s specificity
shows the probability of recognizing an image that does not belong to a particular class.
The class specificity is shown in Figure 7d; the figures represent sensitivity and specificity
as a probability (0 to 1). The figures show that ResNet and VGG were highly sensitive
with high specificity. Furthermore, note that all models were highly sensitive to class 6 but
showed a relatively weak sensitivity to classes 2 and 5, for the same reason provided above.
Although classes 2 and 5 may be confused, our model showed high specificity, with a
confidence factor <0.98.

In addition, to show that DFT could prevent overfitting, we visualized the inference
of the ResNet model on 42 randomly selected test images. A model which confidently
predicts a wrong class shows signs of overfitting [29]. Hence, in Figure 8, the model was
tested for overfitting by displaying each test image with the loss accrued by its decision
and the prediction probability, i.e., confidence level of its decision. The figure shows
that the majority of images were classified correctly with lower loss and high confidence
(probability), while the wrong classes were established with a lower confidence level.
Training with DFT enables each layer of the network to discover salient features that
enhance its decision; therefore, misclassification is achieved with lower probability and
high loss.

Although the INBreast dataset has received little attention in the literature, and fewer
studies have been conducted on multiclass classification tasks, we compared our work with
similar studies on the INBreast dataset reported in the literature, as shown in Table 4. Note
that BI-RADS multiclass classification was presented in [42] with a poor result of 83.9%
compared to 99.8% achieved in this work.

Table 4. Comparison of our results with those reported in literature.

Reference Dataset Highest Accuracy Reported (%)

[28] INBreast 99.0
[43] INBreast 90.0
[42] INBreast 83.9
[44] INBreast 97.27

Our method INBreast 99.80
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Figure 8. Visualization of ResNet prediction on 42 randomly selected test images. The following are
shown on each image: the predicted class by the model, the actual class it belonged to, the loss for
wrongly classifying the image, and the model’s prediction probability of the actual class (i.e., the
probability when the output is the actual class). It should be noted that the images are arranged in
decreasing order of model loss.

6. Conclusions

The performance comparison of deep learning models on the INBreast mammogram
dataset was presented in this paper. The models were fine-tuned using the discriminative
fine-tuning method, which dynamically assigns different learning rates and momentum to
different network layers to achieve rapid convergence and high performance. Moreover, a
multiclass classification based on the BI-RADS lexicon on the INBreast dataset was carried
out. The results showed good accuracy with a low false positive rate, low false negative
rate, high specificity, and high sensitivity of the models for each category of the BI-RADS
classes. Compared with the literature, the models presented here improve the state-of-the-
art results (to the best of our knowledge). Hence, discriminative fine-tuning works well
with state-of-the-art CNN models, achieving excellent performance without overfitting on
small datasets.
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