
A Genome-Scale Model of Shewanella
piezotolerans Simulates Mechanisms of
Metabolic Diversity and Energy
Conservation

Keith Dufault-Thompson,a,b Huahua Jian,c Ruixue Cheng,c Jiefu Li,c*
Fengping Wang,c Ying Zhanga

Department of Cell and Molecular Biologya and Graduate School of Biological and Environmental Sciences,b

College of the Environment and Life Sciences, University of Rhode Island, Kingston, Rhode Island, USA; State
Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong
University, Shanghai, People’s Republic of Chinac

ABSTRACT Shewanella piezotolerans strain WP3 belongs to the group 1 branch of
the Shewanella genus and is a piezotolerant and psychrotolerant species isolated
from the deep sea. In this study, a genome-scale model was constructed for WP3 us-
ing a combination of genome annotation, ortholog mapping, and physiological veri-
fication. The metabolic reconstruction contained 806 genes, 653 metabolites, and
922 reactions, including central metabolic functions that represented nonhomolo-
gous replacements between the group 1 and group 2 Shewanella species. Metabolic
simulations with the WP3 model demonstrated consistency with existing knowledge
about the physiology of the organism. A comparison of model simulations with ex-
perimental measurements verified the predicted growth profiles under increasing
concentrations of carbon sources. The WP3 model was applied to study mechanisms
of anaerobic respiration through investigating energy conservation, redox balancing,
and the generation of proton motive force. Despite being an obligate respiratory or-
ganism, WP3 was predicted to use substrate-level phosphorylation as the primary
source of energy conservation under anaerobic conditions, a trait previously identi-
fied in other Shewanella species. Further investigation of the ATP synthase activity
revealed a positive correlation between the availability of reducing equivalents in
the cell and the directionality of the ATP synthase reaction flux. Comparison of the WP3
model with an existing model of a group 2 species, Shewanella oneidensis MR-1, re-
vealed that the WP3 model demonstrated greater flexibility in ATP production under the
anaerobic conditions. Such flexibility could be advantageous to WP3 for its adaptation
to fluctuating availability of organic carbon sources in the deep sea.

IMPORTANCE The well-studied nature of the metabolic diversity of Shewanella bac-
teria makes species from this genus a promising platform for investigating the evo-
lution of carbon metabolism and energy conservation. The Shewanella phylogeny is
diverged into two major branches, referred to as group 1 and group 2. While the
genotype-phenotype connections of group 2 species have been extensively studied
with metabolic modeling, a genome-scale model has been missing for the group 1
species. The metabolic reconstruction of Shewanella piezotolerans strain WP3 repre-
sented the first model for Shewanella group 1 and the first model among piezotoler-
ant and psychrotolerant deep-sea bacteria. The model brought insights into the
mechanisms of energy conservation in WP3 under anaerobic conditions and high-
lighted its metabolic flexibility in using diverse carbon sources. Overall, the model
opens up new opportunities for investigating energy conservation and metabolic
adaptation, and it provides a prototype for systems-level modeling of other deep-
sea microorganisms.
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Members of the Shewanella genus are present in a wide range of environments,
including fresh and salt waters, food products, sewage systems, and deep-sea

sediments (1–3). The Shewanella genus is known to utilize diverse carbon sources and
electron acceptors, leading to its broad adaptation to various environmental conditions
(3–6). A 16S rRNA gene-based phylogenetic reconstruction has revealed two major
groups in the Shewanella genus (7). Generally, group 1 includes species that are capable
of producing eicosapentaenoic acid (EPA) and are piezotolerant and psychrotolerant,
such as Shewanella benthica and Shewanella violacea, which have been isolated from
the deep sea. Group 2 species are generally pressure sensitive and mesophilic and
include Shewanella oneidensis, Shewanella baltica, and Shewanella putreficans, which
have been isolated from a variety of environments, including fresh water lakes and
spoiled meat products.

The ability of Shewanella species to utilize a broad range of electron acceptors
makes this genus a target for studying metabolic energy conservation and anaerobic
respiration. Several recent studies have focused on identifying the relative contribu-
tions of two distinct ATP-producing mechanisms (8–10), oxidative phosphorylation and
substrate-level phosphorylation. Oxidative phosphorylation is typically associated with
respiration, where the reduction of terminal electron acceptors is coupled to proton
motive force (PMF) generation, and the PMF subsequently contributes to ATP synthesis
via ATP synthase (ATPase). Substrate-level phosphorylation is associated with the
production of ATP through direct transfer of a phosphoryl group to ADP through the
action of enzymes like phosphotransacetylase (Pta) and acetate kinase (AckA). In
S. oneidensis strain MR-1, substrate-level phosphorylation is the primary source of ATP
during anaerobic growth, while ATPase has either minor contributions to ATP produc-
tion or acts as an ATP-driven proton pump that generates PMF (8). This is surprising,
given that Shewanella bacteria are obligated to utilize terminal electron acceptors when
growing under anaerobic conditions. An understudied aspect of these features of
metabolism is how ATP production, PMF generation, and redox reactions interact and
jointly contribute to the utilization of metabolic pathways and energy conservation
strategies in Shewanella bacteria.

Shewanella piezotolerans strain WP3, hereinafter referred to as WP3, has been
isolated from western-Pacific sediment at a depth of 1,914 m. It is piezotolerant and
psychrotolerant, reflecting its adaptations to the deep-sea environment (11). A 16S-
based phylogeny suggests this organism belongs to group 1 of the Shewanella genus
(12). The ability of WP3 to utilize diverse carbon sources and electron acceptors
demonstrates a metabolic flexibility that is comparable with that of other Shewanella
species (11, 13). The full genome of WP3 includes diverse c-type cytochrome genes,
which support anaerobic respiration using various terminal electron acceptors, such as
nitrate, iron, trimethylamine-N-oxide (TMAO), and dimethyl sulfoxide (DMSO) (13). WP3
is also known to produce EPA and alter its lipid content to contain more unsaturated
and branched-chain fatty acids in low-temperature and high-pressure environments
(14). These features enlist WP3 as a good representative of the group 1 Shewanella
species.

Genome-scale models (GEMs) of metabolic networks have broad applications in
phenotype prediction, evolutionary reconstruction, functional analysis, and metabolic
engineering (15). By connecting a set of biochemical reactions with the enzymatic
functions encoded in a genome, GEMs provide a framework for simulating the asso-
ciations between genotypes and phenotypes (16–19). The reconstruction of genome-
scale models can be challenging due to the complexity in managing diverse data sets
and maintaining model consistency through iterative manual curations. These chal-
lenges have been addressed with the recent releases of tools and automated pipelines
to facilitate the modeling process (20–23). GEMs are available for four group 2 She-
wanella species, including S. oneidensis MR-1, S. denitrificans, Shewanella sp. strain MR-4,
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and Shewanella sp. strain W3-18-1 (24, 25), while currently no GEM is available for any
group 1 species.

This study focuses on WP3 as a prototype for metabolic modeling among group 1
Shewanella. WP3 presents the conserved features of the group 1 Shewanella (e.g.,
piezotolerance, psychrotolerance, EPA production, etc.) and is a well-studied species in
this group. Previous studies have provided detailed evidence related to the function
and annotation of multiple key metabolic pathways in WP3, including nitrate utilization
(26), DMSO respiration (27), iron reduction and biomineralization (28–30), and fatty acid
synthesis (14). In addition to functional annotations, extensive data are available on the
expression of key metabolic genes, connecting individual pathways with their func-
tional roles under changing environmental conditions (31–36). These studies provide a
broad knowledge base for constructing the WP3 GEM. Furthermore, WP3 has estab-
lished protocols for genetic manipulations (37–40). The experimental accessibility of
this organism would enable the verification of modeling outcomes and support future
research on molecular adaptations through combined GEM simulation and experimen-
tal verification. Overall, WP3 serves as an ideal organism for modeling the metabolism
of group 1 species in the Shewanella genus.

In this study, a GEM of WP3 was constructed and applied in simulating the carbon
metabolism and energy conservation under both aerobic and anaerobic conditions.
The model was verified based on the known physiology of the organism and new
experimental data. Evolutionary analysis of the central metabolic genes revealed
nonhomologous replacements between WP3 (and other group 1 species) and the
group 2 Shewanella species. Comparing the WP3 model with the model of a group 2
representative, S. oneidensis strain MR-1 (hereinafter referred to as MR-1), revealed
similarities and differences between the two organisms in their aerobic growth and
anaerobic energy conservation.

RESULTS
Phylogenetic position of Shewanella piezotolerans WP3. The phylogenetic posi-

tioning of S. piezotolerans WP3 was confirmed following a phylogenomic analysis using
the protein sequences of 661 conserved single-copy genes (CSCGs) in the full genomes
of 24 Shewanella species and 5 closely related Gammaproteobacteria species that
served as the outgroup to the Shewanella genus (see Materials and Methods). The
phylogenomic reconstruction demonstrated the differentiation of the group 1 and
group 2 Shewanella species into distinct evolutionary branches (Fig. 1) and concurred
with a previously published 16S rRNA gene-based phylogeny (7). An exception to this
concurrence was with the positioning of Shewanella amazonensis, where the 16S rRNA
gene-based phylogeny located S. amazonensis in the group 2 taxa (7), while the
genome-based phylogeny positioned S. amazonensis as one of the deepest-branching
species among all of the Shewanella species analyzed. According to the genome-wide
phylogeny, WP3 was located in the group 1 branch, with Shewanella pealeana and
Shewanella halifaxensis as its closest neighbors. In the phylogenetic tree shown in Fig. 1,
the four previously modeled Shewanella species are marked with blue stars to indicate
their position in the phylogeny, while WP3 is marked with a red star.

Genome-scale metabolic reconstruction of Shewanella piezotolerans WP3. The
complete metabolic reconstruction of WP3, GEM-iWP3, was released in a public Git
repository at https://github.com/zhanglab/GEM-iWP3. It contained 806 genes, 653
metabolites, and 922 metabolic reactions. The reconstruction was achieved in three
steps. First, gene-protein-reaction (GPR) associations were incorporated through map-
ping orthologous genes to the existing Shewanella reconstructions (24, 25) (see Mate-
rials and Methods). This identified 596 genes (619 reactions) that were conserved
between WP3 and all four of the other Shewanella species modeled, as well as 130
genes (131 reactions) that were conserved between WP3 and some (but not all) of the
four previously modeled species, leading to the inclusion of 726 genes associated with
750 reactions in the WP3 reconstruction.
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Next, the WP3 metabolic reconstruction was expanded through manual curation of
the WP3 genome using information from published literature (12, 14, 41), protein
domain conservation, and evidence from the genomic and functional context of the
metabolic genes (42). This expansion led to the inclusion of another 137 reactions
associated with new gene annotations and the addition of a periplasmic compartment
to account for cellular localizations of nutrient transporters and electron transport
reactions. For example, the carbohydrate utilization pathways were annotated based
on prior study of sugar catabolism in Shewanella (41) and further verified based on
predictions of protein localization in the cell (Fig. 2) (43–45). The reduction of soluble
electron acceptors, such as nitrate, nitrite, thiosulfate, and TMAO, was represented as
periplasmic reactions, while the reduction of DMSO and oxidized metals, such as Fe(III),
Mn(IV), uranium(VI), and chromium(VI), was represented as extracellular processes
following existing knowledge of the cellular compartmentalization of the different
electron transport processes in Shewanella species (46–55). Putative outer membrane
transporters were identified and curated to identify what genes were responsible for
nutrient exchange between the extracellular space and the periplasm. A number of
nonspecific porins were identified, including distant homologs to the Escherichia coli
OmpC and OmpF proteins (56), as well as a homolog to the OprF protein in Pseudomo-
nas aeruginosa (57, 58). This analysis also identified functionally specific outer mem-
brane proteins that were responsible for the uptake of carbohydrates (e.g., LamB and
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FIG 1 Phylogenetic reconstruction of the Shewanella genus based on the concatenated sequences of 661
conserved single-copy genes identified in the full genomes of Shewanella and five outgroup species. Support
values based on 100 iterations of bootstrapping are indicated at the internal nodes. Only support values above 80
are shown. The four Shewanella species with available GEMs are marked with blue stars, and WP3 is marked with
a red star.
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FIG 2 A schematic representation of the carbon utilization pathways for various carbohydrates and their derivatives (blue), amino acids (orange), nucleic acids
(red), and small carbon molecules (green) as well as their links to the central carbon metabolism (red arrows). Metabolites are represented as ovals, and
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OprB), phosphate (OprP), cobalamin (BtuB), long-chain fatty acids (FadL), and nucleo-
sides (Tsx) (41, 59–63).

The assembly of cell components in WP3 was represented with the addition of 8
synthesis reactions. The biomass equation was introduced to represent the composi-
tion of cell mass, including carbohydrates, proteins, RNA, DNA, lipids, vitamins, and
cofactors (see Table S1 in the supplemental material). The stoichiometry of the biomass
equation was normalized to reflect the millimole concentrations of individual compo-
nents in 1 g of cell dry weight (gDW) (see Materials and Methods). The composition of
macromolecules, such as lipids, proteins, DNA, and RNA, was represented using equa-
tions that defined the composition of basic building blocks, such as fatty acids, amino
acids, and nucleotides. The stoichiometries of these biosynthesis equations were
determined according to existing Shewanella reconstructions and experimental mea-
surements performed on WP3. Specifically, the stoichiometry of the lipid biosynthesis
equation (see Table S2) was calibrated based on experimentally measured concentra-
tions of saturated, unsaturated, and branched-chain fatty acids in WP3 (14).

The WP3 metabolic reconstruction also included three reactions for the diffusion of
O2, CO2, and urea across the cell membrane and 24 gap-filling reactions for unblocking
the production of biomass components. These gap-filling reactions reflected knowl-
edge gaps in the synthesis of biomass compounds, where the metabolic mechanisms
were either unknown or not yet associated with any annotated genes in the WP3
genome. These gap-filling reactions included dihydroneopterin mono- and triphosphate
dephosphorylases, which were involved in the synthesis of the cofactor tetrahydrobiop-
terin, as well as glycolaldehyde dehydrogenase and 5,10-methylenetetrahydrofolate reduc-
tase, which were involved in folate metabolism. Three gap-filling reactions were compound
sinks that allowed for the removal of metabolic side products whose metabolic pathways
are currently unknown and that are not involved in other reactions in the metabolic
network. These included sinks for the compound S-adenosyl-4-methylthio-2-oxobutanoate,
a side product in the synthesis of biotin.

Finally, 109 exchange reactions were defined to represent the exchange of nutrients
and metabolic products in the simulated environment (see Table S3 in the supplemen-
tal material). These included reactions for the uptake of carbon sources, electron
acceptors, trace metals, and vitamin precursors, as well as the diffusion of metabolic
by-products. These exchange reactions were set to represent the basal constraints
specified in Table S3 and were subsequently modified during metabolic simulations to
represent different environmental conditions (see Materials and Methods).

Evolution of central metabolic genes. During manual curation of the WP3 meta-
bolic reconstruction, genes for carrying out central metabolic functions that were
nonhomologous between WP3 and the previously modeled Shewanella species were
identified. These included acetylornithine deacetylase (argE), which is essential for the
biosynthesis of arginine, and glucosamine-6-phosphate deaminase (nagB), which is
essential for utilizing N-acetyl-D-glucosamine (GlcNac). Both genes were experimentally
identified in MR-1 and were found to be nonhomologous to the canonical genes in
E. coli (64, 65). A broader comparison of the group 1 and group 2 Shewanella species
suggested that they were conserved within each group but had diverged between the
two groups (see Fig. S1 in the supplemental material). Exceptions were found for the
argE gene in S. amazonensis, Shewanella loihica, and Shewanella frigidimarina, where
the deep-branching S. amazonensis and S. loihica carried both nonhomologous copies
of argE and the group 2 species S. frigidimarina carried a single argE of the group 1 type.
The genomic contexts of argE and nagB were well conserved among the group 1

FIG 2 Legend (Continued)
deoxyuridine; F6P, D-fructose 6-phosphate; G1P, D-glucose 1-phosphate; G3P, glyceraldehyde 3-phosphate; G6P, D-glucose 6-phosphate; Gal, D-galactose;
Gam6P, D-glucosamine 6-phosphate; GGluABT, gammaglutamyl-gamma-aminobutyrate; Glc-D, D-glucose; Glu-L, L-glutamate; HmGCoA, hydroxymethylglutaryl-
CoA; Ile-L, L-isoleucine; Lac, lactate; Leu-L, L-leucine; Malt, maltose; Maltodex, maltodextrin; MiCit, methylisocitrate; Oaa, oxaloacetate; Ptrc, putrescine; Pyr,
pyruvate; R1P, alpha-D-ribose 1-phosphate; R5P, alpha-D-ribose 5-phosphate; Ser-L, L-serine; Succ, succinate; Thr-L, L-threonine; UDP-Glc, UDP-glucose; Uri,
uridine.; Val-L, L-valine.
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species, while they were variable among the group 2 species. Consistent with the
observed variability of the genomic contexts, genetic elements were found in proximity
to argE and nagB in MR-1, as well as an argE in S. loihica that is homologous to the
group 2 type. The group 2 genes had diverse origins, with the argE being homologous
to genes in Klebsiella species and a limited subset of host-associated Enterobacteriaceae
and the nagB homologous to genes in the deep-branching bacteria and archaea (65).
In contrast, the group 1 genes were conserved with those of genera evolutionarily
related to Shewanella, such as Marinomonas, Colwellia, and Pseudoalteromonas. Taken
together, the central metabolic genes argE and nagB evolved from distinct origins
among Shewanella groups 1 and 2. The WP3 genome carried the gene copies that were
conserved in the group 1 species.

Metabolic simulations match experimental growth measurements. Simulations
of biomass production with the WP3 metabolic model were consistent with the known
physiology of this organism. This included utilizing glucose, lactate, maltose, and
GlcNac as carbon sources and using Fe(III), nitrate, nitrite, thiosulfate, TMAO, and DMSO
as terminal electron acceptors for anaerobic respiration (13). From the metabolic
simulations, 53 sole carbon sources supported biomass production of the WP3 model
under aerobic conditions, including various carbohydrates, amino acids, nucleotides,
and fatty acids (Fig. 2; see also Table S3 in the supplemental material).

To quantitatively evaluate the prediction of biomass concentrations by the WP3
metabolic model, batch cultures were set up using a minimal medium developed in this
study to experimentally measure the growth of WP3 with sole carbon sources (see
Text S1 in the supplemental material). The sole carbon sources examined in this study
were pyruvate, glucose, maltose, and an amino sugar (GlcNac), and the experiments
were carried out under aerobic conditions using oxygen as the sole terminal electron
acceptor. The concentrations of carbon sources ranged between 2 mM and 40 mM in
the experimental medium. Cell growth was measured in three independent replicates
and converted to biomass concentrations (see Materials and Methods). Metabolic
simulations were performed with the WP3 model to predict the biomass fluxes under
the conditions defined by the experimental medium. This was achieved by modifying
the flux bounds of the exchange reactions in the model. The lower bounds of exchange
reactions for carbon, nitrogen, sulfur, and phosphorus sources were specifically cali-
brated to reflect their concentrations in the minimal medium (see Table 1), the
exchange of oxygen was unlimited to simulate aerobic respiration, and the lower and
upper bounds of other exchange reactions were assigned based on default settings in
the basal constraints (see Materials and Methods; see also Table S3 in the supplemental
material).

The biomass fluxes predicted by the model demonstrated overall consistency with
experimentally measured biomass concentrations at the stationary phase (Fig. 3). The

TABLE 1 Exchange reaction constraints representing the concentrations of carbon, nitrogen, sulfur, and phosphorus sources in the
minimal medium of WP3 batch culturesa

Nutrient Source Concn

Flux bound of exchange
reaction

Lower Upper

Carbon Glucose, maltose, GlcNac, or pyruvate 2 mM �2.00 1,000.00
5 mM �5.00 1,000.00
10 mM �10.00 1,000.00
20 mM �20.00 1,000.00
40 mM �40.00 1,000.00

Sulfur SO4 9.8 mM �9.80 1,000.00
Phosphorus PO4 0.7 mM �0.70 1,000.00
Nitrogen NH4 5.6 mM �5.60 1,000.00
aAll other exchange reactions in the WP3 model were defined with settings in the basal constraints. The compounds pyruvate, glucose, maltose, and GlcNac were
used as sole carbon sources. The lower and upper bounds of exchange reaction fluxes are shown; negative values indicate that uptake of the nutrient was
permitted. The concentrations of the sole carbon sources varied from 2 mM to 40 mM; the concentrations of the sulfur, phosphorus, and nitrogen sources were set
according to their concentration in the experimental medium.
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quantitative values deviated slightly from the experimental measurements at relatively
low (i.e., 2 mM of pyruvate or glucose) or high carbon source concentrations. Experi-
mental measurements showed that the biomass production stopped increasing when
the concentration of sole carbon sources increased beyond 60 mM in the count of
carbon elements (i.e., 20 mM, 10 mM, or 5 mM of pyruvate [3 carbons], glucose [6
carbons], or maltose [12 carbons], respectively). This trend was also seen in the WP3
model simulations. Furthermore, under high concentrations of pyruvate, glucose, and
maltose, metabolic simulations identified NH4

� as the limiting factor of biomass
production. This was because the uptake of these carbon sources was limited by the
uptake bound of the NH4

� exchange flux, which corresponded to its concentration in
the experimental medium. Allowing for higher uptake of NH4

� by the model led to
higher biomass production and higher uptake of these carbon sources. In contrast, the
model was not limited by the availability of NH4

� when an amino sugar, GlcNac, was
used as a sole carbon source. This was because each molecule of GlcNac produced one
molecule of NH4

� during its utilization, providing additional nitrogen that could be
used during growth. As a result, higher biomass was observed with GlcNac as a carbon
source, and this trend was seen in both the experimental measurements and the model
simulations (Fig. 3).

The aerobic growth of WP3 was also compared with that of MR-1 (model iMR1_799
[25]), based on simulations of growth on 28 sole carbon sources that have been
experimentally confirmed to support growth in either WP3 (13) or MR-1 (24, 25) (see
Fig. S2 in the supplemental material). The MR-1 model was able to utilize almost all the
carbon sources examined, except for maltose. The WP3 model, in contrast, was viable
in maltose but was not able to utilize six carbon sources, including the amino acids
asparagine and glutamine, the nucleic acids inosine and thymidine, and the small
molecules ethanol and 2-oxoglutarate. Simulations of biomass production using the
two models revealed that WP3 had slightly higher biomass yields than MR-1 on most

FIG 3 Comparison of experimentally measured and computationally simulated biomass production levels of WP3 grown with different
carbon sources. Error bars represent the standard deviations of the experimentally measured biomass concentrations (gDW/liter) from
three independent replicates.
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of the growth-supporting carbon sources, including carbohydrates, small carbon mol-
ecules, and amino acids, while MR-1 had a slightly higher biomass yield when malate,
adenosine, or deoxyadenosine was used as the sole carbon source.

Metabolic energy conservation of WP3. The relative roles of oxidative and
substrate-level phosphorylation were examined by simulating mutant models with
reactions from each of the two pathways blocked (Fig. 4 and Materials and Methods).
For measuring the role of oxidative phosphorylation, the levels of biomass production
of the wild-type (WT) model and an ATP synthase deletion mutant (�atp mutant) were
simulated using flux balance analysis (FBA) under both aerobic (O2) and anaerobic
(fumarate) conditions using either GlcNac or lactate as the sole carbon source. Under
aerobic conditions, the �atp mutant produced less than half of the WT biomass,
indicating that oxidative phosphorylation played an important role in the aerobic
growth of WP3. Under anaerobic conditions, however, the biomass production levels
were comparable between the WT and �atp models, demonstrating that oxidative
phosphorylation had only a minor role in supporting anaerobic growth (Fig. 4B).

For measuring the role of substrate-level phosphorylation, FBA was performed with
the WP3 WT model and three mutant models that represent the single deletion of the
phosphotransacetylase (�pta mutant) or the acetate kinase (�ackA mutant) gene or the
double deletion of both genes (�pta �ackA mutant). When lactate was used as a sole
carbon source, the WT model was able to produce nonzero biomass flux, while the
�pta, �ackA, and �pta �ackA models had a maximum biomass flux of zero, indicating
that these mutants are not viable in the lactate medium. When GlcNac was used as a
sole carbon source, both the WT and mutant models were viable in the anaerobic
medium. Compared to the WT, the �pta mutant had a slight decrease in biomass
production (97% of the WT flux), and the �ackA and �pta �ackA mutants resulted in
greater reductions of the biomass, to less than 50% of the WT level (Fig. 4C). The
decrease or inhibition of biomass production in the �ackA and �pta �ackA mutants
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FIG 4 (A) A schematic representation of key reactions involved in the production of ATP and PMF in WP3. (B) Comparison of biomass fluxes in the wild-type
and �atp mutant models of WP3 with GlcNac or lactate as a sole carbon source under aerobic and anaerobic conditions. (C) Biomass fluxes from anaerobic
growth simulations of the WP3 wild-type model and the �ackA, �pta, and �pta �ackA mutant models using GlcNac or lactate as a sole carbon source and
fumarate as a sole electron acceptor. (D) Internal reaction fluxes of the WP3 and mutant models from the simulations whose results are shown in panel C, using
GlcNac as a sole carbon source. MK, menaquinone; CymA, tetraheme c-type cytochrome; ATPase, ATP synthase; Fdh, formate dehydrogenase; Ndh, NADH
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indicated an important role of substrate-level phosphorylation in supporting anaerobic
growth of WP3.

Additional examination of the internal fluxes obtained from FBA revealed changes
in ATP production, PMF generation, and redox functions in the WT and mutant models
(Fig. 4D). In the WT model, substrate-level phosphorylation mediated by AckA was used
for ATP production, while oxidative phosphorylation via ATP synthase (ATPase) played
a minor role in this process. The activity of formate dehydrogenase (Fdh) was coupled
with terminal electron acceptor reduction to generate PMF, and NADH dehydrogenase
(Ndh) was used for reducing the quinone pool. In the �pta model, reaction fluxes were
redirected to xylulose-5-phosphate phosphoketolase (Xpk) from the pentose phos-
phate pathway so that substrate-level phosphorylation through AckA was maintained.
This redirection resulted in reduced Fdh flux, potentially due to decreases in formate
production, and increased Ndh flux, potentially for maintaining the redox activities in
the electron transport chain. In the �ackA and �pta �ackA models, more significant
shifts were observed in the distribution of metabolic fluxes. The inhibition of AckA led
to blockage of the upstream fluxes through Pta and Xpk and increased flux through
pyruvate kinase (Pyk) to partially compensate for the loss of AckA-mediated ATP
production.

The variability of the internal fluxes was further examined using flux variability
analysis (FVA) with biomass production constrained to its maximum under each
simulation condition (see Table S4 in the supplemental material). This revealed consis-
tent flux values for all of the above-mentioned reactions in the WT and �pta models
and for the ATPase, AckA, Pta, and Xpk reactions in the �ackA and �pta �ackA models.
However, the Pyk, Fdh, and Ndh reactions had various flux values in the �ackA and
�pta �ackA mutants, indicating that these mutants had alternative strategies for
balancing the ATP production, PMF generation, and redox activities in the cell.

ATPase activity and anaerobic growth of Shewanella. One surprising feature of
the Shewanella anaerobic growth was the lack of oxidative phosphorylation via ATPase
despite the obligate requirement for respiration through terminal electron acceptors
(8). To further investigate how the ATPase activity (i.e., in either the ATP production or
PMF generation direction) was related to the redox balancing of Shewanella during
anaerobic respiration, the NAD�/NADH homeostasis was modeled with a robustness
analysis to simulate the connections between redox state (as measured by the differ-
ences in NAD� and NADH concentrations) and the activity of ATPase in both the WP3
and the MR-1 model (see Materials and Methods). The simulation demonstrated a
positive correlation between the availability of reducing equivalents and the flux of the
ATPase reaction for both WP3 and MR-1 (see Fig. S3 and S4 in the supplemental
material). This indicated that when the system was provided with more reducing
equivalents, the ATPase flux would increase and activity would be shifted toward the
ATP-producing direction. In contrast, when the system had less reducing equivalents,
the ATPase flux would decrease and activity would be flipped to the proton-pumping
and PMF-generating direction.

The comparison of redox states in the WP3 and MR-1 models when the ATPase
reaction flux approached zero revealed metabolic differences between these two
organisms across diverse carbon sources when using fumarate as the sole electron
acceptor (Fig. 5). The WP3 model produced excess reducing equivalents with a wide
range of carbon sources, including amino sugars, small carbon compounds, amino
acids, and nucleotides (Fig. 5A). Considering the positive correlation of the redox state
and the ATPase flux (see Fig. S3 and S4 in the supplemental material), the excess
reducing equivalents in WP3 could potentially enable the production of additional ATP
via ATPase. The MR-1 model, in contrast, produced excess reducing equivalents only
when specific carbon sources were provided, such as malate, aspartate, and serine.
Thus, the ATPase could have little contribution to the ATP production but may instead
be used for PMF generation in MR-1. Overall, the two representatives of group 1 and
group 2 Shewanella species, WP3 and MR-1, demonstrated complex interactions of ATP
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generation, PMF generation, and redox-balancing processes under anaerobic growth
conditions. The WP3 model displayed higher capacity than MR-1 in producing excess
reducing equivalents with most of the examined carbon sources. This may provide
additional advantages to WP3 in its natural environment by enabling additional ATP
production when using a diverse range of carbon sources.

DISCUSSION

In this study, a genome-scale model was constructed for WP3, a piezotolerant and
psychrotolerant representative of the group 1 Shewanella species (Fig. 1). Extensive
annotations of the WP3 genome were incorporated into the metabolic reconstruction,
and the carbon utilization reactions were curated based on the current literature
available (Fig. 2). A periplasmic compartment was introduced to the WP3 reconstruc-
tion to account for the cellular localization of carbon utilization and electron transport
reactions. This represented a new component not previously included by other meta-
bolic reconstructions of Shewanella species.

Evolutionary analysis of central metabolic genes in WP3 revealed instances of
nonhomologous replacements among the group 1 and group 2 Shewanella species.
The argE and nagB in WP3 and other group 1 species were conserved within bacterial
species closely related to Shewanella. Hence, they could represent the ancestral genes
conserved during early differentiation of the Shewanella genus. The group 2 copies of
these genes were adjacent to mobile genetic elements, suggesting a possible acqui-
sition of these genes through horizontal gene transfer. Furthermore, the conservation
of these acquired genes across group 2 species and their presence in a few group 1
species suggested they could have been introduced to the genome during early
differentiation of the group 2 Shewanella.

The WP3 model represented the known physiology of this organism, including its
growth with a wide variety of carbon sources and electron acceptors. A comparison of
biomass production from model simulations and experimental measurements revealed
that the WP3 model represented growth trends consistent with what was observed in
experimental cultures using the sole carbon sources pyruvate, glucose, GlcNac, and
maltose (Fig. 3). The slight deviations from the experimental results under low or excess
carbon concentrations could be attributed to the differential regulation of gene
expressions but were beyond the scope of this study. Additional confidence in the WP3
model was established when it was applied for the prediction of growth-limiting
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nutrients. The prediction of NH4
� as the limiting nutrient when an excess carbon source

was provided was corroborated by the fact that the amide molecule, GlcNac, was able
to overcome this growth limit by serving as both a carbon and a nitrogen source.

A comparison of the WP3 model with an existing model of a group 2 representative,
S. oneidensis MR-1, revealed similarities and differences in carbon utilization and energy
conservation of these two organisms. While MR-1 lacked enzymes for utilizing maltose,
WP3 lacked identified transporters that are required for utilizing six carbon sources,
including the amino acids asparagine and glutamine, the nucleic acids inosine and
thymidine, and the small molecules ethanol and 2-oxoglutarate (see Fig. S2 in the
supplemental material). The anaerobic energy conservation strategies of WP3 were
explored by simulating the deletion of genes responsible for oxidative (�atp) and
substrate-level (�ackA, �pta, and �pta �ackA) phosphorylation (Fig. 4). Using GlcNac
and lactate as sole carbon sources and fumarate as the sole electron acceptor, the
biomass production and reaction flux distributions of the WP3 wild-type and mutant
models revealed that substrate-level phosphorylation was the primary source of an-
aerobic energy conservation, a trait that has been noted in MR-1 (8, 10). This indicates
that the primary usage of substrate-level phosphorylation could be a conserved feature
in the anaerobic respiration of both group 1 and group 2 species and suggests that this
feature could have evolved during the early differentiation of Shewanella.

Internal redox balancing has been shown to play a critical role in the ability of other
organisms to utilize nutrients and is a major driver of changes in metabolic strategy
(66–68). Simulation of the NAD�/NADH homeostasis and its connections to the ATPase
activity in WP3 and MR-1 provided insights into the complex interactions of ATP
production, PMF generation, and redox-balancing processes in Shewanella bacteria.
While both the WP3 and MR-1 models presented a positive correlation between the
availability of reducing equivalents and the reaction flux of ATPase (see Fig. S3 and S4
in the supplemental material), the two models demonstrated distinct redox states when
different carbon sources were utilized (Fig. 5). The production of excess reducing
equivalents was supported by a wide range of carbon sources in WP3 but was restricted
to only a few carbon sources in MR-1. This suggested a capacity for WP3 to produce
additional ATP via the ATPase activity and could potentially have enabled the adapta-
tion of WP3 to the fluctuating availability of carbon sources in the deep sea by
maintaining ATP production when different carbon sources became available.

Overall, the WP3 model represents the first genome-scale model of the group 1
Shewanella species and the first model of a piezotolerant and psychrotolerant deep-sea
species. It opens up new opportunities for future studies of environmental adaptation
and metabolic pathway utilization, for example, through incorporating environment-
specific features like the altered fatty acid compositions in different temperatures and
pressures (14) or the differential expression of key metabolic genes under different
environmental conditions (31, 33, 36). The WP3 model also provides a framework for
integrating additional parameters, such as enzyme thermostability (69) or context-
specific information (70) during the study of temperature and pressure adaptations. The
experimental accessibility of WP3 would make it possible to verify extensions to the
model. Finally, future studies combining molecular evolution and metabolic simulation
of the group 1 and group 2 Shewanella species could lead to a better understanding of
bacterial adaptations to low-temperature and high-pressure environments and permit
the exploration of metabolic potentials in the deep sea.

MATERIALS AND METHODS
Ortholog mapping and phylogenomic reconstruction of the Shewanella genus. An updated

phylogeny of the Shewanella genus was constructed based on conserved single-copy genes (CSCGs). A
data set of 24 Shewanella genomes was downloaded from the KEGG database (71). Five additional
genomes were used as the outgroup for rooting the Shewanella phylogeny, including Pseudoalteromonas
haloplanktis, Colwellia psychrerythraea, Psychromonas ingrahamii, Photobacterium profundum, and Mori-
tella viscosa. An initial ortholog mapping among these species was identified using a bidirectional best
hit BLAST analysis as defined in a previous study (72). The ortholog mapping was further refined based
on a consensus of additional evidence from other sources, including a published ortholog table of the
Shewanella genus (25), the KEGG Orthology database (71), and automated predictions by OrthoMCL (73).

Dufault-Thompson et al.

March/April 2017 Volume 2 Issue 2 e00165-16 msystems.asm.org 12

msystems.asm.org


From analyzing ortholog groups that were consistently defined by all of the above-mentioned ap-
proaches, CSCGs were identified as the orthologs that occurred once and only once in each of the
genomes analyzed. Individual alignments were constructed on the protein sequences of each CSCG
using MUSCLE version 3.8.31 (74). The alignments were then concatenated to create a master alignment
of the CSCGs in Shewanella and the outgroups. RAxML version 8.2.3 (75) was used for reconstructing a
maximum-likelihood protein phylogeny using the JTT substitution model with the GAMMA model of rate
heterogeneity. Branch support values were estimated by performing bootstrapping with 100 replica-
tions.

Development of the genome-scale metabolic reconstruction. The WP3 metabolic reconstruction
was developed using version 0.27 of the PSAMM software package (23). The reconstruction was
represented in a YAML format that is designed to represent variable model definitions and simulation
conditions. Simulations with the model were performed in PSAMM using the IBM ILOG CPLEX Optimizer
version 12.6.2 linear programming solver. An initial reconstruction was first developed based on ortholog
mapping to the existing metabolic reconstructions of S. oneidensis MR-1, Shewanella sp. MR-4, S. deni-
trificans strain OS217, and Shewanella sp. W3-18-1 (25). The orthologs were identified according to a
global mapping of ortholog clusters among all Shewanella species (described in the paragraph above).
Gene-protein-reaction (GPR) associations in the initial WP3 reconstruction were mapped from conserved
genes in the modeled species, following logic expressions that represent the “AND” and “OR” relation-
ships of enzyme-coding genes. The “AND” logic was used to indicate multiple subunits of an enzyme
complex, and the “OR” logic was used to indicate alternative enzymes. A GPR association was introduced
from existing reconstructions only if orthologs were identified in the WP3 genome for all subunits of at
least one alternative enzyme. The WP3 reconstruction was further expanded through manual curation by
referencing existing annotations in the KEGG (71), SEED (42), and BioCyc (76) databases. Additional
considerations in the manual curation process included examining genomic context using the SEED
viewer tool (77), searching for conserved sequence domains (78), and reviewing current literature (12, 14,
41, 79). Finally, metabolic gaps in the production of biomass components were identified using the
PSAMM gapfill function (23). A number of gap-filling reactions were included to enable biomass
production with experimentally confirmed carbon sources and electron acceptors (13). These gap
reactions were further scrutinized through manual inspection of the biosynthetic pathways leading
to the various biomass components and were reviewed with the fluxcheck function using the “--
unrestricted” option in PSAMM to confirm their flux consistency. Stoichiometric consistency of the model
was validated by using the masscheck function in PSAMM. Additional verification of the formula and
charge balance was performed with the formulacheck and chargecheck functions. By default, the
exchange reactions, compound sources or sinks (e.g., 4HBASink, 5DRIB_Sink, and AMOB_Sink), macro-
molecular synthesis equations (e.g., Core_Biomass, Growth, and PASYN_WP3_20C), and reactions involv-
ing the acyl carrier protein (ACP) or its apo form (e.g., ACPS1, ACPSc, and AGPEPHOS) were excluded from
formula and charge checks due to the presence of undefined R or X groups in the metabolites.

Formulating the biomass objective function. A biomass equation was formulated in the WP3
reconstruction to simulate the production of components required for cell growth. The biomass equation
incorporates the cellular composition of the total cellular carbohydrates, proteins, RNA, DNA, lipids,
vitamins, and cofactors (see Table S1 in the supplemental material). Biomass compositions from exper-
imental measurements of WP3 and evolutionarily related species were used as references for formulating
the stoichiometry of the biomass equation. First, the composition of carbohydrates, proteins, DNA, RNA,
and lipids was estimated using approximations from S. oneidensis MR-1 (24, 25). The addition of vitamins
and cofactors into the WP3 biomass was achieved by using an approximation of the experimental
measurements from E. coli as a representation of Gram-negative bacteria (80). Further calibration of the
biomass composition in WP3 involved formulating the stoichiometry of the phosphatidic acid synthase
reactions according to experimental measurements of branched-chain, unsaturated, and saturated fatty
acids in this organism (14) (see Table S2). The overall biomass equation was scaled so that the
stoichiometry of biomass components corresponds to their millimole (mmol) amounts in a gram of cell
dry weight (gDW). This calibration enabled the comparison of computationally simulated biomass
production levels with experimental measurements.

Formulating the basal constraints of metabolic simulations. A list of basal constraints was
defined for exchange reactions in the model using the lower and upper bounds specified in Table S3 in
the supplemental material. The basal constraints were used to set default bounds for the uptake of
nutrient sources and the removal of metabolic by-products. For trace elements, vitamin precursors, and
salts, the default bounds were unlimited in both directions, and for metabolic by-products, the lower
bounds were set to zero while the upper bounds were unlimited, indicating that they can be freely
released from the system. The basal constraints also defined the exchange reactions for 71 potential
carbon sources and 13 electron acceptors in the model. The uptake of carbon sources and electron
acceptors was blocked in the basal constraints and was defined during individual simulations. Unless
otherwise specified (e.g., as defined in Table 1), the lower bound of the sole carbon source was set to
�10 to limit its uptake to 10 mmol/liter, and the uptake of the sole electron acceptor was unlimited.

Comparing WP3 metabolic simulations with experimental results and the MR-1 model. The
growth of WP3 when utilizing a variety of sole carbon sources was examined in aerobic batch cultures
using 50 ml of LMO-812 minimal medium (see Text S1 in the supplemental material) supplemented with
alternative sole carbon sources at different concentrations (2 mM, 5 mM, 10 mM, 20 mM, or 40 mM).
Cultures were grown in triplicate at 20°C and were continuously shaken at 200 rpm. The growth curve
of WP3 was determined using turbidity measurements at an optical density of 600 nm (OD600). The
growth measurements at early stationary phase were converted to gDW/liter of biomass concentration
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using a previously determined correlation between OD600 and dry weight in Shewanella species (24). To
simulate the experimental growth conditions, the PSAMM fba function was applied to perform FBA
simulations using the biomass equation as the objective function. The exchange of carbon, nitrogen,
sulfur, and phosphorus nutrients was constrained based on their availability in the experimental medium
(Table 1), the exchange of oxygen was unlimited to simulate aerobic respiration with oxygen as the sole
electron acceptor, and other exchange reactions were defined with the basal constraints. The unit of the
uptake fluxes was assigned to mmol/liter, which corresponds to the unit of nutrient concentration in the
experimental medium. Since the biomass equation in WP3 was calibrated to reflect the millimole (mmol)
amounts of biomass components in a gram of cell dry weight (gDW), the biomass concentrations were
predicted based on the biomass fluxes (vB gDW/liter).

Comparisons of the WP3 with the MR-1 model were performed by simulating the aerobic growth of
the organisms using 28 sole carbon sources that have been experimentally confirmed to support the
growth of either WP3 (13) or MR-1 (24, 25) (see Fig. S2 in the supplemental material). The latest metabolic
reconstruction of MR-1, iMR1_799 (25) was used in all MR-1 simulations performed in this study. The
simulations with both models were set up using the basal constraints with default bounds for the sole
carbon sources (i.e., [�10, 1,000]) and the sole electron acceptor, oxygen (i.e., [�1,000, 1,000]). The
biomass yields were calculated through dividing the biomass flux by the uptake fluxes of the carbon
source and the electron acceptor.

Metabolic simulation of mutant phenotypes. Mutant strains of WP3 were simulated in the
metabolic model by setting a flux limit of [0, 0] for all reactions catalyzed by the gene being knocked out.
A list of enzymes involved in ATP production, PMF generation, and redox activities is provided in Table 2,
along with their corresponding reactions, functional roles, and gene associations in the WP3 model.
Medium conditions were set in the WP3 model using the basal constraints with uptake enabled for a sole
carbon source (lactate or GlcNac) and a sole electron acceptor (O2 or fumarate). The carbon source was
constrained to a maximum uptake of 10 mmol/liter, and the electron acceptor was unlimited. For
simulations with fumarate as the electron acceptor, the succinate/fumarate antiporter reaction,
SUCFUMtdc, was blocked, as it has been noted to be able to form artificial loops with other
transporters (80), and the fumarate hydrogen symporters FUMt4 and FUMt4_2 were also blocked to
prevent utilization of fumarate as an additional carbon source. When GlcNac was used as the sole carbon
source, the lactate dehydrogenase and glycerol-3-phosphate dehydrogenase reactions were blocked to
prevent the formation of artificial loops in NADH cycling. Metabolic reaction fluxes were determined by
optimizing the biomass objective function using fba with the l1min loop removal approach implemented
in PSAMM (23, 81). Additional analysis of flux variability was performed on internal reactions with the fva
function in PSAMM by fixing the biomass flux to its maximum. The reaction flux for Fdh was calculated
based on the sum of fluxes through the FDH9 and FDH10 reactions, and the reaction flux for Ndh was
calculated based on the sum of fluxes through the NADH4, NADH12, and NADH14 reactions. All other
fluxes were obtained directly from the FBA and FVA simulations according to the reactions listed in
Table 2.

Metabolic simulations of the NAD�/NADH homeostasis. The NAD�/NADH homeostasis was used
as an approximation for investigating redox states in the WP3 model and the MR-1 model, iMR1_799 (25).
To simulate the NAD�/NADH homeostasis, an artificial reaction, NAD� � H� N NADH (denoted EQ1),
was introduced to the model to account for differences in the concentrations of NAD� and NADH. First,
a robustness analysis was performed by varying the flux value of EQ1 while optimizing the biomass
production. This was performed using the robustness function in PSAMM (23), where flux values of EQ1
were probed in the range of [�10, 10] at 500 steps. For each step, FBA simulation was performed with
the l1min loop removal, and the simulated ATPase flux was plotted with the corresponding flux of EQ1
(see Fig. S3 and S4 in the supplemental material). Next, a linear model was fit to the data using the
equation vATPase � k · vEQ1 � b, where vATPase was the flux of the ATPase reaction and vEQ1 was the flux
of the EQ1 reaction. To identify the connections between ATPase activity (i.e., ATP production or PMF
generation) and the redox state of a cell, the intersection of the linear model with the EQ1 axis was used
to determine the difference in NAD� and NADH concentrations when the ATPase reaction flux
approached zero. A negative intersection of the linear model on the EQ1 axis would indicate
(NAD�) � (NADH) � 0, suggesting that the homeostasis was pushed toward generating more NADH; a

TABLE 2 Metabolic enzymes involved in ATP production and PMF generation, with their corresponding reactions, functional roles, and
gene associations in the WP3 modela

Enzyme Reaction identifier(s) Function Gene association(s)

Pta PTAr Phosphotransacetylase swp_1948
AckA ACKr Acetate kinase swp_1949
ATPase ATPS4r ATP synthase swp_5155 AND swp_5156 AND swp_5157 AND swp_5158

AND swp_5159 AND swp_5160 AND swp_5161
Pyk PYK Pyruvate kinase swp_2388
Pfl PFL Formate C-acetyltransferase swp_1952
Xpk XPK Xylulose-5-phosphate phosphoketolase swp_3738
Ndh NADH4, NADH12, NADH14 NADH dehydrogenase swp_1298 OR swp_2117 OR swp_4014
Fdh FDH9, FDH10 Formate dehydrogenase (swp_5024 AND swp_5025 AND swp_5023) OR

(swp_5027 AND swp_5028 AND swp_5029)
aA schematic of key reactions and comparisons of biomass and reaction fluxes is shown in Fig. 4.
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positive intersection would indicate (NAD�) � (NADH) � 0, suggesting that the homeostasis was pushed
toward generating more NAD�. Both the WP3 and MR-1 models were simulated using basal constraints,
with the addition of fumarate as the anaerobic electron acceptor paired with one of 12 sole carbon
sources that are growth supporting in both models (Fig. 5; see also Fig. S3 and S4). The exchange flux
of the sole carbon source was constrained to [�10, 1,000], and the exchange of the electron acceptor was
unlimited. The fumarate transport reactions SUCFUMtdc, FUMt4, and FUMt4_2 were blocked as men-
tioned above to avoid artificial loops and prevent the utilization of fumarate as an additional carbon
source. The proton-pumping NADH dehydrogenase in MR-1 was blocked due to the lack of evidence of
its participation in energy metabolism (8, 24, 25). All other internal reactions in the WP3 and MR-1 models
were constrained based on the reaction reversibility using default settings in PSAMM.
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