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Saturated fatty acids induce 
insulin resistance in podocytes 
through inhibition of IRS1 
via activation of both IKKβ 
and mTORC1
Benoit Denhez1, Marina Rousseau1, Crysta Spino1, David‑Alexandre Dancosst1, 
Marie‑Ève Dumas1, Andréanne Guay1, Farah Lizotte1 & Pedro Geraldes1,2*

Diabetic nephropathy (DN), a microvascular complication of diabetes, is the leading cause of end-
stage renal disease worldwide. Multiple studies have shown that podocyte dysfunction is a central 
event in the progression of the disease. Beside chronic hyperglycemia, dyslipidemia can induce 
insulin resistance and dysfunction in podocytes. However, the exact mechanisms of free fatty 
acid (FFA)-induced podocyte insulin unresponsiveness are poorly understood. We used a type 2 
diabetic mouse model (db/db) and mouse podocytes exposed to palmitic acid for 24 h followed by 
an insulin stimulation. Renal function and pathology were evaluated at 25 weeks of age to confirm 
the DN development. Our results demonstrate that saturated FFA activated the serine/threonine 
kinases IκB kinase (IKK)β/IκBα and mTORC1/S6K1, but not protein kinase C and c-jun N-terminal 
kinase, in podocytes and glomeruli of db/db mice. Activation of both kinases promoted serine 307 
phosphorylation of IRS1, a residue known to provoke IRS1 inhibition. Using IKK, mTORC1 and 
ceramide production inhibitors, we were able to blunt IRS1 serine 307 phosphorylation and restore 
insulin stimulation of Akt. In conclusion, our results indicate that FFA and diabetes contribute to 
insulin resistance through the activation of IKKβ and S6K1 leading to podocyte dysfunction and DN.

Diabetic nephropathy (DN) is the worldwide leading cause of end-stage renal disease1 and is viewed as a detri-
mental health problem. While chronic hyperglycemia is one of the main risk factors for developing DN2, multiple 
clinical trials showed that insulin resistance, a common characteristic of type 2 diabetes, is an independent risk 
factor in developing chronic kidney disease3. Dyslipidemia in diabetic patients is commonly characterized by 
elevated circulating levels of free fatty acids (FFA) and triglycerides (hypertriglyceridemia)4. The lipotoxicity 
due to elevated FFA levels is a major factor and a key contributor to insulin resistance including the kidney5,6.

Palmitic acid (C16:0) is the most abundant circulating saturated FFA in human plasma7. High concentrations 
of palmitate can induce insulin resistance through multiple mechanisms. Mainly, FFA and palmitate increase 
oxidative stress production, activate protein kinase C (PKC), nuclear factor-kappa B (NF-κB), c-Jun N-terminal 
kinase (JNK) and mammalian target of rapamycin (mTOR) pathways. These signaling pathways have been shown 
to enhance serine phosphorylation of the insulin receptor substrate-1 (IRS1) causing insulin action inhibition. In 
normal volunteers, lipid injections led to insulin resistance in skeletal muscle, which was associated with activa-
tion of PKC-θ and serine 1101 phosphorylation of IRS18. JNK activation in the liver, muscle and adipose tissue 
of obese ob/ob mice is linked with insulin resistance and phosphorylation of serine 307 of IRS1, while deletion 
of JNK1 protected these mice from insulin resistance9. In a type 2 diabetes mouse model (db/db), mTOR com-
plex 1 (mTORC1) and S6K1 were chronically activated in the liver which was associated with insulin resistance 
and serine 1101 phosphorylation of IRS-1. Moreover, genetic deletion of S6K1 in mice fed with a high fat diet 
prevented both insulin resistance and serine 1101 phosphorylation of IRS110. In other insulin sensitive tissues, 
mTORC1 activation led to the phosphorylation and stabilization of growth factor receptor-bound protein 10 
(Grb10) causing IRS1 serine phosphorylation and insulin action inhibition11,12. The IκB kinase (IKK) complex 
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is the major multiplex core for NF-κB activation composed of two serine–threonine kinases (IKKα and IKKβ) 
and the regulatory subunit NEMO (also known as IKKγ). The IKK complex regulates the phosphorylation of 
various IκB and NF-κB proteins, amongst other substrates. In response to oxidative stress, IKKβ is an impor-
tant regulator of NF-κB-mediated pro-apoptotic actions13. Mice fed with high fat diet exhibited activation of 
IKKβ and insulin resistance in the liver. Moreover, specific genetic deletion of IKKβ in hepatic cells prevented 
inflammation-induced insulin resistance14. IKKβ is also known to inhibit insulin action through reduction of 
phospho-tyrosine residues of IRS115. However, how these palmitate-activated signaling pathways by lead to renal 
dysfunction are not fully understood.

The glomerular podocytes are highly specialized epithelial cells that are critical in maintaining the integrity 
of the glomerular filtration barrier. Reduced podocyte density in the glomerulus has been shown to be one 
of the strongest predictors of the progression of DN16. Multiple studies in animal models of DN showed that 
podocyte cell death is an early event of the disease. Using mice with podocyte-specific deletion of the insulin 
receptor, Welsh and collaborators clearly showed the importance of insulin signaling in podocyte function17. 
Moreover, we and other have shown that insulin action inhibition was associated with loss of podocytes in 
DN18,19. Interestingly, it has been reported that disruption of the glomerular filtration barrier strongly correlates 
with the increase in circulating palmitic acid20. In addition, increased expression of fatty-acid-binding proteins 
specifically in podocytes is associated with proteinuria in patients with obesity-related glomerulopathy and in a 
type 2 diabetic mouse model (db/db)21. Besides insulin resistance, others have shown that enhanced endoplasmic 
reticulum stress, protein phosphatase PP2A and mTOR lysosomal localization are potential mechanisms for 
podocyte cell death caused by palmitate exposure22–25. However, the mechanisms by which palmitate can lead 
to insulin resistance in these cells are not fully elucidated.

In this study, we hypothesized that FFA would increase serine phosphorylation of IRS1 in cultured podocytes 
and the kidney of a type 2 diabetic mouse model causing insulin resistance and renal dysfunction. Furthermore, 
our study intended to identify the molecular mechanisms underlying palmitate-induced insulin unresponsive-
ness in renal podocytes.

Results
Leptin receptor deficient mice exhibited renal dysfunction and pathology.  In order to evaluate 
the effect of FFA exposure in the renal tissue, we have used a type 2 diabetic animal model, the leptin receptor 
deficient (db/db) mice, which is known to exhibit renal dysfunction and pathology26. Urinary albumin levels 
and glomerular filtration rate were used to evaluate both renal damage and renal function. As expected, we 
confirmed that at 25 weeks of age db/db mice exhibited higher levels of urinary albumin (Fig. 1a) and elevated 
glomerular filtration rate (Fig. 1b) as compared to db/dm littermate control mice. Besides renal dysfunction, 
db/db mice displayed glomerular hypertrophy (Fig. 1c,d), mesangial expansion (Fig. 1e,f), elevated collagen type 
IV (Fig. 1g) and TGF-β (Fig. 1h,i) expression in the glomeruli, all markers of renal pathology associated with 
diabetic nephropathy.

Type 2 diabetes and podocyte exposure to FFA blunted insulin signaling and increased serine 
307 phosphorylation of IRS1.  To evaluate if the db/db mice are insulin resistant in the kidney, insulin 
(5 mU/g of BW) was injected systemically and the renal glomeruli were isolated after 15 min. We observed 
that the phosphorylation of Akt in the renal glomeruli was decreased in db/db mice compared to db/dm mice 
(Fig. 2,b). The reduced activity of Akt following insulin stimulation was associated with increased expression 
of serine 307 phosphorylation of the IRS1 (Fig. 2a), a residue phosphorylation known to be related to insulin 
resistance. In addition, podocytes are highly insulin-sensitive cells and insulin signaling actions are essential for 
their function. Podocytes exposed to a high dose of palmitate (750 µmol/L) has been shown to promote insulin 
resistance20. We have confirmed that treatment with 25  µmol/L of palmitate prevented insulin-induced Akt 
phosphorylation by 75% in cultured podocytes (p < 0.0001) (Fig. 2c,d). Inhibition of insulin actions was associ-
ated with a 98% increase of serine 307 phosphorylation of IRS-1 (p = 0.008) (Fig. 2c,e) and a complete inhibition 
of tyrosine 608 phosphorylation following insulin stimulation (p = 0.0257) (Fig. 2c,f), without affecting phos-
phorylation of Grb10 and serine 636/639 of IRS1 (Fig. 2c).

Palmitate activated both mTORC1 and IKKβ pathways in podocytes.  Multiple serine/threo-
nine kinases have been shown to directly phosphorylate IRS1. We verified the effect of palmitate exposure on 
the activation of IKK mTORC1, PKC and JNK. Treatment with palmitate significantly increased IκBα serine 
32/36 phosphorylation by threefold (p = 0.0021), which is believed to be a specific marker of IKKβ activation27 
(Fig. 3a). One downstream target of IKK activity is the activation of the NF-κB pathway. Therefore, increased 
phosphorylation of IκBα was associated with enhanced phosphorylation of serine 536 of NF-κB by 91% follow-
ing palmitate exposure (p = 0.0012; Fig. 3a). Treatment of podocytes with palmitate also significantly increased 
the phosphorylation of serine 2448 of mTOR by 74% (p = 0.0082; Fig. 3b) and subsequently the S6 ribosomal 
protein serine 240/244 phosphorylation by 90% (p = 0.0002; Fig. 3b). These data suggest that palmitate can acti-
vate the mTORC1 complex signaling pathway. Interestingly, palmitate exposure had no effect on the phospho-
rylation of JNK in podocytes (Fig. 3c) nor did it cause membrane translocation (as a marker of activation) of 
various PKC isoforms known to inhibit insulin signaling (Fig.  3d). In order to corroborate our cell culture 
findings in vivo, renal glomeruli of type 2 diabetic mice were isolated and immunoblot was performed. Due to 
limitation of a good specific antibody in vivo for phosphorylation of IκBα, we measured the expression of IκB. 
Our data demonstrated that the expression of IκB is decreased by 58% (p = 0.0042) in renal glomeruli of db/db 
mice compared to control littermates (Fig. 3e). These data suggest that IκB is degraded, therefore releasing its 
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association with NF-κB. Moreover, renal tissue of our type 2 diabetic mouse model exhibited elevated levels of 
mTOR and S6 phosphorylation by 1.5-fold (p = 0.0145; Fig. 3f).

Figure 1.   Renal function and glomerular pathology of nondiabetic db/dm and type 2 diabetic db/db mice. 
(a) Albumin/creatinine ratio and (b) glomerular filtration rate were performed to evaluate renal function. 
Renal cross-sections of 25 weeks of age db/dm and db/db mice were stained with (c) hematoxylin & eosin 
and (d) periodic acid-Schiff to measure (e) glomerular hypertrophy and (f) mesangial cell expansion. 
Immunohistochemistry using antibody against (g) collagen type IV (Col IV) and (h, i) TGF-β expression was 
quantified. Results are shown as mean ± SD of 5–6 (a), 8 (b, h, i), and 11 (c, d, e, f, g) mice per group. Scale 
bar = 10 μm.
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Inhibition of IKK/IκBα activity prevented palmitate‑induced serine 307 phosphorylation of 
IRS1 and partially restored insulin signaling actions.  To better correlate the activation of IKK to 
insulin resistance, we treated podocytes with the selective IKK inhibitor (IKK 16). Podocytes were treated with 
IKK 16 at 100 nM prior to exposure to palmitate and insulin stimulation. Our data showed that inhibition of 
IKK complex completely abolished the phosphorylation of IκBα on serine 32/36 in podocytes exposed to pal-
mitate (Fig. 4a). Inhibition of IKK also totally prevented palmitate-induced phosphorylation of serine 307 of 
IRS1 (p < 0.0001; Fig. 4b), an effect that was associated with a partial restoration (59%) of insulin action on Akt 
activation compared to podocytes exposed to palmitate (p = 0.0001; Fig. 4c). It has been proposed that IKKβ may 
mediate pro-apoptotic function through the activation of S6 kinase. However, our data indicated that inhibition 
of IKK had no impact on palmitate-induced phosphorylation of S6 protein, a downstream of S6K1 (Fig. 4a).

Ceramide synthesis inhibition blunted activation of IKKβ and re‑established the insulin signal‑
ing pathway.  Palmitate can be metabolized into ceramides, which is known to potentiate activation of the 
NF-κB pathway28. Moreover, inhibition of ceramide synthesis has been shown to prevent palmitate-induced 
inhibition of glucose uptake in podocytes20. In order to unravel the mechanism of action of palmitate-induced 

Figure 2.   FFA and palmitate exposure induced insulin resistance. Expression of phospho-IRS1 (ser307), 
phospho-IRS1 (Tyr608), IRS1, phospho-Akt, Akt and actin were detected by (a, c) immunoblot and (b, d, e, f) 
densitometry quantitation was measured from (a–b) isolated glomeruli stimulated with insulin injection (I.V.) 
for 15 min in 25 weeks ols db/dm and db/db mice. at 25 weeks of age of nondiabetic db/dm and diabetic db/
db mice as well as from (c, d, e, f) mouse podocytes exposed to palmitate for 24 h and then stimulated with 
insulin for 5 min. Results are shown as mean ± SD of 6 (a, b) mice per group and 4–6 (c, d, e, f) independent 
experiments.
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insulin inhibition in podocytes, cells were treated with myriocin, a ceramide synthesis inhibitor. While podo-
cytes exposed to palmitate increased serine 32/36 phosphorylation of IκBα by 3.9-fold (p < 0.0001), inhibition 
of ceramide synthesis with myriocin significantly reduced IκBα phosphorylation by 78% (p = 0.0026), reaching 
almost similar levels to non-exposed podocytes (Fig. 5a,b). Moreover, myriocin treatment completely prevented 
palmitate-induced phosphorylation of serine 307 of IRS1 (p = 0.0029, Fig. 5c), thereby restoring insulin-induced 
Akt activation (p < 0.0001) in podocytes to a similar level of the untreated cells (Fig. 5d). These effects were inde-

Figure 3.   Activation of IκBα and mTORC1 caused by palmitate in podocytes and diabetic glomeruli. 
Expression of phospho-NF-κB, NF-κB, phospho-IκBα (ser32/36), IκBα, phospho-mTOR (ser2448), mTOR, 
phospho-S6 (ser240/244), S6, phospho-JNK, JNK, PKCα, PKCβ, PKCδ, PKCε, PKCζ, cadherin and actin were 
detected by immunoblot and densitometry quantitation was measured from (a, b, c, d) mouse podocytes 
exposed to palmitate for 24 h as well as from (e, f) isolated glomeruli at 25 weeks of age of nondiabetic db/dm 
and diabetic db/db mice. Results are shown as mean ± SD of 4 (a, b, c, d) independent experience and 6 (e, f) 
mice per group.
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pendent of mTORC1 activation, since myriocin treatment did not prevent palmitate-induced S6 phosphoryla-
tion on serine 240/244 (Fig. 5a).

Palmitate‑induced inhibition of insulin actions is restored by blocking mTORC1 activa‑
tion.  Activation of S6K1 by mTORC1 has been linked to insulin resistance through serine 307 phospho-
rylation of IRS129,30. Palmitate exposure in podocytes caused a 2.1-fold increase in phosphorylation of the S6 
ribosomal protein at serine 240/244 (p < 0.0001). Therefore, we investigated the effect of mTORC1 inhibition 
on the insulin signaling pathway. Treatment with rapamycin almost completely restored (90%) insulin-induced 
Akt phosphorylation in podocytes exposed to palmitate (p = 0.0037; Fig. 6a,b). In addition, rapamycin treatment 
prevented serine 307 phosphorylation of IRS1 induced by palmitate exposure by 87% (p = 0.0178; Fig. 6a,c) with 
no effect on serine 636/639 of IRS1. Interestingly, inhibition of mTORC1 (measured by the phosphorylation of 
serine 240/244 of S6) had no effect on IKK activation, since rapamycin treatment failed to prevent palmitate-
induced serine 32/36 phosphorylation of IκBα (Fig. 6a).

Discussion
Although hyperglycemia has been shown to a play critical role in podocyte dysfunction, these epithelial cells are 
also vulnerable to injury from saturated FFA. A potential mechanism of FFA leading to podocyte dysfunction 
is through the inhibition of insulin actions. Podocytes are highly sensitive to insulin31. We and other groups 
have published that insulin unresponsiveness or absence of the insulin receptor is crucial for podocyte function 
and survival17,32. In this study, we provided novel insights into how FFA can cause insulin resistance in podo-
cytes. Our data demonstrated that palmitate increased serine 307 phosphorylation of IRS1, which consequently 
reduced insulin stimulated Akt phosphorylation. We have uncovered that palmitate contributes to IRS1 inhibi-
tion through activation of IKK and mTORC1 but not PKC and JNK (Fig. 7). Importantly, these two pathways 
operate independently, since inhibition of each pathway with their respective selective inhibitor was able to 
restore insulin signaling.

Multiple studies in rodent models of obesity and type 2 diabetes revealed the central role of IRS1 serine phos-
phorylation in the development of insulin resistance. However, not all animal models of type 2 diabetes are suit-
able to study diabetic nephropathy. In our study, we used the leptin deficient mice as a proper model whereas the 
high fat diet mouse model did not develop renal pathology (data not shown). Nonetheless, efforts from various 
groups led to the identification of multiple serine kinases, in which the activity has been shown to be increased 
in a context of obesity and diabetes. These kinases, including proteins from the PKC family, JNK, IKK-β and S6 

Figure 4.   IKK inhibition prevented serine 307 phosphorylation of IRS1 and partially restored insulin-mediated 
Akt phosphorylation. Expression of phospho-IRS1 (ser307), IRS1, phospho-Akt, Akt, phospho-IκBα (ser32/36), 
IκBα, phospho-S6 (ser240/244), S6, and actin were detected by (a) immunoblot and (b, c) densitometry 
quantitation was measured from mouse podocytes treated or not with IKK16 (an IKK inhibitor) 30 min prior 
the exposure of palmitate for 24 h, and then stimulated with insulin for 5 min. Results are shown as mean ± SD 
of 4 independent experience.



7

Vol.:(0123456789)

Scientific Reports |        (2020) 10:21628  | https://doi.org/10.1038/s41598-020-78376-1

www.nature.com/scientificreports/

kinase are capable of directly interacting with IRS133. Multiple evidence suggests that the IKK/NF-κB pathway 
plays a role in the induction and preservation of a chronic inflammatory state, which contributes to metabolic 
disorders such as obesity and type 2 diabetes34,35. NF-κB forms a complex with IκBα, an IκB family member, in 
the cytosol to prevent activated NF-κB from entering the nucleus to initiate DNA transcription. However, the 
activation of the IKK complex by various stimuli provokes the phosphorylation of IκBα molecules causing their 
degradation and the release of NF-κB. Previous studies have reported that high glucose levels and advanced glyca-
tion end-product exposure in podocytes caused reactive oxygen species production through NF-κB activation36,37. 
Our study is the first to demonstrate that palmitate is also able to phosphorylate IκBα and subsequently activate 
NF-κB in podocyte as well as in the renal cortex of type 2 diabetic mice compared to non-diabetic littermate con-
trols. Interestingly, in response to an oxidative stress signal, IKKβ can provoke pro-apoptotic functions through 
the activation of p85 S6K138. Thus, it would have been possible that IKK and mTORC1/S6K1 interact with each 
other and promote insulin resistance. However, our data suggest both pathways affect serine phosphorylation of 
IRS1 independently. Further studies will be required to evaluate if IKK signaling pathway activated by palmitate 
can regulate podocyte function through modulation of the mTOR/autophagy cascade.

Elevated levels of palmitate correlate with increased production of ceramides. Both endogenous and exog-
enous ceramides can contribute to the insulin resistance phenomenon. Previous studies reported that admin-
istration of myriocin blocked homocysteine- and high-fat diet-induced glomerular injury in the kidney39,40. 
In addition, palmitate exposure in cultured podocytes led to increased ceramide production40. Inhibition of 
ceramide synthesis using fumonosin B1 or myriocin partially prevented palmitate-induced inhibition of glucose 
uptake following insulin stimulation41. Therefore, we have investigated the impact of ceramide production on 
insulin signaling in podocytes. Our study demonstrated that the inhibition of ceramide synthesis with myriocin 
in podocytes exposed to palmitate prevented IRS1 serine phosphorylation and restored insulin signaling actions. 
Interestingly, previous studies revealed that ceramides can activate the IKK/NFκB pathway in alveolar epithelial 
cells and platelets42,43. Our results support the notion that increased ceramide production by palmitate metabo-
lism leads to activation of IKKβ and contributes to insulin resistance through inhibition of IRS1 in podocytes.

Another potential mechanism of podocyte dysfunction in diabetic nephropathy is the regulation of mTOR 
activity. Very elegant animal studies have demonstrated the importance of regulating mTORC1 activity44. Evi-
dence suggests that mTORC1 activation is elevated in podocytes of diabetic rodent and human kidneys. Inhibi-
tion of mTORC1 preserved podocyte function in DN45. Although inactivation of mTORC1 seems to be a promis-
ing avenue to treat diabetic kidney disease, reduction of basal mTORC1 activity in podocytes led to proteinuria 
and podocyte injury, suggesting that complete inhibition of mTORC1 activity is not a suitable strategy for DN 
treatment46. Nonetheless, hyperactivity of mTORC1 has been previously shown in podocytes from crescentic 

Figure 5.   Palmitate-induced insulin resistance is blocked by ceramide synthesis inhibitor. Expression of 
phospho-IRS1 (ser307), IRS1, phospho-Akt, Akt, phospho-IκBα (ser32/36), IκBα, phospho-S6 (ser240/244), S6, 
and actin were detected by (a) immunoblot and (b, c, d) densitometry quantitation was measured from mouse 
podocytes treated or not with myriocin 30 min prior the exposure of palmitate for 24 h, and then stimulated 
with insulin for 5 min. Results are shown as mean ± SD of 4 independent experience.
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glomerular diseases47. Our data indicate that diabetes increased mTOR and S6 phosphorylation in renal glo-
meruli of db/db mice as compared to non-diabetic littermate controls. The elevated phosphorylation of S6 and 
serine 307 of IRS1 in podocytes exposed to palmitate were blunted by rapamycin and ceramide synthesis inhibi-
tors, which restored insulin-mediated Akt phosphorylation. Interestingly, our data indicated that mTORC1/S6 
activation mainly increased serine 307 phosphorylation, without affecting other known serine phosphorylation 
of IRS1 and Grb10, contrasting with previous observation in other insulin-sensitive cells11,48. Our results also 
corroborate previous studies showing that palmitate regulated podocyte apoptosis through mTORC1 lysosomal 
localization24. Interestingly, Kumar and collaborators previously showed that short treatment of rapamycin pre-
vented mTORC1-induced insulin resistance in human podocytes, an effect that was associated with decreased 
expression of IκBα and phosphorylation NF-κB23. This is in contrast to our study that did not show inhibition 
of IκBα phosphorylation with rapamycin. Potential explanations for this discrepancy are the use of different 
podocyte cell lines and the exposure time to rapamycin (short versus long exposure).

In conclusion, our results showed that inhibition of insulin signaling by palmitate in podocytes is associated 
with serine 307 phosphorylation of IRS1. Moreover, we identified two independent mechanisms activated by 
palmitate that resulted in phosphorylation of IRS1 on serine 307. Overall, our results suggest that IRS1 phos-
phorylation on serine 307 could be a target of interest to prevent podocyte dysfunction in a context of obesity 
and diabetes.

Figure 6.   Inhibition of mTORC1 activation by rapamycin restored insulin actions in podocytes exposed to 
palmitate. Expression of phospho-IRS1 (ser307), IRS1, phospho-Akt, Akt, phospho-IκBα (ser32/36), IκBα, 
phospho-S6 (ser240/244), S6, and actin were detected by (a) immunoblot and (b, c) densitometry quantitation 
was measured from mouse podocytes treated or not with rapamycin 30 min prior the exposure of palmitate for 
24 h, and then stimulated with insulin for 5 min. Results are shown as mean ± SD of 4 independent experience.
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Research design and methods
Reagents and antibodies.  Primary antibodies for immunoblotting and immunochemistry were obtained 
from commercial sources, including actin (horseradish peroxidase conjugated [HRP]; I-19), GAPDH-HRP 
(V18), phospho NF-κB (Ser 536) (101,752), NF-κB (F-6), phospho-JNK (G-7), JNK (D-2), PKCα (C-20), PKCβ 
(C-18), PKCε (C-15) and PKCζ (C20), from Santa Cruz Biotechnology (Santa Cruz, CA, USA); phospho-Akt 
(Ser473) (D9E), Akt (9272), phospho-IκB (S32/36) (5A5), IκBα (9242), phospho-mTOR (Ser2448) (D9C2), 
mTOR (7C10), phospho-S6 ribosomal protein (Ser240/244) (2215), S6 ribosomal protein (5G10), phospho-IRS1 
(Ser636/639) (2388) and phospho-Grb10 (Ser476) (D4E6) and PKCδ (2058) from Cell Signaling (Beverly, MA); 
phospho-IRS1 (Ser307) (05-1087); phospho-IRS1 (Tyr608) (09-432); IRS1 (05-1085) from Millipore-Sigma 
(Oakville, ON, Canada), Grb10 (Abcam; ab154029), collagen type IV (Novus Biological, Littleton, CO). All 
other reagents employed, including RPMI-1640, EDTA, leupeptin, phenylmethyl-sulfonyl fluoride, aprotinin, 
d-glucose, d-mannitol, FITC-inulin and Na3VO4 were purchased from Millipore-Sigma, fetal bovine serum 
(FBS) was purchased from Wisent bioproducts (Saint-Jean-Baptiste, QC, Canada) and penicillin–streptomycin 
was obtained from Invitrogen.

Animals and experimental design.  C57BLKS/J (db/dm) and obese diabetic male C57BKS-Lepr−/− (db/
db) mice were purchased from The Jackson Laboratory and bred in our animal facility. All experiments were 
done on mice at 25 weeks of age. All experiments were conducted in accordance with the Canadian Council of 
Animal Care and Institutional Guidelines and were approved by the Animal Care and Use Committees of the 
University of Sherbrooke according to National Institutes of Health guidelines.

Blood glucose, urinary albumin/creatinine ratio and glomerular filtration rate measure‑
ments.  Blood glucose and body weights were measured by a Glucometer (Contour; Bayer, Pointe-Claire, 
QC, Canada) at 24 h prior sacrifice (Supplementary Table 1). Urine was collected at day of sacrifice to measure 
albumin and creatinine levels. Urinary albumin levels were measured using an indirect competitive enzyme-
linked immunosorbent assay (ELISA) according to the manufacturer’s instructions (Albuwell M; Exocell; Phila-
delphia, PA). Creatinine levels were measured using alkaline picrate coloration based on Jaffe reaction per man-
ufacturer’s instruction (The Creatinine Companion; Exocell). Glomerular filtration rate (GFR) was evaluated 
using FITC-inulin clearance as we previously described49.

Tissue preparation.  Right mouse kidneys were harvested for pathological examination, and sections were 
fixed in 4% paraformaldehyde (Millipore-Sigma) and then transferred to 70% ethanol for immunohistochemis-
try. The tissue was embedded in paraffin, and 4 µm sections were stained with hematoxylin & eosin and periodic 
acid-Schiff stain (Millipore-Sigma).

Immunohistochemistry, mesangium expansion and glomerular hypertrophy.  Immunochem-
istry of kidney sections was performed using the ABC kit from Vector according to manufacturer protocol. 
Coloration was obtained by incubating sections in DAB solution (Vector Laboratories Inc.; Burlington, ON, 
Canada). Nuclei were counterstained using Gill’s formula hematoxylin (Vector Laboratories Inc.). Mesangial 
matrix expansion and glomerular hypertrophy were measured as we previously described49.

Systemic injection of insulin.  Insulin signaling pathway was evaluated by injecting 5 mU/g I.V. in db/
dm and db/db mice. The right kidney was removed prior to insulin injection and served as an internal control 
(non-stimulated). Fifteen minutes after the insulin injection, the left kidney was removed for protein extraction.

Figure 7.   Schematic representation of the insulin signaling resistance caused by palmitate treatment in 
podocytes.
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Isolation of the glomeruli.  Renal cortex of one kidney (1 per mouse) were minced and all the tissue was 
passed through a 200, 150, 70 and 40 µm sieve. The glomeruli remained at the top of 70 µm sieve. The glomeruli 
fraction was collected with PBS and centrifuge for 10 min at 500 g. The glomeruli samples (1 kidney per N, total 
of N = 4 per group) were then used for immunoblot analyses.

Immunoblot analyses.  Protein lysate (10–50 µg) was separated by SDS-PAGE and then transferred to a 
PVDF membrane, which was blocked with 5% skim milk. Proteins were identified by chemiluminescence using 
Forte solution (Millipore).

Palmitate preparation.  Palmitate was prepared as previously described50. Briefly, palmitic acid was diluted 
in dH2O 0.1 N NaOH then heated to 70 °C to dissolve. In parallel, 10% BSA in dH2O was heated to 55 °C. When 
dissolved, palmitate was quickly added to heated 10% BSA solution to create a 1:6 palmitate: BSA solution. Stock 
palmitate: BSA solution was sterile filtered (0.22 microns) before usage. Palmitate concentration of stock solu-
tion was measured using HR series NEFA-HR(2) (Wako Diagnostics USA, Moutain View, CA).

Cell culture.  A well-characterized mouse podocyte cell line was used and cultured as previously described32. 
After differentiation of podocytes, medium was changed to RPMI 0.1% FBS containing 5.6 mmol/L of glucose 
for 48 h, with or without 25 μmol/L of palmitate during the last 24 h before harvesting proteins. Rapamycin 
(1 μmol/L), IKK16 (100 nmol/L) or Myriocin (2 μmol/L) was added during the last 24 h.

Statistical analyses.  In vitro and in vivo data are shown as mean ± SD for each group. Statistical analysis 
was performed by unpaired t test or by one-way analysis of variance (ANOVA) followed by Tukey’s test correc-
tion for multiple comparisons. Data in each group were checked for normal distribution using D’Agostino and 
Pearson normality test based on alpha = 0.05. All results were considered statistically significant at p < 0.05.
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