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Abstract: Crystallization-driven self-assembly (CDSA) of block copolymers bearing one crystallizable
block has emerged to be a powerful and highly relevant method for the production of one- and
two-dimensional micellar assemblies with controlled length, shape, and corona chemistries. This
gives access to a multitude of potential applications, from hierarchical self-assembly to complex
superstructures, catalysis, sensing, nanomedicine, nanoelectronics, and surface functionalization.
Related to these applications, patchy crystalline-core micelles, with their unique, nanometer-sized,
alternating corona segmentation, are highly interesting, as this feature provides striking advantages
concerning interfacial activity, functionalization, and confinement effects. Hence, this review aims to
provide an overview of the current state of the art with respect to self-assembly concepts, properties,
and applications of patchy micelles with crystalline cores formed by CDSA. We have also included
a more general discussion on the CDSA process and highlight block-type co-micelles as a special
type of patchy micelle, due to similarities of the corona structure if the size of the blocks is well
below 100 nm.

Keywords: crystallization-driven self-assembly (CDSA); crystalline-core micelles; patchy micelles;
block copolymers

1. Introduction

The solution self-assembly of block copolymers (BCPs) has paved the way to a vast
number of micellar assemblies of various shapes (e.g. spheres, cylinders, vesicles, platelets,
core-shell, core-shell-corona, and compartmentalized (core or corona) structures) and
hierarchical superstructures, as well as hybrids with fascinating applications in drug
delivery and release, as emulsifiers/blend compatibilizers, in nanoelectronics, as responsive
materials (temperature, pH, light), templates for nanoparticles, in heterogeneous catalysis,
etc. [1–6]. A key prerequisite for controlling/programming the solution self-assembly is
the synthesis of well-defined diblock and triblock (linear, star-shaped, ABA- or ABC-type)
copolymers via controlled or living polymerization techniques, such as living anionic
polymerization, reversible addition−fragmentation chain transfer, nitroxide-mediated,
and atom transfer radical polymerization [5–9]. In general, anisotropic polymer micelles
can be divided into three main categories: multicompartment core micelles (MCMs),
surface-compartmentalized micelles, and a combination of both [2]. MCMs are generally
defined as micellar assemblies with a solvophilic corona and a microphase-separated
solvophobic core. According to the suggestion of Laschewsky et al., a key feature of
multicompartment micelles is that the various sub-domains in the micellar core feature
substantially different properties to behave as separate compartments [10,11]. MCMs
are commonly prepared via hierarchical self-assembly of suitable building blocks, which
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provide “sticky patches” [12–15]. Depending on the number and geometrical arrangement
(linear, triangular, tetrahedral, etc.) of the “sticky patches”, as well as the volume fraction
of the solvophilic block, various spherical, cylindrical, sheet-like, and vesicular MCMs are
accessible [16–25]. For a deeper insight into this highly relevant topic, the reader is referred
to recent extensive reviews on MCMs [26–31]. Surface-compartmentalized micelles are
subdivided into micelles with a Janus-type (two opposing faces with different chemistry
or polarity) or patch-like, microphase-separated corona, featuring several compartments
of different chemistry or polarity (denoted as patchy micelles), as illustrated in Figure 1
for cylindrical micelles. Here, block co-micelles with a block-like arrangement of several
(>2) surface compartments along the cylindrical long axis can be regarded as a special
case of patchy micelles. It is noted that AB-type diblock co-micelles also represent Janus-
type micelles, where the two opposing faces are arranged perpendicular to the cylindrical
long axis. The broken symmetry of Janus particles offers efficient and distinctive means of
targeting complex materials by hierarchical self-assembly and realize unique properties and
applications, like particulate surfactants, optical nanoprobes, biosensors, self-propulsion,
and many more [32–41].
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three main strategies can be applied: (i) self-assembly of ABC triblock terpolymers in se-
lective solvents for the incompatible A and C blocks [42–48]; (ii) co-assembly of AB and 
CD diblock copolymers with selective interactions between the B and C blocks (e.g. hy-
drogen bonding, ionic interactions, solvophobic interactions) [49–52], resulting in patchy 
micelles with an insoluble mixed B/C core; and (iii) co-assembly of AB and BC diblock 
copolymers [53–56] where the B block forms the insoluble core. However, mostly spheri-
cal micelles or polymersomes with a patchy corona have been reported and only a few 
reports describe the preparation of one-dimensional (worm-like, cylindrical) assemblies 
with a patch-like compartmentalized corona, even though theoretical work on mixed pol-
ymer brushes predict their existence [57–61]. One of the rare but highly intriguing exam-
ples are PtBA–b–PCEMA–b–PGMA (poly(tert-butyl acrylate)–block–poly(2-cinnamoylox-
yethyl methacrylate)–block–poly(glyceryl monomethacrylate)) and PnBA–b–PCEMA–b–
PtBA (PnBA: poly(n-butyl acrylate)) triblock terpolymers [42,43,45]. For self-assembly, the 
triblock terpolymers were first dissolved in a good solvent for all blocks (CH2Cl2, CHCl3, 
or THF), followed by the addition of methanol (non-solvent for the middle block) to in-
duce micelle formation. As an intermediate, cylindrical micelles with a patchy corona 
were formed first, with the PtBA blocks forming small circular patches in a corona mainly 
consisting of PGMA or PnBA. Upon further decreasing the solvent quality for the PtBA 
block (addition of MeOH), these cylinders can form double and triple helices via hierar-
chical self-assembly. This concept has also been applied to triblock terpolymers with a 
poly(2-hydroxyethyl methacrylate) middle block, having the potential for further modifi-
cation by esterification of the pendant hydroxy functions [42]. Besides, crystallization-
driven self-assembly (CDSA) is a highly versatile tool for the preparation of well-defined 
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For the preparation of patchy micelles and polymersomes from amorphous BCPs, three
main strategies can be applied: (i) self-assembly of ABC triblock terpolymers in selective
solvents for the incompatible A and C blocks [42–48]; (ii) co-assembly of AB and CD diblock
copolymers with selective interactions between the B and C blocks (e.g. hydrogen bonding,
ionic interactions, solvophobic interactions) [49–52], resulting in patchy micelles with an
insoluble mixed B/C core; and (iii) co-assembly of AB and BC diblock copolymers [53–56]
where the B block forms the insoluble core. However, mostly spherical micelles or poly-
mersomes with a patchy corona have been reported and only a few reports describe the
preparation of one-dimensional (worm-like, cylindrical) assemblies with a patch-like com-
partmentalized corona, even though theoretical work on mixed polymer brushes predict
their existence [57–61]. One of the rare but highly intriguing examples are PtBA–b–PCEMA–
b–PGMA (poly(tert-butyl acrylate)–block–poly(2-cinnamoyloxyethyl methacrylate)–block–
poly(glyceryl monomethacrylate)) and PnBA–b–PCEMA–b–PtBA (PnBA: poly(n-butyl
acrylate)) triblock terpolymers [42,43,45]. For self-assembly, the triblock terpolymers were
first dissolved in a good solvent for all blocks (CH2Cl2, CHCl3, or THF), followed by the
addition of methanol (non-solvent for the middle block) to induce micelle formation. As
an intermediate, cylindrical micelles with a patchy corona were formed first, with the PtBA
blocks forming small circular patches in a corona mainly consisting of PGMA or PnBA.
Upon further decreasing the solvent quality for the PtBA block (addition of MeOH), these
cylinders can form double and triple helices via hierarchical self-assembly. This concept
has also been applied to triblock terpolymers with a poly(2-hydroxyethyl methacrylate)
middle block, having the potential for further modification by esterification of the pendant
hydroxy functions [42]. Besides, crystallization-driven self-assembly (CDSA) is a highly
versatile tool for the preparation of well-defined cylindrical micelles of controlled length
and length distribution, and has proven as a valuable method for the preparation of patchy
cylindrical micelles.
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This review will focus on the recent developments concerning self-assembly strategies
for the production of crystalline-core micelles (CCMs) bearing a patchy corona, and will
also address their unique properties and potential applications. As stated above, block
co-micelles represent a special case of patchy micelles and thus, will be discussed only
briefly. This is not only due to the usually larger size and sequential arrangement of
surface compartments in the corona, in contrast to the more alternating arrangement
in patchy cylindrical micelles (Figure 1b,c), but is also attributed to the substantially
different self-assembly procedure. Block co-micelles are commonly prepared by sequential
living CDSA of different diblock copolymers, whereas patchy micelles are formed by
simultaneous CDSA of diblock copolymer mixtures or CDSA of ABC triblock terpolymers
with crystallizable middle blocks. Hence, this review will be divided into four main
sections, starting with a general consideration of CDSA. The second part gives a compact
overview over self-assembly strategies used to form cylindrical and platelet-like block co-
micelles. The different self-assembly concepts for patchy micelles with crystalline cores will
be reviewed in the third section, followed by a discussion on properties and applications
of these interesting compartmentalized nanostructures.

2. Crystallization-Driven Self-Assembly (CDSA)

As pointed out in the introduction, the preparation of one-dimensional (1D) cylindrical
(or worm-like) micelles with controlled dimensions, low-length dispersities, and tailored
corona structures and functionalities still remains a challenge in the self-assembly of fully
amorphous BCPs. Besides, the introduction of a crystallizable block, which adds an addi-
tional and strong driving force for micelle formation, has turned out to be a highly efficient
route to solve these issues. Consequently, the self-assembly of such BCPs, bearing crystal-
lizable blocks, is termed crystallization-driven self-assembly (CDSA) [1,62,63]. This field
was pioneered by studies on poly(ferrocenyl dimethylsilane) (PFS)-containing BCPs and is
gaining increasing importance for the preparation of well-defined 1D and two-dimensional
(2D) assemblies, especially since the discovery of living CDSA (Figure 2) [63–67]. Anal-
ogous to the living polymerization of monomers, CDSA can proceed in a living manner,
employing small micellar fragments as seeds (Figure 2a: seeded growth) for the addition
of unimers (molecularly dissolved BCPs with a crystallizable block). In this approach, the
micellar seeds, also termed “stub-like” micelles, are produced by vigorous sonication of
long, polydisperse cylindrical micelles prepared by conventional CDSA. Owing to its living
nature, the length of the produced cylindrical micelles shows a linear dependence on the
unimer/seed ratio employed, and length dispersities are very low (Lw/Ln typically well
below 1.1; where Ln is the number average and Lw the weight average micelle length).

Living CDSA can also be realized by using spherical CCMs as seeds [68], by
self-seeding [69–71] (Figure 2a), and even directly by polymerization-induced CDSA
(Figure 2b) [72–74], i.e., via polymerization in the presence of seed micelles. The self-
seeding approach also uses small micellar fragments that are heated in dispersion to a
specific annealing temperature (Ta), where most of the crystalline core is molten/dissolved
and only a very minor fraction of crystallites survive. These act as seeds in the subsequent
CDSA upon cooling (Figure 2a: self-seeding), and the length of the micelles can be con-
trolled by a proper choice of Ta. If Ta is too low, the crystalline cores will not melt/dissolve,
and the length distribution of the employed micellar fragments remains unchanged. On
the other hand, if Ta is too high, the crystalline cores will melt/dissolve completely, and no
crystallites will survive that could act as seeds. As a result, in between these two limiting
cases, an increase in micelle length with increasing Ta is observed, as the fraction of sur-
viving crystallites (seeds) decreases with Ta. This range of self-seeding temperatures can
be very restricted, making length control difficult. Another drawback of these seed-based
protocols is the low amount of cylindrical micelles that can be produced, as commonly
rather dilute solutions have to be used. This can be overcome by the living polymerization-
induced CDSA approach, enabling the production of uniform cylindrical micelles with
concentrations up to ca. 10–20% (w/w solids) within a few hours. In a recent report, it
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was shown that living CDSA can even be stimulated by light, utilizing the photo-induced
cis-trans isomerization in oligo(p-phenylenevinylene) (OPV)-based BCPs [75].
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Living CDSA has paved the way to a myriad of 1D and 2D micellar assemblies of
controlled dimensions, including patchy and block co-micelles (both will be addressed
in the next sections) [65,68,77–80], branched micelles [76], platelet-like micelles and co-
micelles [81–86], and hierarchical assemblies [81,87–91]. Next to BCPs with a PFS block,
a variety of other crystallizable polymer blocks were employed in CDSA, e.g. polyethy-
lene (PE) [68,92–94], poly(ethylene oxide) [95], polyesters (poly(ε-caprolactone) (PCL) or
poly(L-lactide) (PLLA)) [86,96–101], polycarbonate [102], poly(2-iso-propyl-2-oxazoline)
(PiPrOx) [103,104], liquid crystalline polymers [71,105], poly(vinylidene fluoride) [106],
polypeptoids [107,108], and various conjugated polymers (e.g., poly(3-hexyl thiophene)
(P3HT) and OPV) [75,109–113].

3. Short Excursion on Block Co-Micelles

Block co-micelles represent a special type of patchy CCM, because of the sequential
arrangement of surface compartments and the precisely adjustable size of the blocks,
usually leading to larger corona segments than commonly observed for patchy CCMs.
Analogous to the synthesis of BCPs, block co-micelles are produced by sequential living
CDSA. The characteristic of this process is that the micelles’ termini remain “active” after
unimer addition is completed. Consequently, addition of a different type of unimer leads
to the formation of a blocky structure (Figure 3a) [65,114]. This feature allows for precise
control over the block length by adjusting the amount of added unimer.
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Figure 3. (a) Formation of B–A–B triblock co-micelles via sequential living CDSA in selective solvents
for the corona blocks. (b) Structured illumination microscopy image of symmetrical 11-block co-
micelles with red, green, and blue fluorescent corona blocks separated by non-fluorescent PDMS
spacer blocks. (c) Laser-scanning confocal microscopy image of solid-state, donor–acceptor, coaxial
heterojunction nanowires based on B–A–B segmented nanofibers with a semi-crystalline PDHF core
(depicted in blue) and a semi-crystalline P3EHT shell (depicted in red) in the outer corona blocks,
taken with both blue (PDHF) and red (P3EHT) channels (scale bar: 10 µm). Blue emission from the
central PDHF core, as well as red/orange emission from the outer P3EHT segments, due to Förster
resonance energy transfer (FRET) were observed. (d) Schematic depiction of the formation of B–A–B
triblock co-micelles with patchy outer corona blocks, starting from SES wCCMs as seed micelles and
subsequent living CDSA of SEM unimers in THF (left) and corresponding TEM image of patchy
block co-micelles (scale bar: 100 nm). (a) Reproduced from [79] with permission of the American
Association for the Advancement of Science (AAAS), (b) reproduced from [67] with permission of
the Royal Society of Chemistry (RSC), (c) reproduced from [105], and (d) reproduced from [68] with
permission of ACS.

Similar to living polymerization techniques, in which the reactivity of the first monomer
limits the choice of a second monomer, unimers need to fulfill certain requirements for
successful co-crystallization. For example, the micellar cores need to be compatible for
epitaxial crystallization, i.e., they should exhibit a similar crystal lattice spacing [115,116].
A common way to fulfill this prerequisite is the use of diblock copolymers bearing the
same crystallizable block that induces homoepitaxial growth, as shown first for PFS-
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containing diblock copolymers to produce B–A–B triblock co-micelles [65]. Within this
work, PFS–b–polyisoprene (PFS–b–PI) cylindrical micelles served as seeds for the nucle-
ation of PFS–b–polymethylvinylsilane (PFS–b–PMVS) and PFS–b–polydimethylsiloxane
(PFS–b–PDMS) unimers, respectively. For heteroepitaxial growth, different PFS-containing
seed micelles were applied to induce CDSA of polyferrocenylgermane (PFG)-containing
diblock copolymers [73,83,89]. The crystal lattice spacing of the two core-forming blocks
only differs by about 6%, enabling the formation of tri- and pentablock co-micelles as well
as 2D co-assemblies.

Living CDSA has opened the door to a huge variety of one dimensional, PFS-
containing block co-micelles with tailored numbers, lengths, and composition of corona
blocks [114,117–121]. Centrosymmetric and non-centrosymmetric block co-micelles are ac-
cessible, and give rise to broad structural complexity [79]. In particular, the introduction of
fluorescent corona blocks marks an important step in the development of block co-micelles,
since this enables the formation of barcode and RGB micelles (Figure 3b) [67,77,122]. Up
to that point, the fabrication of cylindrical nanomaterials with precise, color-tunable com-
partments of predictable length and number was challenging. Moreover, it is possible to
induce fluorescence in the semicrystalline core-forming block by replacing the PFS block by
a poly(di-n-hexylfluorene) (PDHF) block [78]. B–A–B triblock co-micelles with PDHF core
and P3HT outer corona blocks were found to show long-range exciton transport (>200 nm).
Inducing secondary crystallization of a poly(3-(2’-hexylethyl)thiophene) (P3EHT) corona
block even rendered solid-state donor–acceptor heterojunctions possible (Figure 3c) [105].
These materials bear a high potential for applications in optoelectronics, device fabrication,
and sensing [123].

Several other semicrystalline, core-forming blocks—for example, PFG [73,83,89],
polycarbonate [102,124], poly(3-heptylselenophene) [109], P3HT [125], OPV [75,126,127],
PLLA [128], and PE [68]—were used for the production of block co-micelles. As an exam-
ple, sequential living CDSA of a polystyrene–block–polyethylene–block–polystyrene (PS–b–
PE–b–PS; SES) triblock copolymer with a PS–b–PE–b–PMMA (SEM; PMMA: poly(methyl
methacrylate)) triblock terpolymer yielded B–A–B- or A–B–A-type triblock co-micelles with
patchy outer or inner B blocks, respectively (Figure 3d) [68]. Interestingly, the choice of seed
micelles was crucial for the successful formation of triblock co-micelles, as worm-like SES
micelles are accessible on both micelle ends for epitaxial growth, whereas patchy, worm-
like SEM micelles show diverse growth behavior, which is predefined by the arrangement
of the corona chains at the micelles’ ends.

The scope of complex micellar assemblies is further extended by hierarchical self-
assembly, using block co-micelles as building blocks for the formation of 2D and three-
dimensional (3D) superstructures. There are different strategies to realize hierarchical
assemblies—for example, coordination-driven co-assembly [129] or dialysis of amphiphilic
block co-micelles against selective solvents, enabling highly efficient side-by-side or end-
to-end stacking (Figure 4a,b) [88,130,131], or spatially confined hydrogen-bonding interac-
tions [132,133]. The latter opens access to numerous hierarchical 2D morphologies, such as
“I”-shaped, cross, shish-kebab (Figure 4c) or windmill-like (Figure 4d) structures, by pre-
cisely tailored interactions between hydrogen donor and hydrogen acceptor units within
the block co-micelles. However, not only the attractive interactions by hydrogen-bonding
have to be taken into account, but also repulsive interactions caused by steric hindrance of
the corona chains. To overcome this problem, tuning the length of the hydrogen acceptor
blocks has proven to be a suitable solution, rendering 3D assemblies possible. It is noted
that 2D platelet-like hierarchical superstructures, as well as more complex micelle archi-
tectures like double- and single-headed, spear-like micelles [90], scarf-like micelles [89],
diamond-fiber hybrid structures [81], or platelets with various shapes (rectangular, quasi-
hexagonal, and diamond platelet micelles) [82–85] are accessible.
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4. Self-Assembly Concepts for Patchy Micelles with Crystalline Cores
4.1. CDSA of Linear and Star-Shaped Triblock Terpolymers

The most widely used route toward crystalline-core patchy micelles is the CDSA
of linear ABC triblock terpolymers with a crystallizable middle block (Table 1) [134].
In contrast to block co-micelles, where the sequential living CDSA of different diblock
copolymers results in a block-type segmentation of the corona, the incompatibility of the
corona-forming blocks is the driving force for corona segregation in CDSA of triblock
terpolymers. This affects the average width of the patches and leads to an alternating,
chess-board-like arrangement of the corona patches [135]. Worm-like CCMs (wCCMs) with
a patchy corona were first reported in 2008 for triblock terpolymers with a semicrystalline
PE middle block and two amorphous outer blocks, namely PS and PMMA (SEM) [93].
Since patchy, worm-like (or cylindrical) CCMs based on these triblock terpolymers have
been intensively studied, the self-assembly mechanism will be elucidated in detail on
this example.

Initially, the SEM triblock terpolymers are placed in a good solvent for the amorphous
blocks and heated above the melting temperature of the semicrystalline PE block in the
given solvent (Figure 5a) [94]. Depending on the solvent quality for the PE middle block,
different micelle morphologies are formed. In good solvents for the molten PE block (for
example, THF or toluene), the triblock terpolymers are molecularly dissolved, i.e., unimers
are formed. In bad solvents for PE (for example 1,4-dioxane), the molten PE block collapses,
and spherical micelles with an amorphous (molten) PE core are observed. Cooling of the
corresponding unimer solution (in good solvents) or dispersion of spherical micelles (bad
solvents) results in the nucleation of PE crystallization. In good solvents, the nuclei are
stable and able to initiate the bidirectional, 1D epitaxial growth of the remaining unimers
to generate wCCMs. However, in bad solvents, the spherical shape of the micelles dictates
the final morphology of the CCMs. Consequently, confined crystallization of PE in the
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respective micellar cores leads to the generation of spherical CCMs. In both cases, the
micelle corona exhibits a patch-like, microphase-separated (patchy) structure, whereas for
wCCMs the patchy structure of the corona is more pronounced (Figure 5b,c). For wCCMs,
an almost alternating arrangement of the PS and PMMA patches in the corona can be
deduced from transmission electron microscopy (TEM) [94], and was also confirmed by
small-angle neutron scattering studies [135].

Table 1. Overview of self-assembly concepts for patchy micelles with a crystalline core.

Self-Assembly Concept Employed BCPs Special Feature Reference

CDSA of triblock terpolymers

Linear triblock terpolymers

PS–b–PE–b–PMMA

Control over micelle morphology,
length control through seeded
growth, co-crystallization with

PS–b–PE–b–PS

[93,94,134–136]

PS–b–PE–b–PDxA 1 Functional groups for
NP incorporation [137,138]

PS–b–PFS–b–PMMA

Control over patch size,
co-crystallization with diblock
co-polymers of varying PS and

PMMA block lengths

[139]

PS–b–PFS–b–PMVS,
PI–b–PFS–b–PMMA

Length control through
seeded growth [140]

Star-shaped triblock terpolymers µ-SIF
Seeded growth, block co-micelles

with patchy µ-SIF outer blocks, and
middle block based on PFS-b-PDMS

[141]

Non-covalent grafting on
carbon nanotubes PS–b–PE–b–PMMA Temperature-stable patchy

hybrid materials [142]

Co-assembly of diblock copolymers

Sterically demanding co-unimers PFS–b–PMVS,
PFS–b–PMVS(C18) 2

Gradual coassembly of linear and
brush-type BCPs [143]

Strong difference in Flory–Huggins
interaction parameters of

corona chains

PFS–b–PDMS, PFS–b–PMVS,
PFS–b–PI

Different patch arrangements
accessible (helical, hemispherical) [144]

Manipulation of the epitaxial growth
rate or the critical

dissolution temperature

PFS–b–P2VP, PFS–b–PNiPAM,
PFS–b–P2VPQ 3 Patchy or blocky structures accessible [80,145]

Addition of crystallizable
homopolymer,

heating–cooling–aging approach

PFS, PFS–b–PDMS, PFS–b–PI,
PFS–b–PMVS, PFS–b–P2VP

PFS crystal fragments serve as seeds,
patchy or blocky structures,

easy up-scaling
[146]

1 PDxA: poly(N,N-dialkylaminoethyl methacrylamide). 2 PMVS block alkylated by C18 alkyl chains. 3 Quaternized P2VP.

A facile way to tailor the sizes of the PS and PMMA corona patches is random co-
crystallization of an SEM triblock terpolymer with a corresponding SES triblock copolymer,
bearing two PS end blocks [136]. A systematic increase of the SES fraction led to a decrease
of the PMMA patch size (Figure 7a). Thus, this approach allows to tune the corona structure
by a simple co-assembly without the need to synthesize new triblock terpolymers for each
desired corona composition. Another efficient way to modify the corona patches is the
introduction of functional groups via selective amidation of the PMMA block in SEM
triblock terpolymers with different N,N-dialkylethylenediamines [137,138]. CDSA in THF
led to patchy wCCMs, for which the patch size and shape could be tuned by varying the
block length ratio of the corona blocks (Figure 7b,c) and selective solvent interactions. The
functionalized, patchy corona enables an application of these wCCMs as templates for
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the incorporation of inorganic nanoparticles (NPs), which will be discussed in detail in
Section 5.2.
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Figure 5. (a) Schematic representation of the proposed mechanism for the formation of patchy worm-
like and spherical crystalline-core micelles (wCCMs and sCCMs, respectively) from SEM triblock
terpolymers (PS blocks are represented in blue, PE in black, and PMMA in red). TEM images of (b)
patchy S340E700M360 wCCMs prepared by CDSA in THF and subsequent annealing at 45 ◦C for 3 h,
and (c) patchy S340E700M360 sCCMs formed in dimethylacetamide (subscripts denote the respective
average degrees of polymerization, PS was selectively stained with RuO4 vapor and appears dark).
Reproduced from [94] with permission of ACS.

The patchy corona structure of SEM wCCMs can also be transferred to multiwalled
carbon nanotubes (CNTs) by a non-covalent grafting approach that forms 1D patchy
hybrids (Figure 7d) [142]. In contrast to CDSA, which is commonly used to obtain patchy
wCCMs, these patchy hybrids were prepared by an ultrasound-assisted process. Here, the
PE block selectively adsorbs onto the CNT surface, while the soluble PS and PMMA blocks
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form the patchy corona. The driving force for CNT functionalization is the high affinity
of the PE block to the CNT surface, which was supported by the use of a SEM triblock
terpolymer, which is not able to crystallize at room temperature, but successfully generates
patchy CNT hybrids.

Different attempts were made to exchange the PE block with another crystallizable
block in order to generate patchy wCCMs. Successful examples are triblock terpolymers
of PS–b–PFS–b–PMMA, PS–b–PFS–b–PMVS, and PI–b–PFS–b–PMMA [139,140], as well as
µ-ABC miktoarm star terpolymers with a crystallizable PFS block (Figure 6a) [141]. The
PFS-containing triblock terpolymers were able to undergo a seeded growth protocol for
living CDSA in different solvents to form patchy wCCMs of predictable length (Figure 6b).
Remarkably, the living CDSA of all triblock terpolymers proceeded rather slowly compared
to PFS-containing diblock copolymers, which was attributed to two effects: (i) the compa-
rably high steric hindrance caused by the two corona blocks surrounding the core-forming
block, and (ii) the choice of solvent, which did not sufficiently support the crystallization of
PFS. For the PS–b–PFS–b–PMMA triblock terpolymers, the corona chain length (core to total
corona block ratio) was varied, and co-crystallization of the resulting triblock terpolymers
resulted in block co-micelles with a patchy corona. Interestingly, the different micelle
blocks were still discernible by TEM analysis because of the different corona thicknesses
(Figure 6c).
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Figure 6. (a) Patchy micelles formed by CDSA of a µ-SIF (polystyrene–arm–polyisoprene–arm–
poly(ferrocenyl dimethylsilane)) miktoarm star terpolymer in ethyl acetate. (b) Patchy cylindrical
micelles and (c,d) patchy ABA-type triblock co-micelles with a crystalline PFS core and a patchy
PS/PMMA corona prepared in acetone (scale bars = 100 nm). In (c,d), triblock terpolymers with
PS and PMMA blocks of different lengths were used to alter the width of the patchy corona in the
middle and outer blocks of the triblock co-micelles (in the sketches PS is depicted in light grey and
PMMA in purple). (a) Reprinted from [141], and (b–d) from [139] with permission of ACS.
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Figure 7. (a) Random co-crystallization of a SES triblock copolymer and a SEM triblock terpoly-
mer, in order to tune the size of the corona patches. TEM images of patchy wCCMs obtained by
co-crystallization of S380E880S390 with S340E700M360 in THF (subscripts denote the respective aver-
age degrees of polymerization), revealing a decreasing size of the bright-appearing PMMA corona
patches with an increasing amount of S380E880S390 (scale bars: 100 nm). TEM images of patchy
(b) S415E830DMA420 and (c) S660E1350DMA350 wCCMs (DMA: N,N-dimethylaminoethyl methacry-
lamide), as well as (d) 1D patchy hybrids with a CNT core and a patchy PS/PMMA corona prepared
by ultrasound-assisted, non-covalent grafting of an SEM triblock terpolymer onto CNTs. For all
samples, PS was selectively stained with RuO4 vapor and appears dark. (a) Reproduced from [136]
with permission of Elsevier, (b,c) reprinted from [138] with permission of RSC, and (d) reproduced
from [142] with permission of ACS.

4.2. Co-Assembly of Diblock Copolymers

The simultaneous co-assembly of PFS-based diblock copolymers represents an alter-
native way of producing patchy, cylindrical CCMs, next to the use of synthetically more
demanding linear or star-shaped triblock terpolymers (Table 1). However, the corona
patches of the resulting micelles are usually arranged in a blocky rather than an alternating
manner. Consequently, the micelles produced with this approach represent a special case
of patchy CCMs. The first example of these patchy block co-micelles was reported in 2014,
and is based on the co-crystallization of linear and brush-type BCPs with a crystallizable
PFS block [143]. Starting from a linear PFS–b–PMVS diblock copolymer, the PMVS corona
block was alkylated via thiol–ene functionalization, in order to yield a brush-type BCP
with pendant C18 alkyl chains. The brush-type BCPs showed poor crystallization behavior,
due to the steric repulsion of the alkyl moieties. However, simultaneous co-crystallization
with the linear BCP, applying cylindrical PFS–b–PDMS seed micelles, resulted in a gradual
integration of the brush-type unimers. Hence, a patchy corona segmentation of the end
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blocks was observed for the produced B–A–B triblock co-micelles by TEM and atomic force
microscopy (AFM) (Figure 8a).
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The preparation of patchy block co-micelles is not limited to sterically demanding co-
blocks, but can be induced by a strong difference in the Flory–Huggins interaction param-
eter between the corona-forming blocks [144]. Blends of PFS–b–PDMS with PFS–b–PMVS 
and PFS–b–PI, respectively, were co-crystallized, resulting in a blocky corona segmenta-

Figure 8. (a) TEM (top), as well as AFM topography (bottom left) and phase (bottom right) images
of B–A–B triblock co-micelles with patchy end blocks prepared by the co-crystallization of linear
and brush-type BCPs with a crystallizable PFS block, employing cylindrical PFS–b–PDMS seed
micelles. (b) Patch-like segmented and (c) B–A–B triblock co-micelles produced by controlling
the epitaxial growth rate of PFS–b–PNiPAM over PFS–b–P2VP onto cylindrical PFS–b–P2VP seed
micelles. Comparable growth rates resulted in patch-like segmentation and dissimilar growth rates
in a blocky structure of the corona. (d) B–A–B triblock co-micelles and (e) patch-like, segmented co-
micelles prepared by synergistic self-seeding of a mixture of short PFS–b–PNiPAM and PFS–b–P2VP
cylindrical micelles. In (d), the P2VP middle block corona was selectively stained with platin NPs.
(b–e) In the respective sketches, PFS is colored in light orange, P2VP in blue, and PNiPAM in red.
(a) Reprinted from [143], (b,c) reprinted from [145] with permission of ACS, and (d,e) reproduced
from [80] with permission of RSC.

The preparation of patchy block co-micelles is not limited to sterically demanding
co-blocks, but can be induced by a strong difference in the Flory–Huggins interaction
parameter between the corona-forming blocks [144]. Blends of PFS–b–PDMS with PFS–
b–PMVS and PFS–b–PI, respectively, were co-crystallized, resulting in a blocky corona
segmentation. Staining with Karstedt’s catalyst (selective for PI and PMVS) revealed the
small corona patches and made two different patch arrangements visible (helical pattern
and hemispherical shape). In a subsequent study, the competitive seeded-growth kinetics
of the simultaneous co-crystallization of diblock copolymers bearing different corona
blocks was investigated [145]. To this end, PFS–b–poly(2–vinylpyridine) (PFS–b–P2VP) was
co-crystallized with two different PFS–b–poly(N-isopropyl acrylamide) (PFS–b–PNiPAM)
diblock copolymers using short PFS–b–P2VP seed micelles. The length of the PFS block
was similar in all used diblock copolymers, but the corona block length of the PFS–b–
PNiPAM diblock copolymers differed, which affected the epitaxial growth rate of the
PFS–b–PNiPAM unimers on the seed micelles. If this growth rate was comparable to that
of the competing PFS–b–P2VP unimers, patchy micelles were observed (Figure 8b). If,
on the other hand, the growth rates of the two competing diblock copolymers differed
significantly, the formation of block co-micelles was preferred (Figure 8c). Additionally,
the epitaxial growth rate of the PFS–b–P2VP diblock copolymers was manipulated by
quaternization of the P2VP block, which generated a permanent positive charge within the
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corona chains. Co-crystallization with a PFS–b–PNiPAM diblock copolymer, which yielded
a patchy structure with the non-quaternized PFS–b–P2VP, then led to a blocky arrangement
of the patches, which could again be attributed to the differing epitaxial growth rates.

Beyond changes in the epitaxial growth rate by manipulation of the corona chains,
the crystallization behavior of the PFS core block can also be altered [80]. A variation
in the PFS block length affects the so-called critical dissolution temperature (Tc). This
temperature describes the point at which the initial average micelle length doubles upon
cooling. Heating a mixture of two different micelle fragments with similar Tc values to
an annealing temperature (Ta), and Ta < Tc results in separate micelle fragments. If Ta is
in the range of the Tc of both micellar fragments, the micellar fragments dissolve partly,
and tadpole-shaped fragments are observable. If Ta > Tc, self-seeding is taking place
and the growth kinetics are dictated by the epitaxial growth rates of the two competing
unimer types, i.e., a patchy morphology is observed for similar growth rates and a blocky
arrangement of the patches results from dissimilar growth rates (Figure 8d). The self-
seeding behavior changes if two diblock copolymers with different Tc values are employed.
If Ta is raised above the Tc of one of the diblock copolymers, but is still lower than the
Tc of the other diblock copolymer, the diblock copolymer with the lower Tc will partly
or almost fully dissolve and epitaxially grow from the remaining micelle seed fragments
of both diblock copolymers. This results in either match stick-like micelles or block co-
micelles. If Ta is increased well above the Tc of both diblock copolymers, again the growth
kinetics determine the final observable corona arrangement—i.e., for similar growth rates,
a patchy segmentation is generated (Figure 8e). This concept can also be transferred
to mixtures of PFS homopolymers and PFS-based BCPs [146]. Due to the higher Tc of
the PFS homopolymer, a certain fraction of PFS homopolymer crystal fragments will
survive upon proper choice of Ta; these fragments then act as seeds upon subsequent
cooling and annealing. This not only allows the production of cylindrical micelles of
uniform length, but also of well-defined block co-micelles or patchy micelles employing
a mixture of PFS with different PFS-based BCPs. An important feature of this approach
with respect to applications is the comparably easy scale-up, enabling the production of
uniform cylindrical micelles of controlled architecture up to concentrations of 10% (w/w
solids) or more.

5. Properties and Applications
5.1. Interfacial Activity and Blend Compatibilization

The alternating, patch-like arrangement in the corona of worm-like (or cylindrical)
patchy CCMs offers a high potential for a variety of applications. As was shown for
amorphous Janus micelles, polymer particles exhibiting two opposing faces made of PS
and PMMA (or poly(tert-butyl methacrylate)) serve as excellent particulate surfactants and
compatibilizers in polymer blends [147–158]. This originates from the unique interfacial
activity of these materials [38]. Patchy wCCMs were proven to show not only a superior
interfacial activity compared to cylindrical micelles with a homogeneous PS corona, but
also an identical interfacial activity compared to that of Janus micelles at a water–toluene
interface (Figure 9a) [159]. Although Janus particles consist of only two clearly separated
compartments (or faces), which facilitates the orientation at interfaces, the unique corona
structure of patchy micelles is able to adapt to the requirements of the interface, i.e., the
respective insoluble block will collapse and the soluble block will expand. Depending on
the molecular weight of the corona-forming blocks and thus, the thickness of the corona,
the interfacial activity could be tuned, and was shown to increase with thickness (at
constant micelle length), which is in good agreement with theoretical predictions [160].
Interestingly, patchy SEM wCCMs can also be hierarchically assembled by a confinement
process through emulsification in a toluene-in-water emulsion and subsequent evaporation
of the solvents. This leads to microparticles with a highly ordered hexagonal close-packed
lattice structure [161].



Polymers 2021, 13, 1481 14 of 26

Polymers 2021, 13, x FOR PEER REVIEW 14 of 25 
 

 

activity of these materials [38]. Patchy wCCMs were proven to show not only a superior 
interfacial activity compared to cylindrical micelles with a homogeneous PS corona, but 
also an identical interfacial activity compared to that of Janus micelles at a water–toluene 
interface (Figure 9a) [159]. Although Janus particles consist of only two clearly separated 
compartments (or faces), which facilitates the orientation at interfaces, the unique corona 
structure of patchy micelles is able to adapt to the requirements of the interface, i.e., the 
respective insoluble block will collapse and the soluble block will expand. Depending on 
the molecular weight of the corona-forming blocks and thus, the thickness of the corona, 
the interfacial activity could be tuned, and was shown to increase with thickness (at con-
stant micelle length), which is in good agreement with theoretical predictions [160]. Inter-
estingly, patchy SEM wCCMs can also be hierarchically assembled by a confinement pro-
cess through emulsification in a toluene-in-water emulsion and subsequent evaporation 
of the solvents. This leads to microparticles with a highly ordered hexagonal close-packed 
lattice structure [161]. 

 
Figure 9. (a) Comparison of interfacial tension isotherms of 1 g∙L−1 solutions containing SBM 
unimers, SES wCCMs with a homogeneous PS corona, SEM wCCMs with a patchy PS/PMMA co-
rona, and SBM-based Janus cylinders with opposing PS and PMMA faces (given subscripts corre-
spond to average degrees of polymerization of the respective blocks). (b) TEM image of a solvent-
cast PS/PMMA blend (80/20 w/w) compatibilized with 5 wt. %. patchy CNTs (PS/PMMA corona). 
(c) Schematic representation of the adaption of the patchy PS/PMMA corona to the PS/PMMA blend 
interface by selective collapse/expansion of the incompatible/compatible corona blocks (top) and 
histograms of PMMA domain areas for blends with 5 wt. %. and 9 wt. %. patchy CNTs (bottom). (a) 
Reproduced from [159] with permission of Elsevier and (b,c) reproduced from [162] with permis-
sion of ACS. 

  

Figure 9. (a) Comparison of interfacial tension isotherms of 1 g·L−1 solutions containing SBM
unimers, SES wCCMs with a homogeneous PS corona, SEM wCCMs with a patchy PS/PMMA
corona, and SBM-based Janus cylinders with opposing PS and PMMA faces (given subscripts corre-
spond to average degrees of polymerization of the respective blocks). (b) TEM image of a solvent-cast
PS/PMMA blend (80/20 w/w) compatibilized with 5 wt.%. patchy CNTs (PS/PMMA corona).
(c) Schematic representation of the adaption of the patchy PS/PMMA corona to the PS/PMMA
blend interface by selective collapse/expansion of the incompatible/compatible corona blocks (top)
and histograms of PMMA domain areas for blends with 5 wt.%. and 9 wt.%. patchy CNTs (bot-
tom). (a) Reproduced from [159] with permission of Elsevier and (b,c) reproduced from [162] with
permission of ACS.

The excellent interfacial activity of patchy wCCMs can be harnessed for the efficient
compatibilization of polymer blends, as reported for solvent-cast PS/PMMA (80/20 w/w)
blends [162]. In this work, SEM triblock terpolymers were non-covalently grafted onto the
surface of multiwalled CNTs, in order to obtain temperature-stable hybrid compatibilizers
with a patchy PS/PMMA corona (patchy CNTs, Figure 7d). The performance of these
hybrid compatibilizers was studied depending on their weight fraction, revealing that an
increasing filler content considerably reduced the size of the PMMA droplets (minority
component) in the blends down to 0.13 µm2 for the blend with 9 wt.% patchy CNTs
(Figure 9b,c). Remarkably, the obtained PMMA domain areas were significantly lower
compared to that achieved by using Janus cylinders (L = 2.3 µm, biphasic PS/PMMA
corona) as compatibilizers, resulting in domain areas of 10.2 µm2 and 1.77 µm2 for 5 wt.%
and 10 wt.% Janus cylinders (PS/PMMA = 80/20 w/w), respectively [163]. In addition, the
TEM image taken at higher magnification (inset of Figure 9b) shows that well-dispersed
patchy CNTs are not only located at the PS/PMMA interface, but are also homogeneously
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distributed in the PS and PMMA phase. The homogeneous distribution of the patchy
CNTs, together with their superior compatibilizing efficiency, can be again attributed
to the unique feature of the patchy corona, being able to adapt to their surroundings
(PS/PMMA interface, or neat PS and PMMA phases) by selective collapse/expansion of
the corona blocks.

5.2. Nanoparticle Templates/Hybrids

Metal and metal oxide NPs are highly attractive materials for a multitude of appli-
cations, such as optics, medicine, electronics, or catalysis, originating from their unique
optical properties and high surface-to-volume ratio [164–171]. However, the high surface
area is an ambivalent feature, as it is useful, for example, in catalysis, but considerably
limits the overall stability of NP dispersions, due to agglomeration and Ostwald ripening.
Here, the stabilization of NPs with ligands has proven to be a convenient solution to
overcome this substantial drawback [172–175]. Another highly efficient method is the use
of micellar nanostructures to selectively embed the NPs within functional surface compart-
ments, which not only act as ligands for the NPs, but also keep the NPs’ surface accessible
and inhibits agglomeration due to spatial separation [38,117,118,127,137,176,177].

In particular, patchy wCCMs, with their well-defined, alternating segmented coronas,
have been shown to be versatile NP templates, and even allow the regio-selective incor-
poration of two different NP types, since the chemistry of the two corona-forming blocks
can be tailored to the specific needs of the respective NP [137,138]. In order to obtain these
binary-loaded hybrid materials, based on patchy PS–b–PE–b–poly(dimethylaminoethyl
methacrylamide) (SEDMA) wCCMs, a two-step procedure for the selective decoration of
the patches with NPs was developed (Figure 10a). In the first step, preformed, PS-stabilized
gold NPs were mixed with a dispersion of the functional patchy wCCMs, followed by the
addition of acetone as a selective solvent for the PDMA block, resulting in a collapse of the
PS chains. Due to selective interactions of the PS corona block and the PS-stabilized gold
NPs, the NPs were enclosed within the PS patches upon collapse of the PS chains. In the
following step, preformed, acetate-stabilized zinc oxide NPs were incorporated in the func-
tional patches by a ligand exchange method. Intrinsic staining provided by the inorganic
NPs facilitated an examination of the resulting structures via TEM (Figure 10b,c). The dif-
ferent types of NPs are clearly discernible by their different diameters (D; Dgold NP = 7.9 nm,
Dzinc oxide NP = 2.7 nm) and the contrast (heavy metals generate a higher contrast in TEM
compared to transition metal oxides). Interestingly, despite the small size of the corona
patches (<20 nm), it seems that more than one NP per patch is observable. This might be
attributed to the extremely small size of the chosen inorganic NPs (<10 nm).

The selective functionalization of surface-compartmentalized polymeric micelles with
inorganic NPs was also shown for PFS-containing triblock co-micelles, featuring a quater-
nized P2VP corona in the middle [117,118]. Through electrostatic interactions, the middle
block was selectively loaded with mercaptoacetic acid-stabilized gold NPs, PbS quantum
dots and dextran–magnetite NPs, demonstrating the versatility of block co-micelles as
NP templates. Furthermore, NP hybrid materials with block co-micelles derived from
co-assembly of diblock copolymers were reported. Here, the spatially confined incorpora-
tion of platinum NPs and CdSe quantum dots was enabled by selective interactions with
functional corona patches [146,178].

5.3. Heterogeneous Catalysis

As mentioned in the previous section, an application of noble metal and metal oxide
NPs in catalysis is highly desirable, because of the high catalytically active surface area
of the employed NPs. However, ligands, which are needed for stabilization of the NPs,
might inhibit the superior catalytic activity of the NPs by blocking the surface. Even for
tailor-made ligands, this is a distinct drawback, since these materials are usually hard
to recover after usage. A separation of the catalytically active species from the reaction
medium is challenging and expensive. Immobilizing the catalytically active NPs on suitable
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supports (e.g., inorganic, polymeric) solves this problem of recoverability, while preserving
the activity and accessibility of the NPs’ surface [179–185]. Nonetheless, agglomeration of
the inorganic NPs on the surface of the heterogeneous supports can occur if the NPs are
insufficiently confined, resulting in a significant loss of activity over several consecutive
catalysis cycles.
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Figure 10. (a) Schematic depiction of the regio-selective, binary loading of patchy SEDMA wCCMs with PS-stabilized gold
(Au) NPs and zinc oxide (ZnO) NPs, respectively (PS is displayed in blue, PE in black, and PDMA in red). (b) TEM image of
S415E830DMA420 wCCMs binary-loaded with Au and ZnO NPs. (c) Bright-field (left) and high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM, right) images, clearly revealing the binary loading with two
different NP types. Reproduced and adapted from [138] with permission of RSC.

The highly regular, alternating arrangement of the corona compartments in patchy
wCCMs allows us to efficiently confine inorganic NPs. However, these micellar templates
have to be immobilized on a solid support, which provides high accessibility of the reac-
tants to the catalytically active NPs and easy recovery in order to harness these structures
for heterogeneous catalysis. This issue was overcome by coating different patchy PS–b–PE–
b–poly(dialkylaminoethyl methacrylamide) wCCMs onto the surface of PS nonwovens by
means of coaxial electrospinning (Figure 11a,b) [186,187]. The resulting patchy nonwovens
were loaded with gold NPs through a simple dip-coating process (Figure 11c), which was
driven by a ligand exchange reaction. The hybrid nonwovens were successfully applied
as catalysts for the alcoholysis of dimethylphenylsilane (Figure 11d) at room temperature,
showing a comparable or even higher catalytic activity than other supports reported be-
fore [188–193]. Moreover, the employed patchy hybrid nonwovens were easily recoverable
from the reaction medium and reusable in at least 10 consecutive catalysis cycles.
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Figure 11. (a) Catalytically active, hybrid nonwovens prepared by a combination of bottom-up
(CDSA) and top-down (coaxial electrospinning) approaches. In the first step, patchy nonwovens were
prepared by decorating a PS nonwoven with functional, patchy PS–b–PE–b–poly(dialkylaminoethyl
methacrylamide) wCCMs by coaxial electrospinning (PS patches are depicted in blue and the func-
tional, tertiary amino group containing patches in red). Subsequently, the patchy nonwovens were
loaded with citrate-stabilized Au NPs via a ligand exchange process (citrate against tertiary amino
groups in functional patches). (b) Scanning electron microscopy images of a patchy nonwoven (based
on S415E830DMA420 wCCMs) before and (c) after loading with Au NPs (back-scattered electron
detector). (d) Au NP-catalyzed alcoholysis of dimethylphenylsilane in n-butanol. (e) Kinetics of the
Au NP-catalyzed alcoholysis of dimethylphenylsilane in n-butanol, employing patchy hybrid non-
wovens as catalysts (DiPA = poly(diisopropylaminoethyl methacrylamide). Reproduced from [186]
with permission from RSC.

Since this system offers different possibilities to tune the catalytic activity, an in-depth
study on the influence of the patch size and chemistry on the reaction kinetics was con-
ducted. Here, an extended first-order kinetics model was employed, which includes the in-
duction periods observed in the catalytic alcoholysis of dimethylphenylsilane in n-butanol.
This study revealed a strong dependence on the accessibility of the reactants to the gold NPs’
surface, being mainly controlled by the swellability of the functional patches in n-butanol.
The latter depends on both patch chemistry, i.e., poly(N,N-dimethylaminoethyl methacry-
lamide) (PDMA, more hydrophilic) vs. poly(N,N-diisopropylaminoethyl methacrylamide)
(PDiPA, more hydrophobic) patches, as well as size. As a result, significantly longer in-
duction (tind) and reaction (tR) times were observed for the first catalysis cycles compared
to the tenth cycles (Figure 11e). Nonwovens with more polar PDMA patches were the
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most efficient in NP stabilization (prevention of agglomeration), but showed a significantly
lower tR in the first catalysis cycle, due to a strong interaction with the gold NPs’ surface.
Thus, precise tuning of the patch size and chemistry is needed to optimize the catalysts
performance. However, the modular design of the patchy hybrid nonwovens enables a
facile adaption to the needs of different catalysis systems—for example, by an exchange of
the support material or by varying the type of NPs. Moreover, it is possible to render the
functionalized patches thermo-responsive [194], which opens access to catalytic reactions
regulated by an inherent temperature control.

6. Conclusions and Outlook

From a conceptual point of view, several strategies exist for the production of patchy
micelles with crystalline cores, such as CDSA of triblock terpolymers with crystallizable
middle blocks, miktoarm stars, or the co-assembly of diblock copolymers with a common
crystallizable block but different corona-forming blocks. However, so far, patchy micelles
have been reported only for BCPs with PE or PFS as crystallizable blocks, despite the fact
that a large variety of crystallizable polymer blocks has already been utilized in CDSA.
Here, ring-opening polymerization of lactones or lactides, in combination with controlled
radical polymerization techniques, might be another promising alternative, as BCPs based
on PCL or PLLA as crystallizable blocks are readily accessible. Moreover, PFS could be
replaced by ruthenocene-based BCPs, which show a higher degree of crystallinity but are
less studied for CDSA. Finally, patchy micelles could be derived from the simultaneous
heteroepitaxial growth of two crystallizable di- or triblock copolymers bearing different
core- and corona-forming blocks, inducing segmentation within the core as well as in
the corona.

The alternating arrangement of the corona patches emerges as an excellent feature for
the stabilization and confinement of metal and metal oxide nanoparticles, opening applica-
tions in heterogeneous catalysis. Yet this has been shown only for the gold nanoparticle-
catalyzed alcoholysis of silanes, and it is anticipated that this concept can be transferred
to other relevant catalytic processes like heterogeneous hydrogenation. By incorporating
different nanoparticle types, even cascade reactions might be realizable. Most interestingly,
the interfacial activity of patchy, worm-like (or cylindrical) micelles is equivalent to that of
Janus micelles, the latter being, however, more difficult to produce. Thus, patchy micelles
might be utilized in interfacial catalysis, as well as in the efficient stabilization of emulsions
or compatibilization of polymer blends.
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