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High-throughput analysis of the transcriptome and proteome individually are used to

interrogate complex oncogenic processes in cancer. However, an outstanding challenge

is how to combine these complementary, yet partially disparate data sources to

accurately identify tumor-specific gene products and clinical biomarkers. Here, we

introduce inteGREAT for robust and scalable differential integration of high-throughput

measurements. With inteGREAT, each data source is represented as a co-expression

network, which is analyzed to characterize the local and global structure of each node

across networks. inteGREAT scores the degree by which the topology of each gene

in both transcriptome and proteome networks are conserved within a tumor type, yet

different from other normal or malignant cells. We demonstrated the high performance of

inteGREAT based on several analyses: deconvolving synthetic networks, rediscovering

known diagnostic biomarkers, establishing relationships between tumor lineages,

and elucidating putative prognostic biomarkers which we experimentally validated.

Furthermore, we introduce the application of a clumpiness measure to quantitatively

describe tumor lineage similarity. Together, inteGREAT not only infers functional and

clinical insights from the integration of transcriptomic and proteomic data sources in

cancer, but also can be readily applied to other heterogeneous high-throughput data

sources. inteGREAT is open source and available to download from https://github.

com/faryabib/inteGREAT.

Keywords: data integration, network analysis, proteomics, transcriptomics, cancer biology

1. INTRODUCTION

Cellular processes are tightly regulated in multiple layers, leading to coordinated function of genes
and gene products including transcripts and proteins. Aberrations at each tier of these multilayer
regulatory circuits could lead to malignant transformations. It has been shown that combined
analysis of data characterizing a variety of biomolecules yields discovery of new insights into tumor
biology and facilitates identification of important cancer genes and therapeutic targets (Chang et al.,
2013; Zhang et al., 2014; Mertins et al., 2016; Zhang et al., 2016). These initiatives have increased
interest in development of methods for integration of heterogenous data sources (Huang et al.,
2013; Meng et al., 2016; Petralia et al., 2016).

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2018.00205
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2018.00205&domain=pdf&date_stamp=2018-06-15
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:faryabi@pennmedicine.upenn.edu
https://doi.org/10.3389/fgene.2018.00205
https://www.frontiersin.org/articles/10.3389/fgene.2018.00205/full
http://loop.frontiersin.org/people/118498/overview
http://loop.frontiersin.org/people/570725/overview
http://loop.frontiersin.org/people/527657/overview
https://github.com/faryabib/inteGREAT
https://github.com/faryabib/inteGREAT


Schwartz et al. inteGREAT: Differential Integration of Transcriptomics and Proteomics

The interrogation of information garnered by high-
throughput measurements of transcripts or proteins have
been used to refine stratification of tumors based on their unique
molecular characteristics. Furthermore, analysis of each of these
data sources separately has facilitated the discovery of transcript-
or protein-based prognostic and diagnostic biomarkers. The
salient assumption underlying such comparative studies is
that there is a one-to-one relationship between transcript and
protein expression, however previous studies have shown low
correlation between these levels (Haider and Pal, 2013; Zhang
et al., 2014). Another implicit assumption is that genome-
scale technologies such as next generation sequencing-based
transcriptomics and mass spectrometry-based proteomics have
comparable sensitivity to capture the activities of these gene
products. Yet, examining each aspect of tumor pathobiology
alone overlooks potential regulatory mechanisms relating the
gene products and the technologies measuring these aspects do
not have the same coverage. It is therefore critical to effectively
combine information gathered by complementary genome-scale
measurements to elucidate common and different molecular
features of tumor types.

To address this challenge, methods to integrate heterogeneous
data sources such as transcriptomic and proteomic data sets
have been proposed (Haider and Pal, 2013). These integration
methods range from naive weighted means of transcript and
protein abundances (Balbin et al., 2013) to consensus pathways
and molecules (Wachter and Beißbarth, 2016). Other approaches
take advantage of the relationships between gene products to
produce a network of associated genes, known as an interactome
(Gibbs et al., 2014). De novo clustering of interactomes was
used to elucidate a subnetwork or pathway containing gene
products with functional relatedness (Dutkowski et al., 2012).
Some techniques instead integrate data sources before clustering
using a joint latent model with some success (Shen et al.,
2009; Michaut et al., 2016). Summarizing the information within
each cluster using eigenvectors provides a means to compare
clusters (Gibbs et al., 2014). Measuring the network structure
between different levels was also proposed as a means for data
integration (Cho et al., 2016). The disadvantage of grouping
gene products is that collapsing these structures into clusters
can decrease the sensitivity of biomarker detection. For instance,
while a cluster may be classified as clinically significant, an
important gene may belong to a different cluster depending
on the clustering parameters and algorithm. Grouping gene
products also complicates devising gene-centric biomarkers that
are the main focus of diagnostic tests. Merging networks to
create a summary network was also proposed to address the
shortcomings of the clustering-based approaches (Franceschini
et al., 2012; Wong et al., 2015). These methods of integration
were performed on a single phenotype and thus cannot readily
identify phenotypic biomarkers differentiating tumor subtypes.
We propose that expanding differential expression analysis from
the individual level to differential integration can facilitate
biomarker discovery.

To this end, we present inteGREAT, an algorithm for
differential integration. inteGREAT generates interactomes for
both transcriptomes and proteomes and analyzes their network

structures to determine the extent by which a gene product and
its related partners are similar across different sources of data
while different between cellular phenotypes. Using a framework
based on both “local” and “global” similarity, inteGREAT
provides a robust and scalable algorithm that can integrate any
number of genomic and functional genomic data sets to identify
differentiating tumor biomarkers. inteGREAT by design does
not cluster gene products at any point in order to retain
individual relationships and is thus able to assign confidence of
integration to each gene representing its transcript and protein
expressions. We assessed the ability of inteGREAT to detect
perturbations in multiple networks through simulations. Using
breast cancer transcriptome and proteome data from The Cancer
Genome Atlas (TCGA) (Grossman et al., 2016) and the Clinical
Proteomic Tumor Analysis Consortium (CPTAC) (Ellis et al.,
2013; Edwards et al., 2015), we demonstrated the utility of
inteGREAT to identify subtype-specific biomarkers in breast
cancer. inteGREAT is a robust, easy to use software package
and can be generally applied to any abundance data or pre-made
network. inteGREAT is open source and available to download
from https://github.com/faryabib/inteGREAT.

We further applied inteGREAT in a pan-cancer integrative
analysis of transcriptome and proteome data sets from TCGA
and CPTAC for serous ovarian carcinoma (OV) (Bell et al.,
2011; Zhang et al., 2016), breast cancers (BRCA) (Koboldt et al.,
2012; Mertins et al., 2016), colon (COAD), and rectal (READ)
adenocarcinomas (Muzny et al., 2012; Zhang et al., 2014).
We proposed using a measure of clumpiness on the resulting
hierarchy of comparisons that elucidated the promiscuous nature
of the luminal and HER2-positive subtypes, while demonstrating
the relative isolation of ovarian, colorectal, and to some extent
basal subtypes. Our integrative pan-cancer analysis quantitates
the importance of each individual gene in stratifying a particular
subtype. Among them, we identified a set of clinically important
genes that are strongly associated with prognostic outcomes in
a given tumor type. Our differential integration of transcript and
protein abundance across four tumor types is a showcase of using
inteGREAT for similar integration analysis in other cancers and
diseases.

2. MATERIALS AND METHODS

2.1. inteGREAT Algorithm Overview
inteGREAT is an algorithm for integration of disparate high-
throughput data sets. This algorithm can also perform differential
integration for comparative analyses of multiple cellular
phenotypes. Differential integration is crucial to stratify two
phenotypes and uncover genes leading to molecular differences
between tumors.inteGREAT achieves differential integration in
three stages: network generation, network similarity, and vertex
joining (Figure 1). inteGREAT first creates two undirected
weighted graphs of correlations between gene products for the
transcriptome and proteome, called interactomes, separately.
In the transcript interactome each vertex represents a gene’s
transcript, while in the proteome interactome each vertex
represents the protein product of that gene. Each vertex maps to
a vector of abundances, where each index is the abundance of
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FIGURE 1 | Overview of the inteGREAT algorithm. inteGREAT supports both a non-differential (top left) and a differential (top right) integration analysis. Abundance

data for all genes from the transcriptome (left matrix for both analyses) and proteome (right matrix for both analyses) provides information to generate a correlation

network for each data source. For the differential integration analysis, these abundance values comes from two phenotypes as shown by the red and blue overlays.

inteGREAT measures the local (structure of the immediate neighbors, one hop away, shown by red-marked edges) or global similarity (structure of the immediate

neighborhood, multiple hops away as defined by the random walk with restart) for each gene and produces a ranked-order list of putative biomarkers with assigned

confidences. Increasing red fills of nodes mark ascending gene rank.

that gene product in a sample. For differential integration, these
samples come from two different phenotypes. The edge weight
between two gene products is set to the correlation between their
abundance vectors.

To determine vertex-wise network similarity, inteGREAT
provides two methods. First, inteGREAT analyzes the structure
of the immediate neighborhood of a gene in each interactome
and calculates the cosine similarity between gene products. In this
method, a vector is assigned to each interactome vertex consisting
of the edge weights of its immediate neighbors per interactome.
Second, for an expanded measure of topology, inteGREAT uses
random walk with restart to obtain a stationary distribution
centered around a gene product in both interactomes and
then determines the concordance in structure using cosine
similarity between the two distributions. A random walk with
restart provides a more global view of the vertex neighborhood
(global similarity), while cosine similarity efficiently compares
a vertex’s immediate neighbors across two measurement levels
(local similarity). By analyzing the topological structure of
each interactome before collapsing protein and transcript
measurements into a single gene identifier, we can observe
relationships of gene products at each level without loss of
information. The value resulting from the network similarity
step represents how conserved the interaction neighborhood of

a gene product is between the interactomes generated from the
transcriptome and proteome assays. The joining step produces a
final result as a ranked-order of gene product cosine similarities.
A differential integration using both tumor types reinterprets this
value as conserved behavior across assays but different between
the two cellular phenotypes.

2.2. Correlation Network Generation
To integrate measurements of l distinct data sources such as
transcriptome and proteome, inteGREAT first generates the
undirected weighted graph of correlation networks for each data
source µ ∈ {1, . . . , l} separately, where each gene product is a
vertex and each edge weight is a correlation between two adjacent
vertices based on their abundance values in the data source µ.
Let G be the set of gene products. inteGREAT creates the data
source µ correlation network adjacency matrix Aµ, where for
each gene product pair i, j ∈ G

Aµ[i, j] =

{

ρµ, pµ < 0.05

0, otherwise
(1)

such that ρµ and pµ are correlation coefficients and p-values
respectively. The correlation coefficient is calculated between two
abundance vectors in the data source µ. The abundance vector
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of a gene product i is defined as 〈gµ(i, 1), . . . , gµ(i,m), gµ(i,m +

1), . . . , gµ(i, n)〉 for differential integration where gµ(i, k) denotes
the abundance of gene product i from sample k of the data
source µ. Here, there are m samples from one phenotype
and n − m samples from another phenotype. All samples
are from one phenotype in the case of non-differential
integration analysis. inteGREAT implements several options
for correlation measures, such as Pearson (Pearson, 1895)
and Spearman (Spearman, 1904). The latter measure is a
rank transformation of the former, so the resulting correlation
network may vary significantly between the two methods.
inteGREAT can take as input either normalized abundance data
and generate these networks or accept pre-made networks.

2.3. Vertex Similarity Calculation
After generating the correlation network adjacency matrices
from the abundance measurements of each data source,
inteGREAT relates the vertices of each pair of adjacency
matrices Aµ and Aν by calculating a “vertex similarity” score
vector cµ,ν = 〈cµ,ν[1], . . . , cµ,ν[|G|]〉, for each pair of Aµ and Aν

in the set of network adjacency matrices U = {A1,A2, . . . ,Al}.
Here, cµ,ν[i] is the similarity of gene product i between two
adjacency matrices Aµ and Aν . inteGREAT implements two
distinct measures to calculated vertex similarity scores: “local
similarity” and “global similarity.” The local similarity considers
the network topology only one hop away from a vertex by looking
only at the edges at that vertex (Figure 1, red-marked edges). Let
the cosine similarity between two vectors, x and y, of equal length
be defined as (Salton et al., 1975)

C(x, y) =

∑|G|
i=1 x[i]y[i]

√

∑|G|
i=1 x[i]

2

√

∑|G|
i=1 y[i]

2

; (2)

then the local similarity defines the score vector as

cµ,ν[i] = C(Aµ[i, ·],Aν[i, ·]) (3)

is the local similarity score of gene product i between Aµ and Aν .
Alternatively, inteGREAT determines the global similarity

by examining the expanded topology of the network from each
vertex using a random walk with restart (Leiserson et al., 2014).
In this case, the neighborhood structure of a vertex takes into
account multiple hops away from the vertex instead of only the
immediate neighbors, including any loops within the network.
The global similarity defines the score vector as

cµ,ν[i] = C(sµ[i, ·], sν[i, ·]), (4)

where sµ[i, ·] and sν[i, ·] are the stationary distributions for
transitioning from gene product i to any other gene product
in Aµ and Aν , respectively. The stationary distribution of gene
product i in a network with adjacency matrix Az with restart is
defined as

sz[i, ·] = βi(I− (1− βi)Wz)
−1ez(i), (5)

where I is the identity matrix, ez(i) contains 1 at position i and
0 elsewhere, βi is the restart probability at vertex i, and Wz[i, j]

is the probability of traveling from i to j (Leiserson et al., 2014).

Wz is calculated from Az , such that
∑|G|

j=1Wz[i, j] = 1, ∀i, j ∈

{1, 2, . . . , |G|}, andWz[i, j] ∈ [0, 1].

2.4. Vertex Joining
For each gene product i, inteGREAT calculates the final
similarity score c[i] by joining the cµ,ν[i] calculated for each
pair of network adjacency matrices in U = {A1,A2, . . . ,Al}.
For l > 2, a joining function f combines the calculated cµ,ν[i]
into the final similarity score of gene product i as c[i] =

f (c1,2[i], . . . , cl−1,l[i]) from all the pairwise similarity scores
cµ,ν[i]. For the function f ,inteGREAT defaults to the arithmetic
mean but one can use other options including the maximum,
minimum, and geometric mean. In the case of integrating only
two data sources such as transcriptomics and proteomics, f is the
identity function. In our simulation study with 3 data sources,
we used the inteGREAT default f and calculated the similarity
score of gene product i as c[i] = f (c1,2[i], c1,3[i], c2,3[i]).

We then assign confidence intervals to each final similarity
score c[i], for i ∈ {1, . . . , |G|} using the bias-corrected and
accelerated (BCa) bootstrap (Efron, 1987). As cosine similarity is
the last step to calculate both the global and local similarity scores
c[i], we can use bootstrapping on the cosine similarity between
two vectors at this same step. Let x and y be two vectors of length
|G|. Then let α and β be two vectors of length n < |G|, such that
α[i] = x[j] and β[i] = y[j] ∀i ∈ {1, 2, . . . , |G|}∧∀j ∈ {1, 2, . . . , n}
(so the relationship of indices are maintained from x and y to α

and β). Our bootstrapping function is then C(α,β). We expect
the resampled vectors to have a similar direction as the complete
vectors. From this analysis we obtain the confidence interval as
well as the confidence interval width, the measure we use to
assign confidence.

3. RESULTS

3.1. inteGREAT Provides Robust Measures
of Inter-Network Similarity
A key component of differential integration is detecting
changes concordantly reflected across multiple gene products
associated with a given gene. However, technical or experimental
variabilities can lead to noisy high-throughput data sets,
potentially resulting in unreliable inference. Missing or
inaccurate gene product readouts and variability in the assays
can result in interaction networks with missing vertices,
misplaced edges, and noisy edge values. As inteGREAT detects
changes concordant across different data sources using network
similarity, we evaluated how unreliable data impacts identifying
similarity between networks.

In order to mimic a biological network with hubs, we
randomly generated a network using the Barabási-Albert model
(Barabási and Albert, 1999) to represent an interaction network
from a single level of data. In the absence of noise, this
network represents a single interactome produced by any of
the data sources. To simulate interactomes from additional
data sources, we generated a new network by permuting 5%
of the vertices in the original network. These vertices were
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the “difference” between data sources and acted as known
changes inteGREAT attempted to detect. We simulated the
scenarios when two or three data sources are available, such
as transcriptomics, proteomics, and phosphoproteomics and
assessed the performance of inteGREAT with global or
local similarity (Figure 2, see Supplementary Materials). To
complement the stationary distribution of the random walk with
global similarity, we included the result of having simulated
random walk transition through the network with restart. As the
result of inteGREAT is a ranked-order of genes, we measured
accuracy by the overall distance of each changed vertex from

its expected location at the end of the list (Table S1, see
Supplementary Materials).

We first simulated scenarios where noisy measurements result
in false relationships between gene products. To this end, we
permuted 0–50% of edges in the network. This permutation
could model differences between the molecular species measured
by each high-throughput technology. Regardless of the similarity
measure, inteGREAT was invariant to the size of the network
but became slightly more accurate when the behavior of
a cellular system was characterized with three interactomes
(Figure 2A), suggesting a potential benefit in investigating a

FIGURE 2 | Accuracy of inteGREAT for various noise types across different number of data sources (networks) and network sizes (facet label). (A) Simulations with

varying percent of the edges permuted. Existing edges are randomly chosen for permuting based on a uniform distribution. (B) Simulations with varying percent of the

vertices deleted. Vertices are randomly chosen for deletion using a uniform distribution. (C) Simulations with varying amount of noise. Noise refers to the addition of

random values to the network edges drawn from a Gaussian distribution with a standard deviation of the x-axis.
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phenotype at multiple data sources—for instance, including not
just the transcriptome or the proteome, but the epigenome as
well. We also observed similar accuracy for both local and
global similarity. inteGREAT with local similarity exhibited
slightly improved performance when two data sources were
considered, suggesting that measuring direct neighbors instead
of an interactome global view captured by random walk is more
robust when two gene products are associated based on one data
source but are independent based on the other vantage point of
the system.

We next sought to explore the effect of missing information
on our network similarity measures through vertex deletion
(Figure 2B). Missing data is common when comparing
transcriptome and proteome measurements of the same cellular
condition, as the breadth (number of measured proteins) may
not encompass all the genes found in the transcriptome analysis.
To simulate missing data, we randomly deleted 0–50% of the
vertices. Among the simulated scenarios, vertex deletion resulted
in the worst performance compared to the other sources of noise,
suggesting the lack of measurement of a gene product’s neighbor
in a data source could not be fully compensated for by observing
that neighbor at alternative levels. Integrating data sources
from a number of high-throughput technologies with different
breadth in measurements significantly limits the accuracy of
the integration analyses. Comparison of integration analyses
when two or three data sources were available showed that an
additional data source enhanced the accuracy of the integration
analysis, implying that more comprehensive characterizations
of a cellular phenotype using complementary assays could
alleviate the detrimental effect of imbalanced breadths of various
technologies and missing data.

We also simulated the effect of noisy high-throughput
experiments on the accuracy of transcriptomics and proteomics
integrative analysis. To simulate this source of network
inaccuracy, we injected noise into each edge from a normal
distribution with σ from 0 to 6 (Figure 2C). This simulation
resulted in a striking difference between the inteGREAT

performance with local and global similarity. The performance
of inteGREAT with global similarity was minimally impacted
by the introduced noise, while inteGREAT with local similarity
exhibited performance decrease proportional to the noise level.
(Figure 2C). Nevertheless, inteGREAT performed with >0.8
accuracy, which is significantly higher than the worst-case
accuracy of 0.5 resulting from changed vertices uniformly
distributed among the ranked-order list. This result suggests that
inteGREAT can be reliably deployed even in the presence of
some degree of inconsistency between networks and is robust to
noisy measurements.

3.2. inteGREAT Rediscovers Canonical
Biomarkers of Breast Cancer Subtypes
Although integration of synthetic networks demonstrated the
robustness of inteGREAT in the presence of various sources of
noise in the measurements, simulated data are generally limited
in recapitulating the complexity of real biological data sets.
To further validate inteGREAT’s performance in a biological

setting, we next investigated the ability of inteGREAT to
identify biomarkers associated with a given cellular phenotype
from the integration of transcriptomic and proteomic data sets.

We conducted differential integrative analyses using TCGA
transcriptomic and CPTAC proteomic data sets (Table S2) of
basal and luminal breast cancer subtypes (Farmer et al., 2005).
The inteGREAT differential integration analysis resulted in
a ranked-order list of 13,958 gene identifiers (representing
respective gene products) from the most to the least conserved
between the transcriptome and proteome and differential
between the basal and luminal subtypes. We hypothesized that
the genes with the most conserved neighborhoods in all data
sources and different between the luminal and basal subtypes
would be placed at the top of the ranked-order list. To test
this hypothesis, we benefited from the curated MSigDB gene set
database (Liberzon et al., 2011) and performed unbiased gene
set enrichment analyses (GSEA) (Subramanian et al., 2005) on
the ranked-order list outputted by the inteGREAT differential
integration analysis. The genes identified by inteGREAT as
highly different between the luminal and basal subtypes while
exhibiting concordant transcript and protein neighborhood
topologies were significantly enriched with the gene-programs
known to differentiate basal and luminal subtypes (Figure 3A,
Table S3). These sets included genes that are positively regulated
by estrogen receptor ERα, genes upregulated after estradiol
treatment, and genes reported as differential biomarkers of
luminal versus basal subtypes in two independent studies
(Figure 3A, Table S3). Conversely, the genes that were ranked low
and uncorrelated between the data sources were overrepresented
in more general pathways unrelated to the pathobiology of basal,
luminal, or breast cancer such as HIV infection or proteasomes
(Table S4). This result suggests that inteGREAT correctly
identified the gene-programs and pathways discriminating
between these two breast cancer subtypes from the ones that are
irrelevant to this comparative study.

We also assessed the benefit of integrating transcriptomic
and proteomic data sources rather than using only one source
by comparing the results of integrative and single data source
analyses. To this end, we applied inteGREAT such that the
two interactomes were generated from only the basal or luminal
transcriptomic data sets, and used inteGREAT to identify the
differences between the two transcriptomic networks. We also
performed a similar single data source analysis based on the
proteomic data sets instead of transcriptomic measurements.
These two analyses resulted in two ranked-order lists of genes:
one from the transcriptome and the other from the proteome.
Compared to the differential integrative analysis, single data
source analysis based on the transcriptome or the proteome alone
both detected fewer gene sets implicated in the pathobiology
of breast cancer and the differences between the basal and
luminal subtypes (Figure 3A, Tables S5, S6). For instance, neither
of the single data source analysis were able to identify the
genes positively regulated by ESR1, a known activated pathway
in the luminal subtype. Together, these analyses exhibit the
ability of inteGREAT differential integration analysis to not
only elucidate some of the known gene-programs and pathways
associated with the differences between the basal and luminal
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FIGURE 3 | Differential integration of basal vs. luminal breast cancer subtypes identified known gene-programs associated with these tumor subtypes and detected

ESR1 and GATA3 as their differential biomarkers. (A) Top 20 gene-programs associated with the most differential genes between basal and luminal breast cancer

subtypes for three differential analyses: integration of transcriptome and proteome, transcriptome only, and proteome only. Pre-ranked GSEA analysis was performed

based on the gene-programs defined by MSigDB C2 curated gene sets and the ranked-order list of differential genes generated by each analysis. Black cells signify a

gene set or pathway in the top 20 most significantly enriched pathways for that column. (B) Ten runs of differential integration of basal vs. luminal using local similarity.

The final ranked-order list was generated from the joining of each ranked order-lists using the rank product. ESR1 and GATA3 are marked with red and blue

respectively. (C) Final rank product of 10 runs based on global similarity.

subtypes, but also underscores the benefit of additional data
sources for more accurate integrative analysis.

One of the advantages of not collapsing genes to pathways
is the direct identification of potential biomarkers of a
tumor subtype. ESR1 and GATA3 are reported as differential
biomarkers of basal and luminal subtypes (Farmer et al.,
2005; Chou et al., 2010; Jiang et al., 2014). In the ranked
list of 13,958 gene identifiers resulted by the differential
integration analysis of basal vs. luminal with local similarity,
ESR1 and GATA3 were ranked 2nd (CI: 0.377–0.407) and 7th

(CI: 0.356–0.390), respectively (Table S7). We compared these
rankings to integration analysis within each single tumor subtype
to assess the benefit of biomarker detection using differential
integration. Without differential integration, we observed a
marked decrease in the rankings for these known differential
biomarkers of breast cancer subtypes. Integration of basal
subtype proteomic and transcriptomic data ranked ESR1 and
GATA3 at 8,889 (CI: 0.0100–0.0391) and 2,754 (CI: 0.0365–
0.0705), respectively. Integrative analysis of luminal A subtype
ranked ESR1 and GATA3 at 1,688 (CI: 0.0558–0.0915) and
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9,027 (CI: 0.0166–0.0483), respectively.While the similar analysis
in luminal B, resulted in 133 (CI: 0.181–0.220) and 2,345
(CI: 0.0607–0.0990) ranking of ESR1 and GATA3, respectively.
Orthogonal to the integrative analysis within a single tissue,
we looked at the differential between basal and luminal using
local similarity from a single data source (Figures S1A,B).
Here, ESR1 and GATA3 ranked 7,641 (CI: 0.0244–0.0575)
and 7,076 (CI: 0.0322–0.0688) in the transcriptome and 8,898
(CI: 0.0123–0.0527) and 8,482 (CI: 0.0170–0.0612) in the
proteome, respectively. Furthermore, typical differential fold
change analysis of each data source ranked ESR1 and GATA3
at 5 and 128 most differential transcripts, respectively. Similar
analysis of proteome data set ranked ESR1 and GATA3 as 17
and 23 most differential proteins between the luminal and basal
subtypes (Figures S1C,D). Together this analysis demonstrates
that nominating potential biomarkers by differential integration
is in the orders of magnitude more accurate than the integration
analysis of each tumor subtype separately and outperforms
typical differential fold change analysis, pointing to the benefits
of a differential integration analysis (Table S7).

Potential biases in the collected data sources could adversely
impact analyzing the interactome structures separately. For
instance, it is common to have more samples from one assay
over another. In the TCGA/CPTAC breast cancer data sets,
there are 29 more proteome samples compared to transcriptome
samples. As a result, there could be some degree of overfitting in
a co-expression network construction leading to more accurate
inference of the network with a larger sample size. Hence,
we postulated that enrichment of proteome samples might
have resulted in a bias in our networks. In order to evaluate
the robustness of inteGREAT to uneven number of samples
between the two data sources, we randomly sub-sampled our
basal and luminal data sets such that there were an equal
number of samples for the transcriptome and the proteome. The
similarity and the confidence interval (CI) width was calculated
with local (representative run, Figures S2A,C) or global similarity
(representative run, Figures S2B,D) for each sub-sampled set. The
aggregate ranking of the genes was calculated by combining the
results of 10 sub-sampled sets using rank product with 1,000
permutations (Figures 3B,C). inteGREAT with local similarity
ranked ESR1 and GATA3 as the 2nd (p < 1e-16) and 16th (p <

1e-16) most conserved gene products that are at the same time
differential between basal vs. luminal subtypes (Figure 3B and
Table S8), respectively. A similar analysis using inteGREAT

with global similarity ranked ESR1 3rd (p < 1e-16) and GATA3
22nd (p < 1e-16) (Figure 3C and Table S9). These results
corroborate with the expected biomarkers shown to differentiate
these two breast cancer subtypes (Farmer et al., 2005; Chou
et al., 2010; Jiang et al., 2014), implying the robustness of our
framework to biased sample sizes.

3.3. inteGREAT Relates Molecular
Signatures and Tissue-of-Origin Tumor
Classification
After establishing the ability of inteGREAT to identify
differential biomarkers of basal versus luminal breast

cancer subtypes, we sought to use inteGREAT to elucidate
relationships between molecular underpinnings of cancer types
and their site-of-origin, and benchmarked our results against
(Hoadley et al., 2014) to assess the inteGREAT performance. To
this end, we expanded our data set to encompass transcriptomic
and proteomic data sets for serous ovarian carcinoma (OV)
(Bell et al., 2011; Zhang et al., 2016), breast cancers (BRCA)
(Koboldt et al., 2012; Mertins et al., 2016), colon (COAD),
and rectal (READ) adenocarcinomas (Muzny et al., 2012;
Zhang et al., 2014) (Table S2, see Supplementary Materials).
We applied inteGREAT to each of the malignancies in
our data set to assess intra-cancer (e.g., colon transcriptome
and proteome) conservation between a gene’s transcript and
protein, and evaluated the relationships between cancer types
based on the Spearman’s correlation between the inteGREAT
intra-cancer integration results. The tumors originating from
colon and rectal tissues exhibited strong molecular similarities
(Figure S3A). Commonalities between colon and rectal samples
were previously noted (Hoadley et al., 2014). Our results
expanded those findings through the use of only two platforms,
one not included in (Hoadley et al., 2014). Breast cancer
subtypes classified as luminal A and B previously based on
their transcriptome signature (Lehmann et al., 2011) were
also significantly correlated (Figure S3A). These observations
corroborate with previous work (Lehmann et al., 2011),
where similarity between mutation, copy number, and DNA
methylation of these breast cancer subtypes were reported.

To provide a more refined and quantitative view of
relationships among the tumor types included in our analysis,
we complemented the intra-cancer integration analysis with
inter-cancer integration analysis by applying inteGREAT to
each cancer pair (e.g., colon vs. ovarian transcriptome and
proteome data sets). Specifically, the relationship between
two inter-cancer integration analyses was represented by the
Spearman correlation between their gene product similarity
score vectors. All gene products were included to provide an
unbiasedmatrix containing the relationships between integration
comparisons. Hierarchical clustering of the intra-cancer and
differential integration identified seven distinct clusters (five
branches as cut distance 1.54, one of which consists of three
branches at cut distance 1.33) and yielded a distinct relationship
between their transcript/protein expressions and tissues of origin
(Figure 4A). We observed that the BRCA luminal A/B subtypes
clustered together. The BRCA basal subtypes were distinct from
the luminal subtypes, an observation that was noted earlier by
integrative genomics analysis (Hoadley et al., 2014). Ovarian
tumors form a distinct cluster which exhibited their differences
from BRCA subtypes. Colon and rectal cancers were distinctly
identifiable and neighbored the cluster consisting of differences
between the ovarian and colorectal tumors. The last two clusters
were formed by the differences between the rectal and colon
versus breast tumors (Figure 4A). Interestingly, the HER2-
positive breast cancer subtype was spread across the dendrogram
(Figure 4A). In stark contrast, ovarian cancer was strongly
segregated in a single subtree, only appearing elsewhere close
to colon and rectal cancers, corroborating the earlier findings
(Hoadley et al., 2014).
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FIGURE 4 | Pan-cancer differential integration. (A,B) Elucidate relationships between the tumor molecular features and tissue-of-origin. (A) Heatmap of Spearman

correlations between local similarities of differential integrations, where each tile is the Spearman correlation between two differential integration similarity score

vectors; (B) Heatmap of clumpiness values of cancer types from the dendrogram of hierarchically clustered columns of Spearman’s rhos for the differential integrations

in (A). (C) Identification of putative diagnostic biomarkers. Heatmap of genes with at least one outlier in a differential integration analysis. Columns underwent z-score

normalization before outlier removal, rows after removal. Genes with CI widths >0.04 were removed. (D) Prognostic significance of putative biomarkers from (C)

inferred from survival analysis of clinical outcomes reported in the Pathology Atlas database. Each gene was designated as one of four states in each comparative

study: an outlier comparison for that gene (orange), significant prognosis of that gene in a tissue in that comparison (blue), both an outlier and prognostic (purple), and

neither (white). RNA-seq analysis of ANXA1 (E) and ARF5 (F) expression in HC1599 (basal), MB-157 (basal), and MCF-7 (luminal) cell lines.
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In order to clarify the aggregation of ovarian cancer
comparisons and the promiscuous placements of HER2-positive
breast cancer subtype within the dendrogram, we applied a
clumpiness measure (Schwartz et al., 2016; Meng et al., 2017) to
the tree in Figure 4A (see Supplementary Materials). Clumpiness
is a measure of aggregation of labels within a hierarchical
structure. With this measure, we can quantify the degree of
dispersion of a cancer throughout the dendrogram. In contrast
to a previous pan-cancer analysis using a single platform (Lu
et al., 2005), we observed that ovarian cancer was indeed the
least similar to all other cancer types included in our pan-
cancer analysis, but shared a stronger relationship with colorectal
cancers than the breast cancer subtypes (Figure 4B heatmap).
Interestingly, while the colon and rectal cancers were aggregated
with themselves, similar to ovarian cancers, the breast cancer
subtypes were not aggregated into a single group (Figure 4B
heatmap). In fact, HER2-positive and luminal A subtypes had low
clumpiness values with themselves, meaning their comparisons
were scattered across the entire dendrogram of Figure 4A

(Figure 4B heatmap). This finding implies a weak intra-cancer
relationship; these tumor types have stronger similarities with
other types than their own. Furthermore, by hierarchically
clustering these clumpiness values, we observed an overall
relationship of cancers (Figure 4B). The dendrogram consists
of two distinct groups: the breast cancer subtypes and the
colorectal/ovarian subtypes.We found that luminal A and B were
the most related and as a sub-group the most different from basal
subtype. This observation demonstrates the discrepancy between
the luminal and basal cells in the mammary ducts, in line with
previous studies (Farmer et al., 2005). Furthermore, we observed
that the HER2-positive subtype was more closely related to
luminal than basal subtypes (Figure 4B), possibly because some
of the luminal B tumors carry ERBB2 amplifications, while
all the tumors classified as basal subtype in our data set are
triple negative and lack HER2 expression. We also observed that
colon and rectal cancers converged into a colorectal cancer type
(Figure 4B), as reported earlier in (Hoadley et al., 2014). This
finding reflects the close tissue proximity of the two cancers. Most
dissimilar to all other cancer types in our data set was ovarian
cancer (Figure 4B), which is known to have a unique signature
(Li Y. et al., 2017). Although the tissue-of-origin as expected
is the dominant driver of cancer types segregation (Lu et al.,
2005), our integrative analysis using inteGREAT rediscovered
exceptions by demonstrating the relationships between the major
breast cancer subtypes using measurements from two platforms
instead of five (Hoadley et al., 2014) (Figure 4B). Together, these
data demonstrate the inteGREAT accuracy when analyzing real
biological data sets.

3.4. Pan-Cancer Differential Integration
Identifies Putative Prognostic Biomarkers
In order to explore the genes acting as possible prognostic
biomarkers for each cancer type, we first identified subtype-
specific putative biomarker genes. We considered a gene
as a putative biomarker if its normalized cosine similarity
distribution, generated from the collection of inteGREAT

intra- and inter-cancer integration analyses, had at least one
outlier value, defined as 1.5 times the interquartile range
plus or minus the upper and lower quartile, respectively (see
Supplementary Materials). An outlier represents a gene that
was scored significantly different in one integration analysis
compared to the others.

Then we assessed the clinical relevance of these putative
biomarker genes. We mined the Pathology Atlas (Uhlen et al.,
2015) and examined how the expression of our nominated
putative biomarker genes correlated with the clinical outcomes
as measured by the significance in the differential overall
patient survival times for each specific malignancy included
in our pan-cancer data set (see Supplementary Materials).
The intra-cancer integration analysis identified 93 putative
biomarker genes (Figure S3B). The expression level of 38 out
of 93 putative biomarkers identified by intra-cancer integration
(40.9%) significantly correlated with the differential overall
survival rate of cancer patients (Figure S3C). When a similar
analysis was performed considering both intra- and inter-cancer
inteGREAT analysis, the number of putative biomarkers were
reduced to 41 (Figure 4C), 20 of which (48.8%) exhibited
significant correlation with differential overall survival rate
(Figure 4D). Together, we observed that differential integration
improved the rate of putative biomarker identification by 8%.
This observation underscores the importance of differential
integration analyses and suggests that finding how much a gene
product is conserved within a tumor type but differs from
other tumor types can facilitate discovery of clinically relevant
biomarkers.

Earlier studies elucidate the significance of a number of
biomarkers nominated by inteGREAT to the pathobiology of
their corresponding disease. For example, CBLL1, or HAKAI, is
a proto-oncogene implicated in colorectal cancers (Zhou et al.,
2011). MYBBP1A is known to bind and activate p53 and is
involved in colorectal cancers (Kuroda et al., 2011; Ono et al.,
2013; Kumazawa et al., 2015; Li X. L. et al., 2017). Our predicted
ovarian specific biomarker CYB5R3 is reported to be involved
in ovarian cancer (Yamanoi et al., 2016). Together, our analysis
suggests that integration of differential transcriptome and protein
data sets improves the specificity of biomarker identification.

Using inteGREAT, we also identified ANXA1 and ARF5
to be putative biomarkers for basal and luminal breast cancer
subtypes with potential prognostic significance. High expression
of ANXA1 promotes metastasis of basal-like tumors and
associates with poor prognosis in this breast cancer subtype
(de Graauw et al., 2010; Bhardwaj et al., 2015). To verify ANXA1
as a biomarker for basal vs. luminal subtypes, we performed
RNA-seq to measure transcripts of three breast cancer cell
lines: HCC1599 (basal), MB-157 (basal), and MCF-7 (luminal).
As predicted by the inteGREAT pan-cancer analysis, ANXA1
exhibited significantly higher expression in the two basal cell lines
HCC1599 and MB-157 (Figure 4E). Furthermore, it has been
previously shown that ANXA1 has lower expression in luminal
than basal tumor types (de Graauw et al., 2010), confirming its
identification as a biomarker by inteGREAT (de Graauw et al.,
2010). Conversely, our RNA-seq experiments in breast cancer cell
lines confirmed that ARF5 is highly expressed in MCF-7 luminal
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cells, but not expressed in basal cell lines (Figure 4F). These
data, together with our pan-cancer analysis, propose ARF5 as a
possible biomarker of luminal breast cancer subtype which has
a tumor subtype-specific gene-program in transcript and protein
with potential prognostic significance.

4. DISCUSSION

High-throughput assays have enabled global profiling of
different aspects of tumor characteristics, from the transcriptome
to the proteome. A significant step toward more effective
cancer treatment is to leverage diverse genome-scale data
sources to complement investigation of tumor characteristics.
Despite the recent advances in proteomic technologies, further
reproducibility and quality control procedures should be
developed (Tabb, 2013; Mertins et al., 2016; Bittremieux et al.,
2017). Nevertheless, the holistic and integrated views of cancer
could facilitate discovery of molecular-based diagnostic and
prognostic biomarkers and guide precise clinical management
and therapeutic decision-making. While recent algorithms
attempt to integrate data sources for individual tumor types,
there are still unmet needs for analytic approaches to enable
differential integration analyses to facilitate the discovery of
tumor-specific biomarkers from an integrative view of tumor
biology. Here, we have presented inteGREAT, an algorithm
to integrate transcript and protein abundance data and detect
differential biomarkers between multiple cancer subtypes.

We have shown the robustness of inteGREAT using
simulations controlling for multiple sources of biological
noise. In addition, we demonstrated the accuracy and utility
of inteGREAT to infer differences and similarities of four
tumor types. inteGREAT confidently identified previously
published diagnostic biomarkers of basal and luminal
breast cancer subtypes from their respective transcriptomic
and proteomic data. Using a measure of clumpiness for
summarizing hierarchical trees, inteGREAT performed
differential integration for seven different cancer subtypes
and detected convergence and divergence of tumors from
various tissues-of-origin according to their transcriptomic and
proteomic characteristics. Furthermore, inteGREAT identified
putative biomarkers for each subtype with potential prognostic
significance.

Using multiple analyses, we demonstrated that integration
of transcriptome and protein interactomes enhances reliability
of biomarker discovery rather than using only each of these
measurements alone. We propose that measuring biological
systems from more than one perspective diminishes the effect of
missing data and noisy assays, while simultaneously elucidating
new relationships between disparate data sources that cannot be
captured in a single assay.

inteGREAT is a generic algorithm for measuring inter-
network similarity and is able to report differential information.
While in this study we only used inteGREAT for biomarker
detection from transcriptome and proteome data in different
cancer subtypes, our flexible implementation of inteGREAT
enables new analysis of networks from a variety of biological
sources, including the epigenome, CNVs, and mutation data.
This algorithm is a powerful tool to further cancer biomarker
discovery to aid in therapeutics advancements.
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