organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 3-(4-chlorobenzoyl)-1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2.2-dioxo-3,4,6,7,8,8a-hexahydro-1H-pyrrolo-[2,1-c][1,4]thiazine-1-carboxylate

A. Chitradevi,^a S. Athimoolam,^b* S. Asath Bahadur,^c S. Indumathi^d and S. Perumal^d

^aDepartment of Physics, Sri Subramanya College of Engineering & Technology, Palani 624 615, India, ^bDepartment of Physics, University College of Engineering, Nagercoil, Anna University, Tirunelveli Region, Nagercoil 629 004, India, ^cDepartment of Physics, Kalasalingam University, Krishnan Koil 626 190, India, and ^dDepartment of Organic Chemistry, Madurai Kamaraj University, Madurai 625 021, India

Correspondence e-mail: athi81s@yahoo.co.in

Received 31 March 2013; accepted 3 April 2013

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.048; wR factor = 0.144; data-to-parameter ratio = 14.6.

In the title compound, C₃₀H₂₈Cl₃NO₅S, the pyrrolidine ring adopts an envelope conformation (with the N atom as the flap) and the thiazine ring is in a distorted chair conformation. The molecular structure shows three intramolecular C-H···O interactions leading to self-associated ring S(6) and two S(7)motifs. In the crystal, the molecules are linked by $C-H \cdots O$ and C-H···Cl interactions. Two $R_2^2(10)$ and one $R_2^2(16)$ centrosymmetrically related ring motifs are observed in the unit cell and they are connected through C(6) and C(11) chain motifs extending along the b and c axes, respectively.

Related literature

For the biological and pharmacological properties of thiazine, pyrrolidine and pyrrolothiazine compounds, see: Armenise et al. (1991, 1998); Hemming & Patel (2004); Koketsu et al. (2002); Kueh et al. (2003); Moriyama et al. (2004). For ring puckering analysis, see: Cremer & Pople (1975). For hydrogenbonding interactions, see: Desiraju & Steiner (1999). For ring and chain motifs, see: Etter et al. (1990).

V = 2993.5 (3) Å³

Mo $K\alpha$ radiation

 $0.25 \times 0.21 \times 0.19 \text{ mm}$

5280 independent reflections

4593 reflections with $I > 2\sigma(I)$

 $\mu = 0.42 \text{ mm}^{-1}$

T = 293 K

 $R_{\rm int} = 0.022$

Z = 4

Experimental

Crystal data

C ₃₀ H ₂₈ Cl ₃ NO ₅ S	
$M_r = 620.94$	
Monoclinic, $P2_1/c$	
a = 14.0476 (8) Å	
b = 17.1365 (9) Å	
c = 13.8230 (8) Å	
$\beta = 115.893 \ (1)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer 28492 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.048$ 362 parameters $wR(F^2) = 0.144$ H-atom parameters constrained S = 1.04 $\Delta \rho_{\rm max} = 0.62 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.47 \text{ e} \text{ Å}^{-3}$ 5280 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C6−H6B···O41	0.97	2.38	3.051 (3)	126
C37-H37···O2	0.93	2.53	3.213 (3)	131
C50−H50···O41	0.93	2.58	3.282 (4)	132
$C6-H6A\cdots O3^{i}$	0.97	2.70	3.582 (3)	151
$C5-H5\cdots O1^{i}$	0.98	2.51	3.320 (3)	140
C8−H8B····Cl3 ⁱⁱ	0.97	2.86	3.678 (3)	143
C36−H36···O3 ⁱⁱⁱ	0.93	2.65	3.557 (3)	166
$C42 - H42B \cdots O42^{iv}$	0.97	2.61	3.478 (5)	148

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (iv) -x + 1, -y + 1, -z.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL/PC (Sheldrick, 2008); program(s) used to refine structure: SHELXTL/PC; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL/PC.

AC and SAB sincerely thank the Vice-Chancellor and Management of Kalasalingam University, Anand Nagar, Krishnan Koil, for their support and encouragement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5304).

References

- Armenise, D., Trapani, G., Arrivo, V. & Morlacchi, F. (1991). Il Farmaco, 46, 1023–1032.
- Armenise, D., Trapani, G., Stasi, F. & Morlacchi, F. (1998). Arch. Pharm. 331, 54–58.
- Bruker (2001). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Desiraju, G. R. & Steiner, T. (1999). In *The Weak Hydrogen Bond in Structural Chemistry and Biology*. New York: Oxford University Press Inc.
- Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. Hemming, K. & Patel, N. (2004). Tetrahedron Lett. 45, 7553–7556.
- Koketsu, M., Tanaka, K., Takenaka, Y., Kwong, C. D. & Ishihara, H. (2002). *Eur. J. Pharm. Sci.* 15, 307–310.
- Kueh, A. J., Marriott, P. J., Wynne, P. M. & Vine, J. H. (2003). J. Chromatogr. A, 1000, 109–124.
- Moriyama, H., Tsukida, T., Inoue, Y., Yokota, K., Yoshino, K., Kondo, H., Miura, N. & Nishimura, S. (2004). J. Med. Chem. 47, 1930–1938.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supplementary materials

Acta Cryst. (2013). E69, o706-o707 [doi:10.1107/S1600536813009148]

Ethyl 3-(4-chlorobenzoyl)-1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2dioxo-3,4,6,7,8,8a-hexahydro-1*H*-pyrrolo[2,1-c][1,4]thiazine-1-carboxylate

A. Chitradevi, S. Athimoolam, S. Asath Bahadur, S. Indumathi and S. Perumal

Comment

Thiazines occupy a unique place in medicinal chemistry since they show diverse biological properties such as antifungal, anti-inflammatory, anti-HIV, anti-psoriatic, sedative, neuroleptic, antitussive and anti-tubercular (Moriyama *et al.*, 2004; Koketsu *et al.*, 2002). In addition, compounds with a pyrrolidine sub-structure exhibit anti-tumour, analgesic, antidepressant, antihistaminic, anti-asthmatic and anti-Parkinson activities (Hemming & Patel, 2004; Kueh *et al.*, 2003). The pyrrolothiazine scaffold also shows anti-inflammatory, anti-fungal and anti-microbial activities (Armenise *et al.*, 1998; Armenise *et al.*, 1991).

The configuration and conformation of the title compound, (I) and the atom numbering scheme are shown in the *ORTEP* drawing (Fig. 1). The packing diagram of the title compound is shown in Fig. 2. The five-membered pyrrolidine ring is in envelope conformation [$\theta_2 = 0.413$ (2) Å, $\varphi_2 = 153$ (1)°] and the six-membered thazine ring adopts a slightly distorted chair conformation [$\theta_2 = 0.101$ (2) Å, $\varphi_2 = 101$ (1)° and $\theta_3 = 0.661$ (2) %A; Cremer & Pople, 1975]. The dihedral angle between the phenyl rings are observed to be 54.3 (1)°. The planes of the carboxylate groups are oriented with a dihedral angle of 22.3 (4)°.

The molecular structure conformation of the title compound features two intramolecular C—H···O interactions (Desiraju & Steiner, 1999). These intramolecular interactions are making self-associated ring S(6) and S(7) motifs (Table 1). Further, the crystal packing is stabilized through intermolecular C—H···O and C—H···Cl interactions. There are three centrosymmetric dimers are observed in the crystal, *viz.*, two ring $R_2^2(10)$ motifs and one $R_2^2(16)$ motif (Etter *et al.*, 1990), formed through C5—H5···O1ⁱ, C42—H42···O42ⁱ and C6—H6A···O3^{iv} interactions respectively. The C—H···Cl interactions connect the molecules along *b*-axis of unit cell and making a zigzag chain C(11) motif. Another chain C(6) motif is observed through C36—H36···O3ⁱⁱⁱ interaction, which is running along *c*-axis (For symmetry codes: see Table 1). Thus, the centrosymmetrically related dimers are tailored through these two chain motifs and the packing is stabilized.

Experimental

A mixture of ethyl 2-[2-(4-chlorophenyl)-2-oxoethyl]sulfonylacetate (1.6 mmol), *p*-chloro benzaldehyde (3.2 mmol) and pyrrolidine (1.6 mmol) was dissolved in ethanol (10 ml), heated until the solution turned yellow and stirred at room temperature for 2–5 days. After completion of the reaction, the crude product was purified using flash column chromatography on silica gel (230–400 mesh) with petroleum ether and ethyl acetate mixture (95:5 v/v) as an eluent and subsequently it was recrystallized from ethanol.

Refinement

All the H atoms were positioned geometrically and refined by the riding model approximation with d(C-H) = 0.93 - 0.98 Å and $U_{iso}(H) = 1.2 - 1.5 U_{eq}(C)$.

Computing details

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXTL/PC* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL/PC* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXTL/PC* (Sheldrick, 2008).

Figure 1

The molecular structure of the title compound with atom numbering scheme and 50% probability displacement ellipsoids. H-bonds are shown as dashed lines.

Figure 2

Packing diagram of the title compound viewed down the *a*-axis. H-bonds are shown as dashed lines.

Ethyl 3-(4-chlorobenzoyl)-1-(4-chlorobenzyl)-4-(4-chlorophenyl)-2,2-dioxo-3,4,6,7,8,8a-hexahydro-1*H*-pyrrolo[2,1-c][1,4]thiazine-1-carboxylate

Crystal data	
$C_{30}H_{28}Cl_3NO_5S$	V = 2993.5 (3) Å ³
$M_r = 620.94$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 1288
Hall symbol: -P 2ybc	$D_{\rm x} = 1.378 {\rm ~Mg} {\rm ~m}^{-3}$
a = 14.0476 (8) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 17.1365 (9) Å	Cell parameters from 2846 reflections
c = 13.8230 (8) Å	$\theta = 2.1 - 23.6^{\circ}$
$\beta = 115.893 \ (1)^{\circ}$	$\mu=0.42~\mathrm{mm}^{-1}$

T = 293 KBlock, colourless

Data collection

Duiu conection	
Bruker SMART APEX CCD area-detector diffractometer	4593 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$
Radiation source: fine-focus sealed tube	$\theta_{\rm max} = 25.0^\circ, \ \theta_{\rm min} = 2.0^\circ$
Graphite monochromator	$h = -16 \rightarrow 16$
ω scans	$k = -20 \rightarrow 20$
28492 measured reflections	$l = -16 \rightarrow 16$
5280 independent reflections	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: inferred from
$wR(F^2) = 0.144$	neighbouring sites
<i>S</i> = 1.04	H-atom parameters constrained
5280 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0788P)^2 + 1.5863P]$
362 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.62 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta ho_{ m min} = -0.47 \ m e \ m \AA^{-3}$

 $0.25 \times 0.21 \times 0.19 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
C2	0.30396 (17)	0.51264 (12)	0.30011 (17)	0.0434 (5)
H2	0.3262	0.5069	0.3775	0.052*
C3	0.32692 (17)	0.43589 (12)	0.25525 (18)	0.0421 (5)
H3	0.2936	0.4386	0.1765	0.051*
C4	0.52037 (17)	0.51148 (13)	0.28742 (17)	0.0462 (5)
C5	0.47658 (18)	0.57139 (13)	0.34189 (18)	0.0464 (5)
Н5	0.4931	0.5526	0.4145	0.056*
C6	0.5171 (2)	0.65580 (14)	0.3507 (2)	0.0581 (6)
H6A	0.5623	0.6692	0.4250	0.070*
H6B	0.5567	0.6626	0.3088	0.070*
C7	0.4188 (3)	0.70537 (18)	0.3067 (4)	0.0956 (12)
H7A	0.4288	0.7520	0.3499	0.115*
H7B	0.4001	0.7206	0.2331	0.115*
C8	0.3344 (2)	0.65402 (14)	0.3125 (2)	0.0639 (7)
H8A	0.3390	0.6528	0.3845	0.077*
H8B	0.2642	0.6709	0.2623	0.077*

C21	0.18549 (17)	0.52703 (12)	0.24388 (18)	0.0451 (5)
C22	0.13824 (19)	0.55639 (15)	0.1399 (2)	0.0539 (6)
H22	0.1798	0.5666	0.1043	0.065*
C23	0.0312 (2)	0.57072 (16)	0.0883 (2)	0.0597 (6)
H23	0.0006	0.5914	0.0192	0.072*
C24	-0.02958 (19)	0.55391 (16)	0.1408 (2)	0.0596 (6)
C25	0.0141 (2)	0.52410 (16)	0.2430 (2)	0.0626 (7)
H25	-0.0283	0.5125	0.2773	0.075*
C26	0.12222 (19)	0.51156 (15)	0.2946 (2)	0.0546 (6)
H26	0.1526	0.4924	0.3646	0.066*
C31	0.27926 (17)	0.36683 (12)	0.29028 (18)	0.0441 (5)
C32	0.22590 (18)	0.30213 (13)	0.21383 (18)	0.0470 (5)
C33	0.1529 (2)	0.25797 (17)	0.2318 (2)	0.0703 (8)
H33	0.1360	0.2714	0.2877	0.084*
C34	0.1049 (3)	0.19463 (18)	0.1685 (3)	0.0780 (9)
H34	0.0551	0.1656	0.1805	0.094*
C35	0.1315 (2)	0.17463 (15)	0.0871 (2)	0.0607 (6)
C36	0.2019 (2)	0.21813 (16)	0.0660 (2)	0.0589 (6)
H36	0.2184	0.2044	0.0099	0.071*
C37	0.24830 (19)	0.28249 (14)	0.12862 (19)	0.0521 (5)
H37	0.2950	0.3130	0.1137	0.062*
C41	0.47985 (19)	0.53106 (14)	0.16841 (19)	0.0514 (5)
C42	0.5045 (3)	0.6192 (2)	0.0487 (2)	0.0892 (10)
H42A	0.4357	0.6440	0.0231	0.107*
H42B	0.5007	0.5780	-0.0010	0.107*
C43	0.5867 (4)	0.6772 (3)	0.0586 (4)	0.1303 (18)
H43A	0.5781	0.7233	0.0934	0.195*
H43B	0.5797	0.6904	-0.0117	0.195*
H43C	0.6556	0.6554	0.1005	0.195*
C44	0.64259 (18)	0.50781 (16)	0.3518 (2)	0.0579 (6)
H44A	0.6707	0.5581	0.3449	0.069*
H44B	0.6589	0.5012	0.4271	0.069*
C45	0.7021 (2)	0.44590 (17)	0.3230 (3)	0.0659 (7)
C46	0.7454 (2)	0.3830 (2)	0.3891 (3)	0.0887 (10)
H46	0.7330	0.3769	0.4495	0.106*
C47	0.8069 (3)	0.3284 (2)	0.3689 (5)	0.1182 (16)
H47	0.8355	0.2863	0.4150	0.142*
C48	0.8248 (3)	0.3370 (3)	0.2819 (5)	0.1174 (18)
C49	0.7820 (3)	0.3981 (3)	0.2116 (5)	0.1128 (15)
H49	0.7937	0.4029	0.1507	0.135*
C50	0.7208 (3)	0.4527 (2)	0.2339 (3)	0.0890 (10)
H50	0.6920	0.4946	0.1874	0.107*
N1	0.36103 (15)	0.57763 (10)	0.28163 (15)	0.0454 (4)
S 1	0.46708 (4)	0.41746 (3)	0.30207 (5)	0.04713 (18)
Cl1	-0.16584 (6)	0.56953 (6)	0.07504 (8)	0.0933 (3)
C12	0.07475 (7)	0.09158 (5)	0.01151 (8)	0.0880 (3)
C13	0.90614 (12)	0.27103 (8)	0.2570 (2)	0.1971 (10)
01	0.51209 (14)	0.40207 (10)	0.41537 (14)	0.0607 (4)
02	0.47986 (14)	0.35984 (11)	0.23381 (16)	0.0647(5)

supplementary materials

O3	0.28270 (14)	0.36726 (10)	0.37925 (13)	0.0571 (4)
O41	0.53708 (16)	0.58805 (11)	0.15630 (14)	0.0672 (5)
O42	0.40585 (15)	0.50130 (12)	0.09663 (14)	0.0698 (5)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
C2	0.0436 (11)	0.0422 (11)	0.0471 (11)	-0.0010 (9)	0.0222 (9)	-0.0014 (9)
C3	0.0413 (11)	0.0399 (11)	0.0474 (11)	-0.0022 (9)	0.0215 (9)	-0.0018 (9)
C4	0.0414 (11)	0.0481 (12)	0.0507 (12)	-0.0082 (9)	0.0216 (10)	-0.0057 (9)
C5	0.0440 (12)	0.0467 (12)	0.0465 (12)	-0.0054 (9)	0.0179 (9)	-0.0058 (9)
C6	0.0556 (14)	0.0497 (13)	0.0667 (15)	-0.0133 (11)	0.0247 (12)	-0.0127 (11)
C7	0.0680 (19)	0.0485 (16)	0.148 (3)	-0.0096 (14)	0.027 (2)	0.0009 (18)
C8	0.0571 (15)	0.0415 (12)	0.0856 (18)	0.0015 (11)	0.0243 (13)	-0.0055 (12)
C21	0.0455 (11)	0.0393 (11)	0.0518 (12)	0.0002 (9)	0.0225 (10)	-0.0037 (9)
C22	0.0509 (13)	0.0583 (14)	0.0554 (13)	-0.0026 (11)	0.0259 (11)	-0.0010 (11)
C23	0.0565 (15)	0.0637 (15)	0.0526 (14)	0.0005 (12)	0.0181 (11)	0.0019 (11)
C24	0.0437 (13)	0.0611 (15)	0.0692 (16)	0.0050 (11)	0.0202 (12)	-0.0023 (12)
C25	0.0525 (14)	0.0666 (16)	0.0780 (17)	0.0067 (12)	0.0372 (13)	0.0091 (13)
C26	0.0524 (13)	0.0561 (14)	0.0605 (14)	0.0065 (11)	0.0296 (11)	0.0077 (11)
C31	0.0434 (11)	0.0423 (11)	0.0506 (12)	0.0030 (9)	0.0241 (9)	0.0027 (9)
C32	0.0462 (12)	0.0414 (11)	0.0558 (13)	-0.0014 (9)	0.0245 (10)	0.0004 (9)
C33	0.0788 (19)	0.0686 (17)	0.0830 (18)	-0.0229 (15)	0.0534 (16)	-0.0172 (14)
C34	0.080 (2)	0.0710 (18)	0.099 (2)	-0.0318 (16)	0.0541 (18)	-0.0211 (16)
C35	0.0526 (14)	0.0492 (13)	0.0745 (16)	-0.0042 (11)	0.0224 (12)	-0.0125 (12)
C36	0.0558 (14)	0.0625 (15)	0.0603 (14)	-0.0016 (12)	0.0272 (12)	-0.0124 (12)
C37	0.0509 (13)	0.0534 (13)	0.0568 (13)	-0.0055 (10)	0.0281 (11)	-0.0031 (11)
C41	0.0499 (13)	0.0566 (13)	0.0526 (13)	-0.0084 (11)	0.0269 (11)	-0.0071 (11)
C42	0.117 (3)	0.092 (2)	0.0600 (17)	-0.030 (2)	0.0404 (18)	0.0024 (16)
C43	0.130 (4)	0.126 (4)	0.130 (4)	-0.023 (3)	0.052 (3)	0.046 (3)
C44	0.0408 (12)	0.0670 (16)	0.0617 (14)	-0.0076 (11)	0.0186 (11)	-0.0077 (12)
C45	0.0390 (12)	0.0688 (17)	0.0889 (19)	-0.0104 (12)	0.0270 (13)	-0.0145 (14)
C46	0.0550 (17)	0.085 (2)	0.119 (3)	0.0066 (16)	0.0307 (17)	0.004 (2)
C47	0.064 (2)	0.080 (3)	0.207 (5)	0.0059 (18)	0.055 (3)	-0.001 (3)
C48	0.064 (2)	0.074 (2)	0.235 (6)	-0.0205 (18)	0.084 (3)	-0.046 (3)
C49	0.098 (3)	0.104 (3)	0.180 (5)	-0.026 (2)	0.101 (3)	-0.043 (3)
C50	0.075 (2)	0.090 (2)	0.126 (3)	-0.0059 (17)	0.066 (2)	-0.014 (2)
N1	0.0441 (10)	0.0391 (9)	0.0520 (10)	-0.0027 (7)	0.0200 (8)	-0.0019 (8)
S1	0.0422 (3)	0.0435 (3)	0.0578 (4)	0.0003 (2)	0.0238 (3)	-0.0024 (2)
C11	0.0474 (4)	0.1287 (8)	0.0944 (6)	0.0176 (4)	0.0223 (4)	0.0155 (5)
Cl2	0.0776 (5)	0.0677 (5)	0.1101 (7)	-0.0189 (4)	0.0330 (5)	-0.0361 (4)
C13	0.1240 (10)	0.1021 (9)	0.429 (3)	-0.0200 (7)	0.1794 (16)	-0.0818 (13)
01	0.0545 (10)	0.0600 (10)	0.0626 (10)	0.0061 (8)	0.0209 (8)	0.0127 (8)
O2	0.0539 (10)	0.0556 (10)	0.0929 (13)	-0.0025 (8)	0.0398 (9)	-0.0198 (9)
O3	0.0714 (11)	0.0530 (9)	0.0562 (10)	-0.0058 (8)	0.0363 (9)	0.0006 (7)
O41	0.0766 (12)	0.0707 (12)	0.0566 (10)	-0.0256 (10)	0.0314 (9)	-0.0020 (8)
O42	0.0675 (11)	0.0886 (14)	0.0498 (9)	-0.0284 (10)	0.0224 (9)	-0.0113 (9)

Geometric parameters (Å, °)

C2—N1	1.459 (3)	C32—C33	1.382 (3)
C2—C21	1.518 (3)	C32—C37	1.387 (3)
C2—C3	1.547 (3)	C33—C34	1.372 (4)
С2—Н2	0.9800	С33—Н33	0.9300
C3—C31	1.538 (3)	C34—C35	1.375 (4)
C3—S1	1.812 (2)	C34—H34	0.9300
С3—Н3	0.9800	C35—C36	1.368 (4)
C4—C41	1.525 (3)	C35—C12	1.739 (3)
C4—C5	1.551 (3)	C36—C37	1.378 (3)
C4—C44	1.552 (3)	С36—Н36	0.9300
C4—S1	1.825 (2)	С37—Н37	0.9300
C5—N1	1.469 (3)	C41—O42	1.193 (3)
C5—C6	1.540 (3)	C41—O41	1.321 (3)
С5—Н5	0.9800	C42—O41	1.453 (3)
С6—С7	1.505 (4)	C42—C43	1.483 (5)
С6—Н6А	0.9700	C42—H42A	0.9700
С6—Н6В	0.9700	C42—H42B	0.9700
С7—С8	1.505 (4)	C43—H43A	0.9600
C7—H7A	0.9700	C43—H43B	0.9600
С7—Н7В	0.9700	C43—H43C	0.9600
C8—N1	1.475 (3)	C44—C45	1.508 (4)
C8—H8A	0.9700	C44—H44A	0.9700
C8—H8B	0.9700	C44—H44B	0.9700
C21—C26	1.377 (3)	C45—C46	1.372 (5)
C21—C22	1.388 (3)	C45—C50	1.372 (5)
C22—C23	1.376 (4)	C46—C47	1.383 (5)
С22—Н22	0.9300	C46—H46	0.9300
C23—C24	1.370 (4)	C47—C48	1.340 (7)
С23—Н23	0.9300	C47—H47	0.9300
C24—C25	1.370 (4)	C48—C49	1.375 (7)
C24—Cl1	1.744 (2)	C48—C13	1.745 (4)
C25—C26	1.384 (3)	C49—C50	1.393 (5)
С25—Н25	0.9300	C49—H49	0.9300
С26—Н26	0.9300	C50—H50	0.9300
C31—O3	1.209 (3)	S1—O2	1.4302 (18)
C31—C32	1.489 (3)	S1—O1	1.4343 (18)
N1—C2—C21	110.48 (18)	C37—C32—C31	123.6 (2)
N1-C2-C3	110.62 (17)	C34—C33—C32	120.9 (3)
C21—C2—C3	107.86 (17)	С34—С33—Н33	119.5
N1—C2—H2	109.3	С32—С33—Н33	119.5
С21—С2—Н2	109.3	C33—C34—C35	119.1 (3)
С3—С2—Н2	109.3	С33—С34—Н34	120.5
C31—C3—C2	109.41 (17)	С35—С34—Н34	120.5
C31—C3—S1	107.94 (14)	C36—C35—C34	121.3 (2)
C2—C3—S1	112.91 (14)	C36—C35—Cl2	120.2 (2)
С31—С3—Н3	108.8	C34—C35—Cl2	118.6 (2)
С2—С3—Н3	108.8	C35—C36—C37	119.3 (2)

S1—C3—H3	108.8	С35—С36—Н36	120.3
C41—C4—C5	109.74 (19)	С37—С36—Н36	120.3
C41—C4—C44	115.21 (19)	C36—C37—C32	120.5 (2)
C5—C4—C44	108.81 (18)	С36—С37—Н37	119.7
C41—C4—S1	109.64 (15)	С32—С37—Н37	119.7
C5—C4—S1	105.17 (14)	O42—C41—O41	124.6 (2)
C44—C4—S1	107.77 (17)	O42—C41—C4	125.6 (2)
N1—C5—C6	104.79 (18)	O41—C41—C4	109.77 (19)
N1—C5—C4	110.32 (17)	O41—C42—C43	105.5 (3)
C6—C5—C4	116.68 (19)	O41—C42—H42A	110.6
N1—C5—H5	108.3	C43—C42—H42A	110.6
С6—С5—Н5	108.3	O41—C42—H42B	110.6
С4—С5—Н5	108.3	C43—C42—H42B	110.6
C7—C6—C5	104.8 (2)	H42A—C42—H42B	108.8
С7—С6—Н6А	110.8	C42—C43—H43A	109.5
С5—С6—Н6А	110.8	C42—C43—H43B	109.5
С7—С6—Н6В	110.8	H43A—C43—H43B	109.5
С5—С6—Н6В	110.8	C42—C43—H43C	109.5
H6A—C6—H6B	108.9	H43A—C43—H43C	109.5
C8—C7—C6	104.7 (2)	H43B—C43—H43C	109.5
С8—С7—Н7А	110.8	C45—C44—C4	118.6 (2)
С6—С7—Н7А	110.8	C45—C44—H44A	107.7
С8—С7—Н7В	110.8	C4—C44—H44A	107.7
С6—С7—Н7В	110.8	C45—C44—H44B	107.7
H7A—C7—H7B	108.9	C4—C44—H44B	107.7
N1—C8—C7	101.5 (2)	H44A—C44—H44B	107.1
N1—C8—H8A	111.5	C46—C45—C50	117.5 (3)
С7—С8—Н8А	111.5	C46—C45—C44	120.8 (3)
N1—C8—H8B	111.5	C50—C45—C44	121.5 (3)
С7—С8—Н8В	111.5	C45—C46—C47	122.1 (4)
H8A—C8—H8B	109.3	C45—C46—H46	118.9
C26—C21—C22	118.3 (2)	C47—C46—H46	118.9
C26—C21—C2	121.0 (2)	C48—C47—C46	119.0 (4)
C22—C21—C2	120.7 (2)	С48—С47—Н47	120.5
C23—C22—C21	121.4 (2)	C46—C47—H47	120.5
С23—С22—Н22	119.3	C47—C48—C49	121.5 (4)
C21—C22—H22	119.3	C47—C48—C13	120.0 (5)
C24—C23—C22	118.7 (2)	C49—C48—C13	118.5 (5)
С24—С23—Н23	120.6	C48—C49—C50	118.5 (4)
C22—C23—H23	120.6	C48—C49—H49	120.7
C23—C24—C25	121.5 (2)	С50—С49—Н49	120.7
C23—C24—C11	119.2 (2)	C45—C50—C49	121.3 (4)
C25—C24—Cl1	119.4 (2)	С45—С50—Н50	119.4
C24—C25—C26	119.1 (2)	С49—С50—Н50	119.4
C24—C25—H25	120.5	C2—N1—C5	113.62 (17)
C26—C25—H25	120.5	C2—N1—C8	113.53 (18)
C21—C26—C25	121.0 (2)	C5—N1—C8	104.91 (17)
C21—C26—H26	119.5	O2—S1—O1	118.10 (12)
C25—C26—H26	119.5	O2—S1—C3	108.33 (10)
			· /

03 - C31 - C32	120.7(2)	01 - 81 - C3	108 31 (10)
03-031-032	120.7(2) 119.06(19)	$0^{2}-1^{2}$	100.51(10) 111.14(11)
C_{32} C_{31} C_{3}	119.00(19) 120.10(10)	01 S1 C4	111.14(11) 106.08(11)
$C_{32} = C_{31} = C_{3}$	120.19(19) 118.8(2)	$C_3 = S_1 = C_4$	100.00(11) 103.04(10)
$C_{33} = C_{32} = C_{31}$	110.0(2) 117.6(2)	$C_{3} = S_{1} = C_{4}$	103.94(10)
035-032-051	117.0(2)	C41—O41—C42	117.7 (2)
N1—C2—C3—C31	171.76 (17)	S1—C4—C41—O42	17.2 (3)
C21—C2—C3—C31	-67.3 (2)	C5—C4—C41—O41	80.3 (2)
N1—C2—C3—S1	51.5 (2)	C44—C4—C41—O41	-42.9(3)
C21—C2—C3—S1	172.46 (14)	S1-C4-C41-O41	-164.69 (17)
C41—C4—C5—N1	51.9 (2)	C41—C4—C44—C45	-64.2 (3)
C44—C4—C5—N1	178.80 (18)	C5—C4—C44—C45	172.1 (2)
S1—C4—C5—N1	-66.0 (2)	S1—C4—C44—C45	58.5 (3)
C41—C4—C5—C6	-67.5 (2)	C4—C44—C45—C46	-107.4(3)
C44—C4—C5—C6	59.4 (3)	C4—C44—C45—C50	76.8 (3)
S1—C4—C5—C6	174.66 (17)	C50—C45—C46—C47	0.8 (5)
N1—C5—C6—C7	7.3 (3)	C44—C45—C46—C47	-175.1 (3)
C4—C5—C6—C7	129.7 (3)	C45—C46—C47—C48	-0.1 (6)
C5—C6—C7—C8	19.4 (3)	C46—C47—C48—C49	-1.0(6)
C6-C7-C8-N1	-38.9(3)	C46—C47—C48—C13	177.6 (3)
N1—C2—C21—C26	-136.5(2)	C47—C48—C49—C50	1.4 (6)
$C_{3}-C_{2}-C_{2}1-C_{2}6$	102.5 (2)	C13 - C48 - C49 - C50	-177.3(3)
N1-C2-C21-C22	43 3 (3)	C46-C45-C50-C49	-0.4(5)
C_{3} C_{2} C_{21} C_{22}	-777(2)	C44-C45-C50-C49	1755(3)
$C_{26} = C_{21} = C_{22} = C_{23}$	0.7(4)	C48 - C49 - C50 - C45	-0.7(6)
$C_2 = C_2 $	-1791(2)	$C_{1} = C_{2} = N_{1} = C_{5}$	$174\ 57\ (17)$
$C_{21} = C_{22} = C_{23} = C_{24}$	-13(4)	C_{3} C_{2} N_{1} C_{5}	-661(2)
$C_{22} = C_{23} = C_{24} = C_{25}$	0.6(4)	C_{21} C_{2} N_{1} C_{8}	54.8(2)
$C_{22} = C_{23} = C_{24} = C_{23}$	-1784(2)	C_{3} C_{2} N_{1} C_{8}	$174\ 15\ (19)$
$C_{22} = C_{23} = C_{24} = C_{25} = C_{26}$	0.7(4)	C_{6} C_{5} N_{1} C_{2}	-15672(19)
$C_{23} = C_{24} = C_{23} = C_{26}$	(1708(2))	C_{4} C_{5} N_{1} C_{2}	76.9(2)
$C_{22}^{22} - C_{23}^{22} - C_{25}^{22}$	1/9.8(2) 0.7(4)	$C_{-}C_{-}N_{-}C_{2}$	-321(2)
$C_{22} = C_{21} = C_{20} = C_{23}$	-1795(2)	C4 $C5$ $N1$ $C8$	-1585(2)
$C_2 = C_2 $	-14(4)	C_{7} C_{8} N_{1} C_{2}	158.5(2)
$C_{24} = C_{23} = C_{20} = C_{21}$	1.4(4) -27.8(2)	$C_{1} = C_{0} = N_{1} = C_{2}$	108.8(2)
$C_2 = C_3 = C_3 = C_3$	-37.8(3)	$C_{}C_{0}-N_{1}-C_{3}$	44.2(3)
S1 - C3 - C31 - C32	63.4(2)	$C_{31} = C_{3} = S_{1} = O_{2}$	-162.24(16)
$C_2 = C_3 = C_3 = C_{32}$	139.7(2)	$C_2 = C_3 = S_1 = O_2$	-103.24(10)
S1 - C3 - C31 - C32	-97.0(2)	$C_{3} = C_{3} = S_{1} = O_{1}$	-35.32(17)
03 - 03 - 032 - 033	20.7(5)	$C_2 = C_3 = S_1 = C_1$	0/.55(1/)
$C_3 = C_3 $	-150.8(2)	$C_{31} = C_{3} = C_{4}$	-166.03(14)
03 - 03 - 032 - 037	-15/.0(2)	$C_2 = C_3 = S_1 = C_4$	-44.96 (17)
$C_3 = C_3 = C_3 = C_3 / C_3 = C_3 / C_3 = C_3 / C_3 = C_3 / C_3 = C_3 = C_3 = C_3 / C_3 = C_3 $	25.5(3)	C41 - C4 - S1 - O2	48.18 (19)
$C_3/-C_{32}$	1.5 (4)	$C_{3} = C_{4} = S_{1} = O_{2}$	166.11 (15)
$C_{31} - C_{32} - C_{33} - C_{34}$	-1/0.3(3)	$C_{44} = C_{4} = S_{1} = O_{2}$	-//.93 (18)
$C_{32} = C_{33} = C_{34} = C_{35}$	0.9 (5)	C41 - C4 - S1 - O1	1//./5(15)
$C_{33} - C_{34} - C_{35} - C_{36}$	-2.2(5)	$C_{-}C_{4}$	-64.32 (16)
$C_{33} - C_{34} - C_{35} - C_{12}$	1//.0(3)	C44 - C4 - S1 - O1	51.64 (17)
C34—C35—C36—C37	1.0 (4)	C41 - C4 - S1 - C3	-68.15 (17)
CI2—C35—C36—C37	-178.2 (2)	C5-C4-S1-C3	49.78 (16)

C35—C36—C37—C32	1.5 (4)	C44—C4—S1—C3	165.74 (15)
C33—C32—C37—C36	-2.7 (4)	O42—C41—O41—C42	3.1 (4)
C31—C32—C37—C36	174.9 (2)	C4—C41—O41—C42	-175.0 (3)
C5—C4—C41—O42	-97.8 (3)	C43—C42—O41—C41	-175.9 (3)
C44—C4—C41—O42	139.0 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
C6—H6 <i>B</i> ···O41	0.97	2.38	3.051 (3)	126
С37—Н37…О2	0.93	2.53	3.213 (3)	131
C50—H50····O41	0.93	2.58	3.282 (4)	132
C6—H6A···O3 ⁱ	0.97	2.70	3.582 (3)	151
C5—H5···O1 ⁱ	0.98	2.51	3.320 (3)	140
C8—H8 <i>B</i> ···Cl3 ⁱⁱ	0.97	2.86	3.678 (3)	143
C36—H36…O3 ⁱⁱⁱ	0.93	2.65	3.557 (3)	166
C42—H42 B ···O42 ^{iv}	0.97	2.61	3.478 (5)	148

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y+1/2, -z+1/2; (iii) x, -y+1/2, z-1/2; (iv) -x+1, -y+1, -z.