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Microbiome alterations are associated
with apolipoprotein E mutation in Octodon degus
and humans with Alzheimer’s disease

Guido Zampieri,1,10 Léa Cabrol,2,3,4,10 Claudio Urra,2 EduardoCastro-Nallar,5 Guillaume Schwob,4 David Cleary,6

Claudio Angione,1,9 Robert M.J. Deacon,2 Michael J. Hurley,2,7,9 and Patricia Cogram2,8,9,11,*
SUMMARY

Gut microbiome dysbiosis is linked to many neurological disorders including Alzheimer’s disease (AD). A
major risk factor for AD is polymorphism in the apolipoprotein E (APOE) gene, which affects gut micro-
biome composition. To explore the gut-brain axis in AD, long-lived animal models of naturally developing
AD-like pathologies are needed.Octodon degus (degu) exhibit spontaneous AD-like symptoms andApoE
mutations, making them suitable for studying the interplay between AD genetic determinants and gut mi-
crobiome. We analyzed the association between APOE genotype and gut microbiome in 50 humans and
32 degu using16S rRNAgene amplicon sequencing. Significant associationswere found between the degu
ApoE mutation and gut microbial changes in degu, notably a depletion of Ruminococcaceae and Akker-
mansiaceae and an enrichment of Prevotellaceae, mirroring patterns seen in people with AD. The altered
taxa were previously suggested to be involved in AD, validating the degu as an unconventional model for
studying the AD/microbiome crosstalk.

INTRODUCTION

Themicrobiota–gut–brain axis is now recognized as a significantmodulator of behavior1 and is increasingly implicated in various neurological

disorders, including Alzheimer’s disease (AD).2–4 Gut dysbiosis may therefore contribute to the development and progression of AD.5 A

recent study revealed for the first time that AD symptoms can be transferred to healthy young rats via the gut microbiota, confirming a causal

role of gut microbiota in AD.6

Polymorphism in the apolipoprotein E (APOE) gene is a major genetic risk determinant of AD.7 APOE is a major cholesterol carrier that

supports lipid transport and injury repair in the brain. Individuals with theAPOE4 allele are at an increased risk of developing AD compared to

those with other APOE alleles.8 Seo and colleagues (2020) recently showed APOE genotype and microbiome composition could influence

tauopathy in a mouse model of AD.9 Studies have shown that APOE genotype can influence the abundance of certain microbial species

in the gut in humans and mice.8 For instance, individuals with the APOE4 allele tend to have a lower abundance of butyrate-producing bac-

teria, which are beneficial for gut health and may play a role in AD prevention.8 Thus, the AD marker APOE4 might play a crucial role in the

complex interplay between the microbiome, the gut-brain axis, and memory decline in AD.5

Currently, there is a renewed emphasis on the use of appropriate animalmodels of AD. Thus far, most ADmodels use short-lived animals in

which an AD-like phenotype is artificially driven via genetic manipulation, which can lead to intrinsic bias and a failure to recapitulate some

aspects of the disease.10 By contrast, long-lived animal models that naturally develop AD-like pathologies in an age-dependent manner offer

many advantages in defining AD pathogenic mechanisms, especially for studying the role of the gut microbiome in AD.11

The Octodon degus (degu) is a long-lived rodent that lives for 9–10 years in captivity and, like humans, has a significant post-fertility life-

span. Age-dependent cognitive performance decline has been reported during natural aging in degus.12 Some, but not all, degu spontane-

ously develop AD-like cognitive impairments and neuropathological features as they age, just like humans with AD, including amyloid-beta
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plaques, tau tangles in their brains, and neuroinflammation.13–18 Cognitive deficits andmemory impairment in affecteddegu are analogous to

those in human patients with AD.19–22 By the age of approximately 4 years, 30% of the degus captured from a natural population show im-

pairments in episodic memory and hippocampal dependent activities of daily living such as burrowing performance, which was correlated

with their expression profiles of AD markers.18,22,23 The degu has thus been proposed as a non-conventional natural model to study AD.

To date, the gut microbiome of the degu has not been investigated.

Recently we published the degu whole-genome and reported AD-related genetic variants that may have implications for AD risk and pa-

thology in this model.17,18 Among the 7 single nucleotide polymorphisms (SNP) detected in the degu Apoe gene, one (at position 213, de-

noted Mt4) is non-synonymous. At this site, there are three possible residues: glutamic acid (Glu: E) which corresponds to the wild type

(without mutation); glutamine (Gln: Q), or lysine (Lys: K). Variants E213Q and E213K were associated with mild and severe AD-like phenotype,

respectively.17 Especially, the mutation E213K in the Apoe gene may be associated with an increased risk of developing AD-like neuropa-

thology in the degu.17,18

The extent to which host genetic variation determines the composition of the gut microbiome remains unclear. Here we report for the first

time the gutmicrobiome composition of 32 degu individuals. Our objective was to investigate the relationships between the degu gut micro-

biome, their AD-like phenotype, and their Apoe genotype, in comparison with the same relationships in human subjects. By revealing that

human APOE4 and degu Apoe E213K variants share specific microbiome dysbiosis traits, this work provides further evidence that the long-

lived degu is a unique and valid non-conventional model for the study of age-related mechanisms of AD pathogenesis, including gut micro-

biome dysbiosis, and potentially useful for the further development of drugs to treat this disorder.

RESULTS

Characterization and comparison of degu and human gut microbiota

At the phylum level, the degu gut microbiota was characterized by a dominance of Bacteroidetes comprising on average 55 G 6% of the

whole bacterial community, followed by Firmicutes (33 G 6%), Patescibacteria (5 G 3%) and other less abundant phyla (Cyanobacteria, Pro-

teobacteria, Spirochaetes, and Tenericutes) that comprised in variable amounts approximately 7%of themicrobiota (Figure 1A). In our human

dataset, Firmicutes represented 79G 10% of the community, Bacteroidetes represented 15G 9%, while Actinobacteria, Cyanobacteria, Pro-

teobacteria, Tenericutes, and Verrucomicrobia were present in lower amounts (although Verrucomicrobia relative abundance spiked up to

25% in some samples). As a summary, the analyzed degu microbiota shared a prevalence of Firmicutes and Bacteroidetes with the human

gutmicrobiota but -notably- in reverse proportions and presented higher heterogeneity including high-level taxonomic groups not identified

in humans.

Overall, 66% of the identified genera in the degu microbiota were shared with the human microbiota, but only approximately 2% of the

degu amplicon sequence variants (ASV) were shared with humans (Figure 1B). The percentage of classified ASV across lower taxonomical

levels decayed faster in degu than in humans. Only 58% of the degu ASV have been classified at the genus level, in contrast to 74% of the

human ASV, which can be interpreted as a less well characterized community in degu. At the ASV level, the degumicrobiomewas significantly

more diverse than the human microbiome in terms of the Shannon diversity index (Figure 1C). The nonmetric multidimensional scaling

(NMDS) analysis revealed strong differences in the gutmicrobiota structure between the two hosts, with two clearly separated clusters (PERM-

ANOVA, F = 170.68, p = 1.0$10�4) (Figure 2A). The human gut microbiome presented stronger variability across individuals. The variation in

the estimated metabolic potential of the degu and human microbiota reflects such compositional heterogeneity (Figure S1). Major specific

dissimilarities in the predicted functional content of the microbiota between the two hosts are shown in Figure S2 and include biosynthetic

and degradation pathways for nucleic acids, lipids, vitamins, and sugars.

Degu gut microbiota and Alzheimer’s disease

Gut microbiome shifts associated with AD-like behavior in degu were compared with those found in human patients with AD. In the degu gut

microbiota, significant differences in community structure were associated with AD-like behavior when considering Bray-Curtis distance

(F = 1.44, p = 0.043), but not when bacterial phylogenetic relationships were taken into account based on weighted UniFrac similarity

(F = 1.65, p = 0.13) (Figure 2A), suggesting that changes in community composition mostly involved low-abundance taxa and/or closely

related taxa. In contrast, human gut microbiota samples exhibited marked differences between AD and healthy phenotypes in terms of

both Bray-Curtis (F = 2.70, p = 1.0$x 10�4) and weighted UniFrac (F = 4.78, p = 2.0$x 10�4) distances. Overall, microbial differences associated

with the AD phenotype in the host were smaller in degu than in humans. Gut bacterial diversity decreased in patients with AD compared to

healthy controls, but this trend was not significant in AD-like degu (Figure 2B). Moreover, when aggregated at different taxonomic levels from

genus to phylum, no significant global changes in taxon abundance could be detected in the degumicrobiota in relation to the AD-like cogni-

tive phenotype (data not shown).

The gut responses to AD were further examined at the ASV level. We identified 12 ASV from 6 different families that displayed significant

abundance differences in AD-like degu (Figure 2C). The overlap between the shifts in the two host communities extended down to low taxo-

nomic levels (Figure 2D). Remarkably, all the alteredASVbelonged to taxa that have been previously linked to aging, age-relateddisorders, or

brain functions in humans or mice (see discussion). The largest number of altered ASV belonged to the Ruminococcaceae family (Firmicutes

phylum). Some commonpatterns of ASV alterations were observed between degu and humanpatients in response to AD, all in the Firmicutes

phylum, such as a reduced abundance of Ruminococcus and Ruminococcaceae (e.g., Ruminococcaceae_UCG-014 group) (Figure 2C).

Despite being the most abundant phylum, Bacteroidetes comprised a relatively limited number of significantly altered ASV in AD-like
2 iScience 27, 110348, August 16, 2024



Figure 1. Comparison of degu and human gut microbiota

(A) Relative abundance of identified phyla across samples in degu and humans. The AD phenotype and APOE genotype of each sample are indicated as colored

bars at the top.

(B) Microbial within-sample (alpha) diversity in degu and human gut bacterial communities calculated as the Shannon index. The significance was evaluated by a

two-sided Wilcoxon rank-sum test (p < 0.0001).

(C) Number of unique and shared taxa between degu and humans among all taxonomical ranks. The last lane represents all the unique and shared ASV,

independent of their taxonomic affiliation.
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degu and humanmicrobiota. Altered Bacteroidetes taxa were not the same in both hosts but they all exclusively increased in both hosts (Fig-

ure S3). Especially, Muribaculaceae and Prevotellaceae ASV were significantly over-abundant in AD-like degu microbiota.

In summary, the AD phenotype in the degu microbiota was associated with a global decrease in the abundance of several Ruminococca-

ceaeASV, probably leading to reduced short chain fatty acid (SCFA) production, and a global increase in Bacteroidetes ASV (Muribaculaceae,

Prevotellaceae), which could indicate increased gut inflammation. Some of these patterns were also observed in the human AD patient gut

microbiota and matched the findings from a range of previous studies, as further reviewed in the Discussion.

Degu apolipoprotein E E213K mutation is associated with an altered gut microbiota

The gut microbiota associated with the Apoe Mt4 E213K genotype (present in six of the 16 AD-like degu) were compared with those from

degu without theE213K mutation. The observed microbiota shifts were further compared with the microbiota shifts in 18 human individuals

carrying the APOE4 genotype within the AD cohort.

Microbial differences associated with the Apoe E213K genotype were significant in the degu microbiome, considering both Bray-Curtis

(F = 1.94, p = 1.3$x 10�3) and weighted UniFrac (F = 2.69, p = 0.03, Figure 3A) similarities, compared to degu without the E213K mutation. In

the human microbiota, such differences were not statistically significant, which could be due to the fact that 20% of the control subjects had

APOEε4 genotype yet.2 A slight decrease in gut microbiota diversity was associated with APOE4 and Apoe E213K mutations in human and

degu hosts, respectively, but only significant in human (Figure 3B). Functional changes were predicted in association with the degu Apoe
iScience 27, 110348, August 16, 2024 3
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Figure 2. Gut microbiota alterations in AD-like degu involve bacterial groups also disturbed in humans with AD

(A) Nonmetric multidimensional scaling (NMDS) representation of degu (pink) and human (blue) gut bacterial communities based on weighted UniFrac distances

(stress equal to 0.06). The shape of the symbols indicates the AD phenotype. Ellipses represent 95% confidence regions of each phenotype-host pair, assuming

multivariate t-distributions.

(B) Gut microbiota alpha diversity of AD-like and control degu individuals and of patients with AD and control individuals, calculated as the Shannon index. The

significance was obtained by a two-sided Wilcoxon rank-sum test (p < 0.05).

(C) Identification of ASV with significant differential abundances (p < 0.05) between AD-like and control degus (pink), and between patients with AD and control

individuals (blue). The taxonomic affiliation of each ASV is indicated on the left at the lowest available level. For degu, all altered ASV are shown, while for humans

only the altered ASV corresponding to the same genus or family as in degu are shown (the complete list of altered ASV in humans is shown in Figure S3).

(D) Number of shared and exclusive significant alterations associated with AD in the degu and human microbiota at each taxonomic level.

ll
OPEN ACCESS

iScience
Article
E213K genotype across several metabolic pathways (PERMANOVA, F = 1.82, p = 0.046, Figure S4). In particular, functional classes related to

fermentation were strongly reduced in the microbiota of both degu and humans with the Apoe E213K/APOE4 genotype, especially fermen-

tation leading to SCFA production.

The analysis of bacterial differential abundance between Apoemutant status groups in the degu microbiota (i.e., ApoeMt4 E213K geno-

type versus other genotypes) identified 43 significantly altered ASV. Most of the altered ASV belonged to the Ruminococcaceae family and

were under-abundant in the Apoe E213K degu (Figure 3C), as previously observed for the AD-contrasting analysis (Figure 2C). Most of these

altered taxa were identified in other studies in association with AD or other neurodegenerative diseases or associated symptoms, suggesting

that they might be involved in the brain-gut axis (see discussion). Specific taxa from Bacteroidetes (especially in theMuribaculaceae and Pre-

votellaceae families) and Proteobacteria were enriched in the degu microbiota (Figure 3C).

When ASV were aggregated at higher taxonomic levels, the Apoe E213K mutation was linked to a decrease in the abundance of the Ver-

rucomicrobia phylum in the degumicrobiota (adjusted p = 0.048, Figure 3D) compared to the no-E213K carriers. This observation was caused

by a drastic decrease of Akkermansia abundance (BH-adjusted Mann-Whitney test, p = 0.048), which was the only member of the Verruco-

microbia phylum here. We also found a strong decrease in Akkermansia associated with human AD phenotype (Figure S3).

In human APOE4 patients with AD, 36 significantly altered ASV were identified (Figure S5), 14 of them corresponding to taxa similar to the

Apoe E213K degu and all belonging to the Firmicutes phylum (Figure 3C). Both hosts presented some common altered taxa in response to

the APOE mutation genotype (Figure 3E), including a decreased abundance of members of the Christensenellaceae_R�7 group, Rumino-

clostridium, Ruminococcus, and unclassified Ruminococcaceae, along with an increased abundance of members of unclassified Lachnospir-

aceae. Bacteroidetes ASV also increased in human patients with APOE4 (but from different families than in Apoe E213K degu).
4 iScience 27, 110348, August 16, 2024
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Figure 3. Gut microbiota alterations in Apoe E213K AD-like degu match key bacterial 0061lterations in APOE4 AD humans

(A) Nonmetric multidimensional scaling representation of AD-like degu (pink) and AD human (blue) gut bacterial communities based on weighted UniFrac

distance (stress equal to 0.05). The shape of the symbols indicates the APOE genotype: Apoe Mt4 E213K variant (circles) versus no-E213K carriers (triangles).

Ellipses represent 95% confidence regions of each phenotype-host pair subpopulation, assuming multivariate t-distributions.

(B) Gut microbiota alpha diversity of AD-like degu with and without the Apoe E213K mutation and of patients with AD with and without the APOE4 mutation,

calculated as the Shannon index. The significance was evaluated by a two-sided Wilcoxon rank-sum test (p < 0.05).
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Figure 3. Continued

(C) Identification of ASVwith significant differential abundances (p< 0.05) between AD-like degu individuals with andwithout theApoe E213Kmutation (pink) and

between patients with AD with and without the APOE4mutation that are in the same genera or families (blue). The taxonomic affiliation of each ASV is indicated

on the left at the lowest available level. For degu, all altered ASV are shown, while for human only the altered ASV corresponding to the same genus or family as in

degu are shown (the complete list of altered ASV in humans is shown in Figure S5).

(D) Comparison of the total abundance of Verrucomicrobia in themicrobiota of AD-like degu individuals with andwithoutApoe E213Kmutation. The significance

was evaluated by a two-sided Wilcoxon rank-sum test (p < 0.05), FDR-corrected for multiple testing.

(E) Total number of significant abundance alterations associated with the Apoe E213K genotype in degu and with APOE4 in human for each taxonomic level,

distinguishing between alterations that are shared or exclusive for each host.
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In summary, in degu, theApoe E213Kmutationwas significantly correlatedwith changes in the gutmicrobiota structure compared to degu

without this genotype (i.e., no-E213K carriers), triggering a shift toward the underrepresentation of the Akkermansia genus (Verrucomicrobia

phylum) and of several Firmicutes members (especially from the Christensellaceae and Ruminococcaceae families), while specific taxa from

Bacteroidetes (especially in theMuribaculaceae and Prevotellaceae families) were enriched. These trends were globally similar in theAPOE4-

human gutmicrobiota. Moreover, most of thesemicrobial shifts were common betweenAD-like andApoe E213K based contrasts in the degu

microbiota and have been shown to be involved in gut/brain associations in previous studies (see discussion later in discussion).

DISCUSSION

This work represents the first description of the gutmicrobiomeof the degu, a long-liveddiurnal rodent in whichAD-like pathology and cogni-

tive decline naturally develop in some outbred individuals. Following early investigations illustrating the relationship of AD symptoms and/or

host genetics with gut microbiota,24,25 we hypothesized that gut microbial alterations should occur in the gut microbiome of AD-like and/or

Apoe E213K-carrying degu.

The taxonomic composition of the degu fecal microbiota (Bacteroidetes representing more than half the community, and Firmicutes one-

third) was globally comparable to the mouse fecal microbiota previously reported by our group26 and others27 thus confirming the relevance

of this alternative natural model in terms of the comparability and generalization of results. It shows stronger dissimilarities from the mouse

microbiota from other studies, composedmainly of Firmicutes (reaching more than 90%) with low Bacteroidetes representation.28–30 In addi-

tion to host specific effects, the distinction between the degu and murine microbiome can also be due to diet and husbandry issues.27 Fecal

microbiota is partially normalized by extended co-housing.27

We compared the shifts of the degu gut microbiota associated with AD-like pathology with the human ones. First, as a way to confirm the

robustness of our analysis, we found that the gut microbiota composition of our human dataset was globally similar to previous findings from

16S rRNA sequencing analysis of human fecal samples,2,31,32 and relatively consistent with recent estimates from shotgun metagenomics

sequencing,33 although it is known that Bacteroidetes tend to bemore abundant than Firmicutes in the elderly.34 Second, despite many com-

mon genera between human and degu microbiota, there was a very low proportion of common ASV, consistent with the low overlap previ-

ously observed between human and other rodent (mouse)microbiota.28 The differences between the degu and human gutmicrobiota can be

explained by differences in diet, which are among the most important factors underlying gut microbiome structure and diversity in a range of

animals.35 The higher diversity in the degu gutmicrobiota was consistent with the strict herbivore lifestyle of this rodent and with the generally

higher diversity previously observed across different herbivore mammals.36 Moreover, such diversity is likely attenuated by captivity.37 The

higher homogeneity in the captive degu microbiota can be linked to the homogeneous feed provided during the experiment.

In our human dataset, the AD phenotype and theAPOEmutation genotype were both associated with a reduced gut microbiota diversity,

consistent with previous studies in different models.38 This observation was not significant in degu. Nevertheless, our analyses revealed spe-

cific microbiota signatures in AD-like and Apoe E213K carrier degu, many of them being common to those observed in relation to the human

AD phenotype and APOE4 genotype and linked to various AD-associated patterns across bacterial phyla, as follows.

First, the main ASV alteration in AD-like and Apoe E213K degu gut microbiome was the under-abundance Ruminococcaceae (Firmicutes

phylum), similar to what we observed in APOE4 AD humans. Members of this family, such as Ruminococcus, Ruminoclostridium, or Rumino-

coccaceae_UCG-014, are known producers of gut-brain signalingmolecules and their decline has been previously linked to aging39 andAD in

mice,30,40 or to other AD co-morbidities, such as gut inflammation and obesity in mice41,42 and humans.8,43,44 Ruminococcaceae were previ-

ously reported as reduced in the gut microbiota of human subjects displaying theAPOE4mutation8 and have been linked to the infiltration of

peripheral immune cells and neuroinflammation development during AD progression in mouse.45

Second, the observed over-abundance of Bacteroidetes in AD-like and Apoe E213K degu gut microbiome could mark an increased sys-

temic inflammation, since Bacteroidetes promote the release of proinflammatory cytokines.40 Among this phylum, the over-abundant Mur-

ibaculaceae and Prevotellaceae have been previously linked to longevity,29,46 to AD in human patients47 and to the APOE4 genotype in hu-

mans.8 In other cases, Prevotellaceae has been associated toAPOE3 genotype,48 highlighting the inconsistency of some observations, which

may reflect differences in models, age, husbandry method, lineage and/or diet.9 Prevotellaceae might play a role in mucin synthesis and/or

degradation and mucosal permeability, thus modulating the exposure of the host to bacterial toxins.8

Third,Akkermansia under-representationwas a significant signature of theApoe E213K degu gutmicrobiome in this study.Akkermansia is

usually considered as a health-associated genus, positively correlating with age39 and is believed to be protective againstmetabolic disorders

through its excretion of endocannabinoids that control inflammation, gut barrier function, and gut peptide secretion.49 The reduction in Ak-

kermansia abundance has been previously linked to AD in transgenic AD mouse models40 as well as to potential risk factors for AD, such as
6 iScience 27, 110348, August 16, 2024
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atherosclerosis,40 obesity, type 2 diabetes50 and progeria51 in mice, and to obesity in humans.52 In contrast with our observations in Apoe

E213K degu, a decrease in Prevotella abundance and an increase in Akkermansia abundance have been reported in mouse models with neu-

rodevelopmental disorder linked with autism (fragile X syndrome) compared with wildtype,26 suggesting some specificities linked to AD.

Finally, analysis of the metabolic potential of the degu Apoe E213K fecal samples showed significant differences in microbe-associated

amino acids and SCFA compared to degu without the mutation. The reduced representation of SCFA-producing pathways in the Apoe

E213K degu microbiota could be linked to the global under-abundance of Ruminococcaceae members, which are known producers of

SCFA through the fermentation of complex plant polymers.53 SCFA are known to directly or indirectly modulate gut–brain interactions via

immune, endocrine, vagal or other pathways.54–56 Microbiota-derived SCFA are important signaling mediators of gut-brain interactions

and are involved in the occurrence anddevelopment ofmany neurodegenerative diseases, includingAD57 especially by promotingAbplaque

deposition58 but some of them can play either beneficial or harmful role.59

Altogether, our results further support the existence of commonmechanisms of microbiota dysbiosis in AD-like degu and human AD sub-

jects, making the degu an interesting model for exploring the gut-brain axis in the context of genetic risk factors for AD, and increasing the

likelihood that findings from natural models can translate to human AD. By understanding the role of the microbiome in this natural AD

model, we can gain valuable insights into the underlying mechanisms of AD pathology. Moreover, this could have implications in the design

and testing of microbiota-targeted interventions or transplantations focusing on the role of SCFA as potential mediators with the brain

affecting cognitive functions.54
Limitations of the study

The first limitation of this study refers to targeting the V4 region of the 16S rRNA gene for gut microbiome analysis, which might not capture

the whole microbial diversity, especially the Archaea. Nevertheless, this possible bias is limited due to the high coverage of the selected

primers. In addition, inferring potential metabolic functions from the taxonomic composition of a community is a controversial approach

due to the lack of pure culture representatives for most community members. Another limitation is related to the captivity of the degu which

might modify their behavior as well as their gut microbiome composition, in relation to their diet, compared to wild ones. In our approach, we

analyzed fecal samples and considered them representative of the gut microbiome. The age difference between the degu and humans used

in this study could be considered as a possible limitation; however, there is no direct equivalence between rodent and human age, due to

differences in lifespan and developmental trajectories. Generally, rodents mature much more rapidly than humans, but various factors

such as size,metabolism, and growth rates influence the aging process differently in rodents and humans. There are no publishedworks about

the physiological, cognitive, or biomarkers basis that would enable to correlate degu age with humans. Age and sex may play an important

role in gut microbiota composition and AD development. The human data from Vogt’s study (Vogt et al., 2017) involved 70% female partic-

ipants. However, despite this unbalanced gender representation, the human controls were age- and sex-matched with the AD subjects, which

is the important point to consider when comparing AD and non-AD subjects. The influence (or association) of sex, gender, or both on the

results of this work is beyond the scope of our study. Finally, our results suggest that APOE genotype and microbiome composition can

interact to ultimately influence AD pathology in the brain, perhaps through altered SCFA production leading to increased neuroinflammation

through altered microglia function.60 However, further studies should evaluate the SCFA concentration and pro-inflammatory cytokine levels

in AD-like E213K degu to further elucidate the role of the microbiome in AD pathogenesis.
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Ioannou, E., Ibáñez, A., Teeling, J.L., and
Cogram, P. (2018). The long-lived Octodon
degus as a rodent drug discovery model for
Alzheimer’s and other age-related diseases.
Pharmacol. Ther. 188, 36–44. https://doi.org/
10.1016/j.pharmthera.2018.03.001.

24. Goodrich, J.K., Waters, J.L., Poole, A.C.,
Sutter, J.L., Koren, O., Blekhman, R.,
Beaumont, M., Van Treuren, W., Knight, R.,
Bell, J.T., et al. (2014). Human genetics shape
the gut microbiome. Cell 159, 789–799.
https://doi.org/10.1016/j.cell.2014.09.053.

25. Sgritta, M., Dooling, S.W., Buffington, S.A.,
Momin, E.N., Francis, M.B., Britton, R.A., and
Costa-Mattioli, M. (2019). Mechanisms
Underlying Microbial-Mediated Changes in
Social Behavior in Mouse Models of Autism
Spectrum Disorder. Neuron 101, 246–259.e6.
https://doi.org/10.1016/j.neuron.2018.
11.018.

26. Altimiras, F., Garcia, J.A., Palacios-Garcı́a, I.,
Hurley, M.J., Deacon, R., González, B., and
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Lehtiö, J., Lukasse, P., Moerland, P.D., and
Griffin, T.J. (2015). Multi-omic data analysis
using Galaxy. Nat. Biotechnol. 33, 137–139.
https://doi.org/10.1038/nbt.3134.

https://doi.org/10.3389/fcimb.2022.1059349
https://doi.org/10.3389/fcimb.2022.1059349
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref58
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref58
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref58
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref58
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref58
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref58
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref58
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref59
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref59
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref59
https://doi.org/10.1016/j.mcn.2020.103493
https://doi.org/10.1371/journal.pone.0105592
https://doi.org/10.1371/journal.pone.0105592
https://doi.org/10.3354/ame01753
https://doi.org/10.3354/ame01753
https://doi.org/10.12688/f1000research.8986.2
https://doi.org/10.12688/f1000research.8986.2
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref64
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref64
http://refhub.elsevier.com/S2589-0042(24)01573-6/sref64
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1016/j.jbiotec.2017.06.1198
https://doi.org/10.1186/s40168-018-0605-2
http://cc.oulu.fi/%7Ejarioksa
http://cc.oulu.fi/%7Ejarioksa
https://doi.org/10.1038/ismej.2010.133
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1093/bioinformatics/btu033
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.1371/journal.pcbi.1003531
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1093/nar/30.1.42
https://doi.org/10.1093/nar/30.1.59
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.18637/jss.v025.i01
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1038/nbt.3134


ll
OPEN ACCESS

iScience
Article
STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Octodon degus faeces This study N/A

Critical commercial assays

Qiagen PowerSoil DNA Isolation Kit Qiagen Cat#47014

Qubit dsDNA BR Kit ThermoFisher Q32850

Deposited data

Octodon degus gut microbiome data This study NCBI BioProject PRJNA643874

Octodon degus host genomic data Hurley et al., 202217 NCBI BioProject PRJNA623609 and NW_004524773.1

Human gut microbiome data Vogt et al., 20172 Have been kindly provided by Vogt et al., 2017, upon request

Experimental models: Organisms/strains

Octodon degus specimen This study N/A

Oligonucleotides

Primer 341f: CCTACGGGNBGCASCAG Takahashi et al., 201461 N/A

Primer 806bR: GGACTACNVGGGTWTCTAAT Apprill et al., 201562 N/A

Software and algorithms

Original R code This study https://github.com/gzampieri/Degu_gut_microbiome

DADA2 Callahan et al., 201663 https://github.com/benjjneb/dada2?tab=readme-ov-file

DECIPHER Wright ES, 2016,64 https://bioconductor.org/packages/

release/bioc/html/DECIPHER.html

Other

Commercial rodent diet Prolab� 5P76, IsoPro� RMH 3000
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources involved in this study should be directed to and will be fulfilled by the lead contact, Patricia

Cogram (patricia.cogram@gmail.com).
Materials availability

This study did not generate new unique reagents and materials.
Data and code availability

� The raw 16S rRNA gene sequences of gut microbiome generated in this study have been deposited on NCBI BioProject PRJNA643874

and are publicly available as of the date of publication. Accession numbers are listed in the key resources table. Additionally, this paper

analyses two sets of existing and publicly available data. First, the degu genomic information (raw sequencing data and ApoE se-

quences), previously published,17 is available at BioProject PRJNA623609 and NW_004524773.1, respectively. Second, even if the pre-

sent study did not directly work with human subjects, the human subject data were previously published,2 where all participants pro-

videdwritten informed consent to be involved in the study. The humangutmicrobiome sequences have been complimentary provided

by Vogt and collaborators upon our request.
� All original code has been deposited at github repository (https://github.com/gzampieri/Degu_gut_microbiome) and is publicly avail-

able as of the date of publication. URLs are listed in the key resources table.
� Any additional information required to reanalyse the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals

The analysis was performed on 32 degu (16 normal, 16 AD-like) taken from our outbred degu colony that is derived from wild caught animals.

Behavioral assessment of the degu was performed to distinguish AD-like from normal degu using the burrowing test as previously

described.22 Deguwere housed in standardmetal cages (503 403 35 cm) with a layer of wood shavings as bedding, containing a small metal

nesting box (253 153 10 cm with a single entrance) under a controlled photoperiod (7 am -7 pm) and temperature (23�C). Water and a com-

mercial rodent diet (Prolab RMH 3000, USA) were provided ad libitum. All animals used were males aged approximately 4.5 years. Degu with

different APOE genotypes were kept in the same cages. By using a cohort of non-family-related and not-crossed individuals from different

backgrounds, the study aims to capture a broader representation of genetic variability and environmental influences, mirroring the hetero-

geneity observed in humans. Ethical approval for this project was provided by the Institute of Ecology and Biodiversity Ethics Committee and

the experiments were performed in accordance with the UK Scientific Procedures Act (1986) and the NIH Guide for the Care and Use of Lab-

oratory Animals (1978). All animals were handled consistently in accordance with ARRIVE guidelines.
Degu genomic information

The Apoe sequences of the 32 degu individuals are available at NW_004524773.1.17 The degu were heterozygous for the Apoe genotype.

There are seven single-nucleotide polymorphisms (SNP) in the deguApoe gene compared to the reference sequence. One non-synonymous

missense SNP in exon 3 (E213K) denoted Mt4 was associated with late-onset AD-like phenotypes in this model.17 Among the 16 degu with

AD-like behaviour used in the present study, six had the Apoe4 Mt4 E213K genotype. Raw sequencing data can be accessed at BioProject

PRJNA623609.
METHOD DETAILS

Human and degu gut microbiome sequencing

DNAwas extracted from0.25 g of faeces per animal usingQiagen PowerSoil DNA Isolation Kit following themanufacturer’s instructions. DNA

was quantified with the Qubit dsDNA BR Kit. The hypervariable regions V3 and V4 of the 16S rRNA gene were amplified by PCR with universal

primers 341f (50-CCTACGGGNBGCASCAG-30) and 806bR (50-GGACTACNVGGGTWTCTAAT-30). The amplicons were sequenced on an Illu-

mina MiSeq platform with 2 x 300 nt paired-end sequencing with V3 chemistry. Raw sequences are available on NCBI BioProject

PRJNA643874.

In parallel, a 16S rRNA sequence dataset from the faeces of 25 human AD patients and 25 healthy age- and sex-matched asymptomatic

control individuals (without dietary differences) was obtained from a previous study.2 The human subjects were categorized as non-carriers

(zero ε4 alleles) or APOE ε4 carriers (one or two ε4 alleles). The data were generated by sequencing the V4 hypervariable region of the 16S

rRNA gene using the Illumina MiSeq platform and were reanalysed in our study through an updated pipeline.
Bacterial community data processing

All the 16S sequencing data were processed and analysed in R v3.5. The rodent paired-end 16S reads were trimmed and filtered using the R

packageDADA263 based on Phred quality profiles, setting themaximumnumber of N bases to 0, themaximumnumber of expected errors to

2 and truncation quality threshold to 2. This was followed by de-replication and error correction through DADA2 using the default error esti-

mation function. After merging paired reads, chimeric sequences were identified and removed with DADA2. This procedure yielded approx-

imately 6,000 unique ASV for the 32 degu samples. In parallel, we used the same workflow to re-process human reads provided by Vogt and

co-workers (2017),2 obtaining approximately 4,000 ASV from their 50 samples. To merge and statistically compare the two sets of sequences,

we trimmed degu ASV so that they extended over the V4 region only, cutting off the V3 region using DECIPHER64 and thereby reducing the

number of unique ASV to roughly 3,600. The subsequent merging of human and rodent sequences resulted in nearly 7,300 ASV, which were

further filtered by using phyloseq65 based on their taxonomical classification and on their abundance within and across samples. The taxo-

nomical affiliation was obtained by alignment of the identified ASV against the SILVA version 132 16s rRNA gene reference database.66,67

After collapsing the resulting taxonomy to the phylum level, ASV assigned to extremely rare phyla (defined as the phyla whose ASV were

observed in fewer than 3 samples on average and whose absolute frequency sum over all ASV was lower than 30) were removed. Additionally,

we eliminated potentially spurious taxa by selectingASV present in at least 7 samples out of the total 82. Upon thewhole taxa filtering process,

we finally obtained a total of 2,847 ASV that were used in the subsequent statistical analysis.
Analysis of bacterial community composition

Standard metrics for richness and alpha diversity (ACE, Chao1, Shannon and inverse Simpson indices) were calculated with vegan.68 Beta di-

versity between communities was quantified by different distance metrics, either Bray Curtis (computed in vegan) or unweighted and

weighted UniFrac distance, which captures the phylogenetic relationship among ASV.69 UniFrac distances were computed starting from a

neighbour-joined phylogenetic tree estimated via RaxML v8.2.10 and its R interface andwere weighted by the ASV abundance proportions.70

Summarisation and visualisation of beta diversity were carried out via non-metric multi-dimensional scaling (NMDS) through the phyloseq

package.65
12 iScience 27, 110348, August 16, 2024
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Statistically significant pairwise differences in ASV abundance between conditions were identified using the DESeq2 package, which tests

for the significance of log2 fold changes between relative abundances in two conditions using a negative binomial generalised linearmodel.71

This approach can effectively cope with library size heterogeneities and biological variability, leading to improved differential abundance

detection compared to normalisation and rarefying.72
Estimation of the functional potential of bacterial communities

We conducted ametabolic potential analysis as implemented in PICRUSt2,73 using taxonomic assignments and ASV fromDADA2. Inferences

weremade fromMetaCyc pathway databases under default parameters.74,75 Our degu and humanmicrobiota samples overall present a near-

est sequenced taxon index (NSTI) of 0.31G 0.08, indicative of well-characterised communities73 and supporting the soundness of estimated

functional profiles.

The principal component analysis (PCA) ofMetaCyc pathway relative abundances was carried out by the FactoMineR package for R.76 Spe-

cific functional differences between sample groups were conducted through the linear discriminant analysis (LDA) effect size (LefSe)method77

as available in the galaxy framework78 at http://huttenhower.sph.harvard.edu/galaxy/. Normalised MetaCyc pathway abundances were

aggregated based on the MetaCyc ontology, and subsequently analysed with LefSe to identify biological classes most likely to explain dif-

ferences between sample groups (host, AD phenotype and APOE4 mutation status). The samples were sub-grouped by phenotype and

APOE genotype in the contrasts between hosts and AD status, respectively.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical differences in richness and diversity distributions were estimated with two-tailed Mann-Whitney U tests through the stat_compar-

e_means function in ggplot2.

Statistical differences between beta diversity estimates were obtained by permutational multivariate analysis of variance (PERMANOVA)

while ensuring the absence of variance inhomogeneity by permutational analysis of multivariate homogeneity of variances (PERMDISP2)

through the vegan package.68

The significance of differences in ASV abundance between conditions was established based on a 0.05 threshold on Benjamini-Hochberg

adjusted P-values. To determine overall taxa differential relative abundance at higher taxonomic levels, we usedWilcoxon rank-sum tests with

Benjamini-Hochberg correction for multiple hypotheses over each considered taxonomical level (phylum, class, order, family and genus).

For the analysis of the potential functions of the community, the P-value thresholds for the factorial Kruskal-Wallis test among classes and

for the pairwise Wilcoxon test between subclasses were set to 0.05. To identify biological classes most likely to explain differences between

sample groups (host, AD phenotype and APOE4mutation status), the threshold for the logarithmic LDA score was set to 1.0 (except for the

comparison between hosts where it was set to 2.0).
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