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Preservation of the integrity of local organ function requires a delicate balance
ofthe activities ofphagocytic cell proteinases and the action of proteinase inhibitors .
Loss of this balance may be a major causative factor in the pathogenesis of asthma,
chronic bronchitis, emphysema, sarcoidosis, respiratory distress syndromes, arthritis,
and certain skin diseases . Ultimately, to monitor and manipulate the proteinase-
proteinase inhibitor balance of human phagocytes within apharmacological context
will require that the relevant molecules be identified and their interactions defined
at the molecular level.
Ofthe phagocytic cell proteinases, the quantitatively most important is the serine

active site proteinase commonly called "neutrophil elastase." Neutrophil elastase is
218-amino acid glycosylated protein ofknown sequence (1) that is particularly abundant
in human neutrophils (0.5% of total protein) and is also found in monocytes and
macrophages (2-4). Neutrophil elastase is contained in granules and functions op-
timally at neutral pH; its multiple documented activities all involve extracellular
action (5, 6) . Elastase cleaves extracellular matrix proteins such as elastin, pro-
teoglycans, fibronectin, type III and type IV collagen (7-10), and certain soluble
proteins (11) . It is required by neutrophils for their migration through cell barriers
in vitro (12, 13).
The continuous action of elastase inhibitors in vivo is evident from the neutrophil

turnover rate. Despite the fact that neutrophils enter most body sites, turnover of
-10" neutrophils (14) with a content of -50 mg elastase (2) occurs daily in humans
without evidence of uncontrolled tissue degradation. Attention has focused primarily
on the prevalent soluble blood protein cxl-antitrypsin (a1-AT)', which is a fast-acting
elastase inhibitor in vitro. a1-AT enters extravascular sites and inhibits elastase in
vivo, at least in some situations, since individuals with genetically reduced levels
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(homozygous Z variant) are predisposed to develop pulmonary emphysema in the
third or fourth decade of life due to uncontrolled elastase action (15, 16) .
On the other hand, four individuals have been identified who totally lack al-AT.

Surprisingly, these individuals have had a disease course similar to that associated
with reduced a1-AT levels, remaining relatively disease free and displaying no clin-
ical evidence ofuncontrolled elastase action at the local organ levels for two to three
decades (17-20) . The finding that a1-AT null/null individuals remain relatively dis-
ease free for two to three decades despite daily release of -50 mg neutrophil elastase
is strong evidence that molecules other than al-AT are involved in physiological con-
trol of elastase activity.
A molecule fulfilling the requirements for a physiological regulator of neutrophil

elastase activity has been detected in monocytes and neutrophils in several species .
In humans, an endogenous protein-like elastase inhibitor was detected in the cyto-
solic fraction of blood leukocytes and lung macrophages (21). The cytosolic fraction
from the macrophages prevented the degradation of tissue elastin when neutrophil
granules were used as the source ofelastase (22) . Cytosolic proteins that inhibit elastase
were identified and purified from horse blood leukocytes (23, 24), pig blood leuko-
cytes (25), and bovine lung macrophages (26) . In guinea pigs, an elastase inhibitor
was detected in the extracellular fluid of peritoneal macrophages based on its ability
to form a covalent complex with elastase (27) . When the macrophages were lysed,
larger quantities of the elastase inhibitor were detected . In the human system, the
technique of complex formation was used to detect and quantify a prevalent, fast-
acting elastase inhibitor in mature human monocytes and monocyte-like cells (28) .

This work demonstrates the presence ofhigh levels of elastase inhibitor molecules
ofidentical apparent molecular weight in human monocytes, macrophages, and neu-
trophils, and in a monocyte-like cell line, U937 . The elastase inhibitor has been purified
from the monocyte-like cell line, and its composition and characteristics are presented.

Materials and Methods
Cells.

	

Neutrophils and monocytes were purified from anticoagulated blood as described
(28) . Freshly isolated monocytes were examined and, also, monocytes were matured in cul-
ture for 6-7 d (28). Pulmonary macrophages were obtained by broncholavage (29) of healthy,
nonsmoking volunteers with normal pulmonary function and no symptoms of chronic or
acute (prior 2 wk) respiratory disease . Pulmonary macrophages were >95% viable (trypan
blue exclusion), >95% positive for latex bead injestion, and contained <I% neutrophils . U937
human histiocytic lymphoma cells (30), donated by Dr. David Y. Liu in 1984 (28), were grown
in RPMI 1640 medium or DMEM with 4.5 mg/ml glucose with 10% FCS and 50 t4g/ml
gentamycin . The lymphoblastoid cell line CEM (31) was grown in the latter medium with
100 Fig/ml streptomycin and 100 U/ml penicillin . All cells were washed, preincubated in HBSS
at N22 °C to release adsorbed al-AT, and lysed as described (28) .

Purification of Elastase Inhibitor.

	

U937 cells from 12-liter cultures (1 .8 x 10'° cells) grown
by the Massachusetts Institute of Technology Cell Culture Center (Cambridge, MA) were
washed twice at 4°C in PBS containing Cat'/Mg2 ' . The cells at 2 x 10 7/ml in HBSS were
incubated at N22°C for 15 min ; this treatment releases adsorbed al-AT (27, 28) . The cells
were brought to 4°C and pelleted. Lysates (2 .5 x 10 7 cells/ml) were prepared by extraction
with 0.5% NP-40 in PBS for 4 min at N22°C and 10 min at 4°C, and clarified by centrifuga-
tion in a Sorvall SS34 rotor (DuPont Co., Wilmington, DE) at 18,000 rpm for 30 min at 4°C.

In preliminary purification experiments, elastase inhibitor activity was lost concomitant
with the formation of actin-containing precipitates . To avoid this loss, the cell lysates were
immediately chromatographed on DNase-Sepharose, which specifically adsorbs actin (32).
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The lysate (720 ml) was incubated with 180 ml DNase-Sepharose-6B equilibrated against
PBS at 4°C in a roller bottle . The mixture was transferred to a 6.5-cm-diameter column,
and the nonadherent fraction, together with a 0.8-column volume wash with 0.5% NP-40
in PBS, was stored at -70°C.
TheDNase-nonadherent fraction (900 ml) was incubated with 30 mlThiopropyl-Sepharose-

6B (Pharmacia Fine Chemicals, Piscataway, NJ) equilibrated against 0.5% NP-40, 10 mM
Tris-HCl buffer, pH 7.4, 150 mM NaCl, 1 mM EI7TA (NP-40/Tris/150-NaCI/EDTA) at
-22 °C for 30 min. The mixture was transferred to a3-cm column and washed sequentially
with one column volume of NP-40/Tris/150-NaCI/EDTA, NP-40/Tris/500-NaCI, Tris/500-
NaCl, and Tris/150-NaCl . Thecolumn was eluted with 50 mM mercaptoethanol in Tris/150-
NaCl to yield a single 70-ml "Thiol-eluate" fraction.
The Thiol-eluate was applied at ti22 °C to a 3.5-cm column of Phenyl-Sepharose-CL4B

(70 ml ; Pharmacia Fine Chemicals) equilibrated against 10 mM Tris-HCI buffer, pH 7.4,
150 mM NaCl, 1 mM mercaptoethanol (Tris/150-NaCI/ME) . Thenonadherent fraction was
collected together with -20 ml wash with Tris/150-NaCI/ME .
The Phenyl-nonadherent fraction (-110 ml) was diluted with 0.5 volume Tris/ME and ap-

plied at 4°C to a 2-cm column of 20 ml Matrex gel red A(crosslinked 5% agarose with cova-
lently coupled dye; Amicon Corp., Danvers, MA) equilibrated against Tris/100-NaCI/ME .
The nonadherent fraction (-180 ml), including one column volume wash with Tris/100-
NaCl/ME, was collected, dialyzed against Tris/50-NaCI/ME for 3 h at 4°C, and stored at
- 70°C.

Portions (50 ml) ofthe dialyzed RedA-nonadherent fraction were filtered through 0.2-pm
nylon membranes (Schleicher & Schuell, Inc., Keene, NH) and applied at 0.8 ml/min to the
polymer-base, anion exchange, HPLC column DEAE-5PW (7 .5 x 75 mm; Waters Associates,
Milford, MA) equilibrated against Tris/50-NaCI/ME at -22°C. The column was washed
with equilibration buffer. To elute the elastase inhibitor, Tris/85-NaCI/ME was applied, and
fractions absorbing at 280 nm were collected.

To concentrate the purified molecule, active fractions from 3-4 DEAE fractionations were
pooled, diluted with Tris/ME, and reapplied to the DEAE-5PW column in Tris/50-NaCI/ME .
A single active fraction of 1-2.5 ml was eluted with Tris/140-NaCUME.

Portions of the concentrated active DEAE-5PW fraction were chromatographed at 0.7
ml/min on the HPLC gel filtration resin Protein-Pak I-125 (Waters Associates) (two columns
totalling 7 .8 x 600 mm).

Compositional Analyses.

	

Portions ofconcentrated active elastase inhibitorfrom DEAE-5PW
were gel filtered (described above) in 50 mM NH4HCO3. The elastase inhibitor peak was
pooled and lyophilized, and an aliquot was hydrolyzed in 6 N HCl at 110°C for 24 h. The
amino acid composition was determined on a D-500 analyzer (Dionex Corp ., Sunnyvale,
CA). Cys/2 was determined as cysteic acid after performic acid oxidation. Protein concentra-
tion was calculated by integrating amino acid determinations . The carbohydrate content was
determined by methanolysis of the lyophilized sample followed by gas-liquid chromatography
of the per(trimethylsilyl) derivatives (33) .

Laemmli SDS-PAGE.

	

Cell fractions were separated by Laemmli SDS-electrophoresis (34)
as described (28) . For microgram amounts of polypeptides, the gels were stained with Coomassie
brilliant blue (Schwartz/Mann Biotech, Cleveland, OH). When greater sensitivity was re-
quired, the polypeptides were "gold stained" after transfer to polyvinylidine difluoride (PVDF)
membranes (0 .45 j,m; Millipore Continental Water Systems, Bedford, MA) (constant 70
mamps; 160 V/1.6 A power supply ; Bio-Rad Laboratories, Richmond, CA) with 42 mM
Tris/190 mM glycine buffer, pH 8.3, for 18 h at -22°C (Transphor Cell ; Hoefer Scientific
Instruments, San Francisco, CA). ThePVDF membranes were washed seven times with 0.1%
Tween-20 (Janssen Products, Piscataway, NJ) in PBS(twice for 15 min; five times for 5 min)
and twice with water, and were incubated with 0.2-0 .3 ml/cm2 of Aurodye protein stain
(Janssen Products) at -22°C for 4 h. Apparent M, was determined by SDS-electrophoresic
mobility (35) relative to previously described marker proteins (28) .

Covalent Complex Assay.

	

Elastase inhibitor activity was measured by incubating cell frac-
tions (10-100 11) with 30-200 ng of '25 1-labeled porcine pancreatic elastase (Elastin Prod-
ucts, Pacific, MO) at 37°C for 10 min (27, 28). The covalent elastase-elastase inhibitor com-
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plex was detected by autoradiography after SDS-electrophoresis using the Fairbanks/Laemmli
gel system . This system uses relatively low pH and low primary amine concentration to mini-
mize hydrolysis of the complex during electrophoresis (28) .

Elastinolysis Inhibition Assay.

	

Elastase inhibitor fractions were preincubated with porcine
pancreatic elastase in PBS for 5 min at 22°C and assayed for elastinolytic activity using a
modified diffusion assay (36) . 5-/Al portions were incubated at 37°C in 3-mm wells of agar
gels containing 0.24% fluorescein-elastin (400 mesh; Elastin Products) . The diameters of
the lysis rings surrounding the wells were measured after 48 h and compared with lysis rings
of parallel standard elastase dilutions .

DNase-Sepharose.

	

DNase I (bovine pancreas ; 1,800 Kunitz U/mg protein ; Sigma Chem-
ical Co., St . Louis, MO) was treated with 2 mM diisopropylfluorophosphate (DFP) in PBS
for 30 min at -22°C, and was coupled at 3 mg/ml in 0 .1 M NaHC03, pH 8.5, to Sepharose-
6B activated by CNBr (37) (18 h at 4°C ; >90% coupling efficiency) . The resin was treated
with 100 mM Tris-HCl buffer, pH 8.0, for 2 h at ti22°C ; three times with 100 mM sodium
acetate buffer, pH 4.0, followed by 100 mM NaHC03, pH 8.5 ; once with PBS; and once
with 2 mM DFP in PBS at N22°C for 30 min.

Results
Demonstration ofElastase Inhibitor in Monocytes, Macrophages, andNeutrophils.

	

Elastase
inhibitor activity can be detected in cell lysates by the ability ofthe molecule to form
a covalent complex with 1251-elastase, a reaction that is the basis of a semi-
quantitative assay (28) . Elastase inhibitor activity was detected by this approach in
human monocytes that had matured in culture and also in the monocyte-like cell
line U937, but it was not detected in freshly isolated human monocytes or neutro-
phils (28) . However, when the cells were incubated with the serine proteinase active
site reagent DFP and were lysed in the presence of DFP, elastase inhibitor activity
was readily detected in fresh monocytes as well as neutrophils (Fig. 1), but not in
the lymphoblastoid cell line CEM (not shown) . These findings indicate that the elastase
inhibitor molecule is present in neutrophils and fresh monocytes, but its activity
is rendered nondetectable in lysates by endogenous serine proteinase . The endoge-
nous proteinase that prevents detection ofelastase inhibitor activity may be elastase,
which is present in neutrophils and fresh monocytes and decreases to negligible levels
when monocytes mature (38) . Elastase inhibitor activity was also detected in lysates
of pulmonary macrophages, and DFP treatment was not required (Fig . 2) . Taken
together, these findings show that elastase inhibitor molecules with identical apparent
molecular weight are present in human neutrophils, fresh monocytes, mature mono-
cytes, macrophages, and in a monocyte-like cell line .

Isolation of Elastase Inhibitor.

	

The U937 cells (12-liter cultures) were used as the

FIGURE 1 .

	

Detection of elastase inhibitor activity in
monocytes and neutrophils by the covalent complex
assay. Lysates of 1.5 x 106 neutrophils, freshly isolated
monocytes (0-d monocytes), monocytes matured in cul-
ture (7-d monocytes), or U937 cells were incubated with
121 I-elastase . DFP-pretreat, cells incubated with DFP (2
mM in HBSS) and lysed in the presence ofDFP(2 mM) ;
unreacted DFP was removed by dialysis . Shown is an
autoradiograph ofaFairbanks/Laemmli SDS electropho-
resis gel . E, 12'I-elastase (Mr 26,000); 66K, the 125 1-elas-
tase-elastase inhibitor complex of M, 66,000 .
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FIGURE 2 .

	

Detection of elastase inhibitor activity in pulmonary mac-
rophages . Lysates of 1.5 x 106 pulmonary macrophages or U937 cells
(examined as a control) were incubated with 125 1-elastase. Formation
of the 125 1-elastase-elastase inhibitor complex is shown in the auto-
radiograph with details as in Fig. 1 .

source of elastase inhibitor. An initial step, DNase-Sepharose, was developed to re-
move actin, which interferes with chromatography of the elastase inhibitor (see
Materials and Methods) . Actin adheres to DNase-Sepharose (32) (Fig . 3 b, first and
second lanes), and elastase inhibitor activity is recovered with the bulk of cellular pro-
teins in the nonadherent fraction (Figure 3 a, first and second lanes) .
The active fraction was applied to the disulfide resin Thiopropyl-Sepharose . Elastase

inhibitor adheres and is quantitatively eluted with mercaptoethanol (Fig . 3 a; Thiol) .
Since the bulk ofproteins are nonadherent, Thiopropyl-Sepharose chromatography
is avery effective purification step (Fig. 3 b, compare second and third lanes) . The active
fraction was further purified by Phenyl-Sepharose chromatography (nonadherent
fraction) and Red A-agarose (nonadherent fraction) (Fig. 3, a and b) .
The active fraction was then adsorbed (at 50 mM NaCl) on the HPLC anion ex-

FIGURE 3.

	

(a) Chromatography fractions from the purification
assayed for elastase inhibitorby formation ofthe covalent com-
plex with 125 1-elastase . The autoradiograph shows sequential
chromatography fractions with volumes equivalent to 1.5 x 106
cells as follows : Lysate, the clarified U937 lysate ; DNAse, the
nonadherent fraction from DNase-Sepharose; Thiol, Thiopropyl-
Sepharose eluate; Phenyl, the Phenyl-Sepharose nonadherent
fraction; and Red A, the Red A-agarose nonadherent fraction .
Details as in Fig. 1 . All other chromatography fractions con-
tained negligible activity. (b) The same active sequential chro-
matography fractions examined by protein staining ofLaemmli
SDS-electrophoresis gels . The left panel shows Coomassie blue
staining. Actin (A ; arrow on left) is removed by DNase chroma-
tography. The right panel shows the more sensitive technique
of gold staining of an electrophoretic transfer of the gel . The
volumes of all fractions are equivalent to 1.5 x 106 cells . Note
that the Thiol fraction was examined by both techniques .
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FIGURE 4.

	

DEAE-HPLC fractions examined
on a gold-stained transfer ofa Laemmli SDS
gel. The first three lanes show volumes of frac-
tions equivalent to 1.5 x 10 6 cells . Start is the
Red A fraction applied to the column ; and
Non-ad, the nonadherent fraction . (A-F) 10
pl of sequential fractions eluted with 85 mM
NaCl ; these contained all the elastase inhib-
itor activity (not shown) . High salt is the in-
active fraction released by 400mM NaCl after
recovery of the active fractions . The arrow op
the left indicates the predominant polypep-
tide that fractionates in the active fractions;
it is the faster-migrating band in an apparent
doublet .

change resin DEAE-5PW. Application of 85 mM NaCl elutes an 280-nm absorbing
peak that contains all elastase inhibitor activity (Fig . 4, A-F) ; the bulk of inactive
proteins remainson the column (Fig . 4, High Salt). Typically, elastase inhibitor-con-
taining fractions from 3-4 chromatographs were pooled and concentrated by repeat
DEAE HPLC chromatography.
The active concentrated DEAE fraction consists of a Mr 42,000 polypeptide

(>85-90%) and an Mr 27,000 polypeptide. These apparent molecular weights were
determined by comparative SDS-mobility (reference 35 ; not shown) . The polypep-
tides can be separated by HPLC gel filtration, in which elastase inhibitor activity
coelutes with the Mr 42,000 polypeptide in the second of two 214-nm absorbing
peaks (Fig . 5) .
The average yield of the Mr 42,000 elastase inhibitor molecule (see next para-

graph) was 480 ttg from 1.8 x 10 1° cells (12-liter culture) . Based on the estimated
content ofthis number ofcells (2,100 t~g) (28), this yield represents 23% overall recovery.

Characteristics ofPurled Elastase Inhibitor: Complex Formation.

	

To demonstrate that
theMr 42,000 polypeptide is the elastase inhibitor, the DEAE-purified fraction was
incubated with nonlabeled elastase andexamined on silver-stained SDS-electrophoresis
gels . On co-incubation for 1 min, the Mr 42,000 polypeptide and elastase disap-
peared concomitant with the formation of a Mr 66,000 elastase-elastase inhibitor
complex (Fig . 6) . This finding demonstrates, first of all, that the Mr 42,000 poly-
peptide is the elastase inhibitor. It also shows that the bulk of the purified molecules

FIGURE 5. HPLC gel filtration . The active
DEAE fraction (200 pl) was chromatographed at
0.7 ml/min on the HPLC gel filtration resin Pro-
tein-Pak I-125 (Waters Associates) (2 columns in
series totalling 7.8 x 600 mm) in 10 mM Tris-
HCl buffer, pH 7.4, 90 mM NaCI . Mercapto-
ethanol (1 mM)was added to the fractions after
chromatography. Shown is a gold-stained transfer
ofa Laemmli SDS gel showingthe Start fraction
and sequential 214-nm-absorbing fractions . Elas-
tase inhibitor activity (not shown) chromato-
graphed with the M, 42,000 polypeptide .
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FIGURE 6.

	

Demonstration that the purified M, 42,000 polypeptide is
elastase inhibitor. Shown is a silver-stained (39) Fairbanks/Laemmli gel
of(A) 1.2 Ag nonradiolabeled pancreatic elastase ; (B) 40,ul active DEAE
fraction; and (C) 40,ul active DEAE fraction plus 1.2 ug elastase incubated
at 37°C for 1 min.

FIGURE 7.

	

Inhibition of elastinolysis by purified elastase in-
hibitor. Varying amounts of elastase inhibitor (pooled, concen-
trated DEAE fraction) were combined with 150 ng (O) or 75
ng ([]) pancreatic elastase for 5 min at N22°C, and then in-
cubated in wells of fluorescein-elastin-agar plates for 48 h at
37°C . The extent of elastinolysis, measured as the diameter
ofthe lysis rings (average of duplicate determinations), was con-
verted to units (1 U = the activity of 1.0 ng elastase) by refer-
ence to a parallel standard curve.

have retained complex-forming activity and that the reaction of the purified mole-
cule with elastase is rapid (complete at 1 min), as was previously shown for the elastase
inhibitor activity in cell lysates (28) . The molecular weights of the reactants and
the complex clearly suggest that the reaction has 1 :1 stoichiometry.

Inhibition ofElastinolysis.

	

It wasnecessary to formally demonstrate that the purified
molecule selected by virtue of its ability to form a complex with elastase will also
function as an inhibitor in an elastase assay. Elastinolytic activity of 75 and 150 ng
elastase was assayed by generation of lytic zones in an elastin-containing agar gel
(36) . The purified elastase inhibitor preparation caused dose-dependent inhibition
of elastinolysis (Fig. 7), thereby demonstrating that the purified molecule inhibits
elastase . The molar ratio ofelastase inhibitor/elastase required for inhibition in this
assay was N3 :1, rather than the anticipated 1 :1, possibly due to the long duration
ofthe assay (48 h), which favors dissociation ofthe complex and inactivation of elastase
inhibitor.
Amino Acid Composition.

	

Theamino acid composition ofthe elastase inhibitor (gel-
filtered fraction) is presented in Table 1. 2 For comparison, the mean composition

2 The gel filtered fraction was used for compositional analyses. The N10-fold dilution produced on
gel filtration makes this fraction unsuitable for functional analyses that require elastase inhibitor as
a stoichiometric reagent at high concentration . The DEAE fraction has the requisite activity and con-
centration for functional studies .
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TABLE I

Amino Acid Composition

" The mean amino acid composition of >200 proteins is from reference 40 .
l El (elastase inhibitor) values are means of data from three HPLC-gel filtered
preparations . The number of residues per molecule is a calculated value based
on Mr 42,000 .

4 al-AT composition is from reference 41 .

FIGURE 8 .

	

Effect of PNGase F on elastase inhibitor and al-AT.
Elastase inhibitor (El, upperpanel) (100 ng of concentrated DEAE
fraction) and al-AT (lower panel) (250 ng ; Chemicon Co., El
Segundo, CA) were denatured at 100°C for 1 min in 0.5% SDS,
2 mM mercaptoethanol . The denatured proteins were incubated
with PNGase F (peptide :N-glycosidase F from Flavobacterium
meningosepticum ; Genzyme, Boston, MA) for 3 h at 37°C in 30
mM Tris HCl buffer, pH 8.6, 1% NP40, 0.14% SDS, 1 mM DFP,
10 mM 1,10 phenanthroline . Shown is a gold stained transfer of
a Laemmli SDS-gel with molecular weight marker positions indi-
cated on the right .

Residue

No . residues/100 amino
Average of

200 proteins` Ell

acids

al-AT4

No . of
residues/molecule
Ell al-AT5

Ass: 10 .7 11 .1 10 .9 40 43
Glx 10 .6 12 .3 12 .7 44 50
His 2 .2 1 .9 3 .3 7 13
Lys 6 .5 7 .1 8 .6 26 34
Arg 4 .4 3 .8 1 .8 14 7
Ser 6 .3 8 .1 5 .3 29 21
Thr 5 .7 5 .7 7 .6 21 30
Pro 4 .8 5 .4 4 .3 20 17
Ala 8 .5 8 .1 6 .1 29 24
Cys 2 .3 1 .5 0 .2 5 1
Gly 8 .1 7 .0 5 .6 25 22
Tyr 3 .3 2 .1 1 .5 8 6
Val 6 .8 5 .2 6 .1 19 24
Ile 5 .0 3 .0 4 .8 11 19
Leu 8 .1 9 .2 11 .4 33 45
Phe 3 .7 4 .9 6 .8 18 27
Met 1 .9 2 .0 2 .3 7 9
Trp 1 .3 ND 0.5 ND 2

Total -360 394
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of 200 purified proteins and that of al-AT, the elastase inhibitor of plasma, are also
presented. The elastase inhibitor composition differs only slightly from the mean
of 200 proteins . The molecule does not have the low arginine content of al-AT Its
cysteine content, five residues per molecule, although lower than the mean value
for 200 proteins, is, nonetheless, much higher than the al-AT value of one residue
per molecule .
Two attempts to determine NH2-terminal amino acid sequence of elastase inhib-

itor yielded no sequence, suggesting that the NH2 terminus is blocked. The elastase
inhibitor is stable to reducing agents. Mercaptoethanol was used at 50 mM in the
purification without loss ofelastase inhibitor activity and 200 mM mercaptoethanol
does not adversely affect the 1211-elastase complex formation assay (not shown). It
thus appears that the elastase inhibitor molecule has no disulfide bonds that are es-
sential for activity.

Carbohydrate Composition.

	

Thecarbohydrate content wasdetermined by gas-liquid
chromatography. Per molecule of elastase inhibitor, 3.6 residues of xylose (possibly
acontaminant) and0.5 residues mannose (average values for two preparations) were
detected . Galactose, N-acetylglucosamine, N-acetylgalactosamine, and sialic acid were
not detected. These findings strongly indicate that the elastase inhibitor is a non-
glycosylated protein.

Treatment with PNGase F.

	

Additional evidence for the nonglycosylated status was
provided by treating the purified molecule with peptide N-glycosidase F (PNGase
F), which cleaves all classes of N-linked carbohydrate units (42) . On treatment with
140-4,200 mU/ml PNGase F, no change was detected in the apparent Mr ofelastase
inhibitor, whereas denatured al-AT, treated in parallel, was converted in stepwise
decrements from apparent Mr 51,000 to apparent Mr 44,000 (Fig . 8) .

Evidencefor an Essential Cysteine Residue.

	

Addition of the sulfhydryl reagent iodo-
acetamide to pure elastase inhibitor or U937 cell lysates causes almost complete loss
of covalent complex activity with elastase (Fig . 9) . Destruction of unreacted iodo-
acetamide by addition of mercaptoethanol or removal by dialysis did not restore
activity, demonstrating that the elastase inhibitor molecule is the sensitive compo-
nent . This finding suggests that the elastase inhibitor has a cysteine residue that
is essential for formation of the covalent elastase-elastase inhibitor complex.

FIGURE 9 . Inactivation of elastase inhibitor activity by iodoacetamide.
The autoradiograph shows the covalent complex (66K) formed from 1251

labeled pancreatic elastase and pure elastase inhibitor (DEAE fraction)
after the latter was preincubated at N22°C for 10 min without (lane A)
or with (laneB) 3mM iodoacetamide. Lane Cshowsiodoacetamide-treated
elastase inhibitor that was reacted with excess mercaptoethanol. Mercap-
toethanol does not adversely affect the assay (not shown) . The ability of
pure al-AT to form a covalent complex with 1 51-elastase was not affected
by parallel treatment with iodoacetamide (not shown) .
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Discussion
A unique, abundant, cell-associated inhibitor of the serine active site proteinase

elastase has been purified from the monocyte-like line U937 . The purified molecule
(a) reacts with elastase to form the covalent elastase-elastase inhibitor complex; and
(b) inhibits the elastinolytic activity ofelastase . The elastase inhibitor is a single poly-
peptide of apparent M, 42,000 . The NH2 terminus appears to be blocked. The
negligible levels of carbohydrate detected by gas-liquid chromatography and the in-
sensitivity to PNGase F strongly indicate that the elastase inhibitor is nonglycosylated .

In terms of cellular distribution, this elastase inhibitor, like elastase, is found in
neutrophils, monocytes, and macrophages. The finding of colocalization, together
with the demonstrated capacity of the two molecules to interact rapidly in vitro (28)
(Fig. 6), suggests that this elastase inhibitor functions as a physiological regulator
ofelastase, thus bringing to three the number ofinhibitor molecules thought to regulate
elastase activity in physiological settings . The other two molecules are al-AT and
the low molecular weight acid-stable inhibitors (described below) . The high levels
ofelastase, particularly in neutrophils ofhumans, and the multiplicity of susceptible
target structures indicate the need for close regulation in vivo . The cases of early
onset emphysema associated with genetically low al-AT levels indicate a critical role
for al-AT in protecting the lower respiratory tract from elastase-induced injury (15,
16), but beyond that, the relative contribution of each of these molecules to elastase
regulation at particular sites and situations is not delineated . In view of the destruc-
tive potential of elastase, its regulation by several molecules with overlapping func-
tion would not be a surprising finding.
The three molecules are all effective against elastase in vitro andeach is abundant

in vivo. A major feature suggesting different physiological contributions for the three
inhibitors is their partially overlapping, but principally different, localization . The
low molecular weight, acid-stable inhibitors are closely related or identical Mr
N 12,000 polypeptides with two inhibitory domains that are produced by secretory
cells and found in bronchial mucus, cervical mucus, seminal plasma, and salivary
gland secretions (43-45) . These inhibitors might function in vivo to protect the im-
portant cell surface mucin molecules lining airway luminal surfaces from degrada-
tion by elastase (46) .
a-AT is found in plasma and enters tissues and inflammatory sites (16) . Although

a1-AT effectively inhibits elastase in solution, it is not effective in preventing the
degradation of matrix proteins by elastase delivered by live neutrophils (47, 48).
This finding has been attributed to oxidative inactivation of al-AT by the neutro-
phils (47, 49, 50), and/or spatial exclusion of al-AT from the contact areas where
neutrophils encounter matrix proteins (48) . Against this background, we hypothe-
size that the newly identified elastase inhibitor functions in vivo to regulate elastase
activity in the immediate vicinity of monocytes, neutrophils, andmacrophages, par-
ticularly in regions where these cells migrate, localize, and spread on matrix proteins .

In this context, the well-known sequence of recruitment of phagocytic cells to ex-
travascular sites mayconsitute an orchestrated program for proteolytic action . Neu-
trophils with high elastase and low elastase inhibitor content are recruited first, and
proteolytic action predominates at inflammatory sites for several days until recruit-
ment of the monocytes/macrophages with high ratios of elastase inhibitor to elastase.
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This U937 elastase inhibitor was previously shown to function by formingacom-
plex requiring the active site serine ofthe proteinase, i.e ., it does not react with elastase
inactivated with the active site reagent DFP (28) . The elastase inhibitor-elastase com-
plex is stable in boiling SDS and susceptible to base-catalyzed cleavage (28), sug-
gesting that the new bond is an ester. This mechanism of action (51) characterizes
serine proteinase inhibitors of the serpin family (52, 53). Although sequence infor-
mation will be required to confirm the assignment, the mechanism of action strongly
suggests that the purified elastase inhibitor is a serpin molecule.
The purified molecule is unique, i.e., sufficient properties have been documented

to distinguish it from all other proteinase inhibitors . Thus, although it shares func-
tion (rapid inhibition of elastase) with cd-AT, the two differ in electrophoretic mo-
bility, reactivity with antisera (28), composition (Table I), and sensitivity to iodoacet-
amide (Fig . 9) . The elastase inhibitor can be distinguished from protease nexin
(inhibitor of thrombin and plasminogen activator found in fibroblasts), which does
not react with elastase (54), and from PAI-1 (plasminogen activator inhibitor of en-
dothelial cells, hepatoma cells, and platelets) (55, 56), which, unlike elastase inhib-
itor (Remold-O'Donnell, E., unpublished results), adheres to Con A and is stable
to denaturing agents (57) .
The elastase inhibitor can be distinguished from the plasminogen activator inhib-

itor of placenta (58-60), monocytes, and U937 cells (61) (PAI-2), since PAI-2 does
not inhibit elastase and the elastase inhibitor does not react with anti-PAI-2 antiserum
(62) . Moreover, PAI-2 is present in only low quantity in monocytes except when
the cells are stimulated by PMA or LPS (63, 64), whereas the elastase inhibitor is
abundant in unstimulated monocytes.
The purified molecule appears to be the cytosolic protein of blood leukocytes and

lung macrophages whose activity as an elastinolysis inhibitor was described byJanoff
and Blondin in 1971 (21, 22). The purified molecule is thought to be the human
counterpart of the elastase inhibitor of guinea pig macrophages called macrophage
proteinase inhibitor (27) . Shared properties of the human and guinea pig elastase
inhibitors include rapid reactivity with elastase, identical apparent molecular weight,
distribution in neutrophils, as well as macrophages, and similar sensitivity to iodo-
acetamide (27, 28) (Remold-O'Donnell, E., unpublished results) .

For elastase, all of its documented functions occur after the molecule is secreted
from the granules to the extracellular space (7-11), and it is presumed that the reac-
tion ofelastase with elastase inhibitor also occurs extracellularly. Thehuman elastase
inhibitor has not yet been examined in extracellular fluids, but, in the guinea pig
system, active elastase inhibitor molecules with identical apparent molecular weight
have been detected in extracellular fluid as well as cell lysates . The mechanism and
signals for externalization of elastase inhibitor are unknown.
The apparent presence of an essential cysteine will be more rigorously examined

now that the pure molecule is available, in particular to determine whether the puta-
tive essential cysteine is part of the active site . From a biological viewpoint, one could
predict that a proteinase inhibitor with an essential sulfhydryl residue would be sub-
ject to inactivation in vivo by oxidants including those released by phagocytes (65) .
Thus, elastase inhibitor might be active for only a brief period after release from
the phagocytes . From the reciprocal perspective, the intracellular location may pro-
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tect the reservoir of elastase inhibitor molecules from inactivation by phagocyte ox-
idants and by components of cigarette smoke, an exposure known to reduce the ac-
tivity of al-AT (66) .

Summary
A fast-acting inhibitor of serine elastase has been detected at high levels in human

neutrophils, fresh monocytes, matured monocytes, and macrophages . The elastase
inhibitor was isolated from large scale cultures of the monocyte-like cell line U937
by DNase chromatography, disulfide exchange, Phenyl-Sepharose, Red A-agarose,
and DEAE HPLC chromatography with an average yield of 480 /Ag from 1.8 x 10' 0
cells . The isolated polypeptide was verified as elastase inhibitor by its ability to (a)
form a covalent complex with elastase ; and (b) inhibit the elastinolytic activity of
elastase .
The purified elastase inhibitor molecule is unique, i .e ., physicochemical and/or

functional properties distinguish it from all other serine proteinase inhibitors . Treat-
ment with iodoacetamide abrogates the ability of the molecule to form a complex
with elastase, thereby providing evidence for the presence of an essential cysteine
residue . Based on functional criteria, this elastase inhibitor has been grouped with
the proteinase inhibitors of the serpin superfamily.
The purified elastase inhibitor is a single polypeptide ofMr -42,000 . The NH2

terminus appears to be blocked . Compositional analyses indicates five cysteine residues
per molecule of -360 amino acid residues . Negligible levels of carbohydrate were
detected on gas-liquid chromatography. This finding and the insensitivity ofthe mol-
ecule to peptide N-glycosidase F treatment strongly indicate that the elastase inhib-
itor is a nonglycosylated protein .

We thank Dr. Robert Ezzell, The Whitehead Institute, for advice on chromatographic prop-
erties of actin ; Dr. Roger Jeanloz and the staff of the Carbohydrate Research Laboratory
at Massachusetts General Hospital for carbohydrate determinations ; Dr. Lowell Ericsson of
AAA Laboratories, Mercer Island, WA, for amino acid determination ; the staff of the Mas-
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Drs . D. Kenney and F. S. Rosen for critical reading of the manuscript ; and Anandi Mehta
and Bonnie Faulkner for technical assistance .

Received for publication 2 November 1988.

References
1 . Sinha, S., W. Watorek, S. Karr,J . Giles, W. Bode, andJ . Travis . 1987 . Primary structure

of human neutrophil elastase . Proc . Natl. Acad. Sci. USA . 84:2228 .
2 . Plow, E . F. 1982 . Leukocyte elastase release during blood coagulation . A potential mech-

anism for activation of the alternative fibrinolytic pathway. J. Clin . Invest. 69:564 .
3 . Senior, R . M., E . J . Campbell, J . A . Landis, F. R. Cox, C . Kuhn, and H. S . Koren .

1982 . Elastase of U-937 monocytelike cells . Comparisons with elastases derived from
human monocytes and neutrophils and murine macrophagelike cells. J. Clin. Invest. 69:384 .

4 . Campbell, E . J ., and R. M. Senior. 1982 . Human neutrophil elastase within human
mononuclear phagocytes: changes with phagocyte maturation and implications for lung
injury. Fed. Proc . 41:687x . (Abstr.)



REMOLD-O'DONNELL ET AL .

	

1083

5 . Dewald, B., R . Rindler-Ludwig, U. Bretz, and M. Baggiolini . 1975 . Subcellular local-
ization and heterogeneity of neutral proteases in neutrophilic polymorphonuclear leuko-
cytes . J Exp. Med. 141:709 .

6 . Ohlsson, K., and I . Olsson . 1974 . The neutral proteases of human granulocytes . Isola-
tion and partial characterization of granulocyte elastases . Eur. J Biochem . 12 :519 .

7 . Janoff, A., G . Feinstein, C . J . Malemud, and J . M. Elias . 1976 . Degradation ofcartilage
proteoglycan by human leukocyte granule neutral proteases : a model ofjoint injury. I .
Penetration of enzyme into rabbit articular cartilage and release of 35504-labeled mate-
rial from the tissue . J. Clin . Invest. 57:615 .

8 . McDonald, J . A ., and D. G . Kelley. 1980 . Degradation of fibronectin by human leuko-
cyte elastase . J Biol. Chem . 255 :8848 .

9 . Gadek, J . E ., G . A . Fells, D. G . Wright, and R . G . Crystal . 1980 . Human neutrophil
elastase functions as a type III collagen "collagenase". Biochem. Biophys. Res. Commun. 95:1815 .

10 . Mainardi, C . L ., S . N . Dixit, and A. H . Kang . 1980 . Degradation oftype IV (basement
membrane) collagen by a proteinase isolated from human polymorphonuclear leukocyte
granules . J. Biol. Chem. 255:5435 .

11 . Senior, R . M., J . S. Huang, G. L. Griffin, and T F. Deuel . 1985 . Dissociation of the
chemotactic and mitogenic activities ofplatelet-derived growth factor by human neutro-
phil elastase . J. Cell. Biol. 100:351 .

12 . McLaughlin, M. E ., I . E. Liener, J . R . Hoidal, and B. H . Gray. 1985 . Polymorphonuclea r
leukocyte (PMNL) migration into human amnion membrane : inhibition by an elastase
specific inhibitor. Fed. Proc. 44:1919a . (Abstr.)

13 . Hopkins, N . K., A . H . Lin, and R. R . Gorman . 1985 . Inhibition ofhuman PMN elastase
prevents migration ofneutrophils through an endothelial cell monolayer. Fed. Proc . 44:1843a.
(Abstr.)

14 . Golde, D . W. 1983 . Production, distribution, and fate of neutrophils . In Hematology.
J . W. Williams, E . Beutler, A . J . Erslev, and M. A . Lichtman, editors. McGraw-Hill
Publications, Minneapolis, MN. 759-765 .

15 . Laurell, C. B., and S. Eriksson . 1963 . The electrophoretical-globulin pattern of serum
in al-antitrypsin deficiency. Scand. J Clin . Lab. Invest. 15 :132 .

16 . Gadek,J . E., and R. G . Crystal . 1983 . a1-antitrypsin deficiency. In The Metabolic Basis
of Inherited Disease . J . B. Stanbury, J . B . Wyngaarden, D. S . Fredrickson, J . L . Gold-
stein, and M. S . Brown, editors . McGraw-Hill Publications, Minneapolis, MN. 1450-1467 .

17 . Talamo, R . C ., C . E . Langley, C . E . Reed, and S. Makino . 1973 . al-antitrypsin deficiency:
a variant with no detectable al-antitrypsin . Science (Wash. DC). 181 :70.

18 . Martin, J.-P. 1975 . Further examples confirming the existence of Pi Null (Pi - ) . Pathol.
Biol. 23 :521 .

19 . Schandevyl, W., A . Hennebert, G . Leblanc, A . de Coster, J . C . Yernault, G . Achten,
M. Ledoux, and J . J . Buneaux . 1975 . Alpha-l-antitrypsin deficiency of the Pi00 type
and connective tissue defect. Colloq. INSERM (Inst. Natl. Sante Rech. Med.). 40:97 .

20 . Garver, Jr., R . I ., J.-E. Mornex, T. Nukiwa, M. Brantly, M. Courtney, J.-P LeCoco,
and R . G . Crystal . 1986 . Alpha,-antitrypsin deficiency and emphysema caused by
homozygous inheritance of non-expressing alpha,-antitrypsin genes . N. Engl. J Med.
314:762 .

21 . Janoff, A., andJ . Blondin . 1971 . Inhibition of the elastase-like esterase in human leuko-
cyte granules by human leukocyte cell sap. Proc. Soc . Exp. Biota Med. 136:1050 .

22 . Blondin, J ., R . Rosenberg, and A . Janoff. 1972 . An inhibitor in human lung macro-
phages active against human neutrophil elastase. Am . Rev . Respir. Dis. 106:477 .

23 . Dubin, A. 1977 . A polyvalent proteinase inhibitor from horse-blood-leukocyte cytosol .
Eur. J. Biochem. 73 :429 .



1084

	

ELASTASE INHIBITOR OF MONOCYTES

24 . Potempa,J., A . Dubin, W. Watorek, andJ . Travis. 1988 . An elastase inhibitor from equine
leukocyte cytosol belongs to the serpin superfamily. J. Biol. Chem . 263 :7364 .

25 . Kopitar, M., and M . Bozic . 1985 . Pig leucocyte elastase inhibitor. New isolation proce-
dure and inhibitory characteristics . Acta Pharm. jugosl. 35 :203 .

26 . Valentine, R., W. Goettlich-Riemann, G . Fisher, and R . B . Rucker. 1981 . An elastase
inhibitor from isolated bovine pulmonary macrophages . Proc . Soc . Exp. Biol. Med. 168:238 .

27 . Remold-O'Donnell, E., and K. Lewandrowski . 1983 . Two proteinase inhibitors associated
with peritoneal macrophages . J. Biol. Chem . 258 :3251 .

28 . Remold-O'Donnell, E . 1985 . A fast-acting elastase inhibitor in human monocytes .J. Exp.
Med. 162:2142 .

29 . Davis, G . S., M. S. Giancola, M. C . Costanza, and R. B . Low. 1982 . Analyses of sequen-
tial bronchoalveolar lavage samples from healthy human volunteers . Am. Rev. Resp . Dis.
126:611 .

30 . Sundstrom, C., and K. Nilsson . 1976 . Establishment and characterization of a human
histiocytic lymphoma cell line (U-937) . Int . J Cancer. 17:565 .

31 . Foley, G . E ., H . Lazarus, S. Farber, B. G . Uzman, B . A . Boone, and R. E . McCarthy.
1965 . Continuou s culture ofhuman lymphoblasts from peripheral blood of a child with
acute leukemia . Cancer (Phila . ) . 18:522 .

32 . Lazarides, E ., and U. Lindberg, 1974 . Actin is the naturally occurring inhibitor of deoxy-
ribonuclease I . Proc. Nad. Acad. Sci. USA. 71:4742 .

33 . Reinhold, V. N . 1972 . Gas-liquid chromatographic analysis of constituent carbohydrate
in glycoproteins. Methods Enzymol. 25:244 .

34 . Laemmli, U. K. 1970 . Cleavage of structural proteins during the assembly of the head
of bacteriophage T4 . Nature (Lond). 227:680 .

35 . Weber, K., and M. Osborn. 1969. The reliability of molecular weight determinations
by dodecyl sulfate-polyacrylamide gel electrophoresis . J. Biol. Chem. 244:4406.

36 . Senior, R . M ., P. F. Huebner, and J . A . Pierce . 1971 . Measurement of elastase activity
by elastin agarand its use in the detection of antitrypsin deficiency,f. Lab. Clin . Med. 77:510 .

37 . Cuatrecasas, P 1970 . Protein purification by affinity chromatography. J. Biol. Chem .
245:3059 .

38 . Sandhaus, R. A., K . M. McCarthy, R. A . Musson, and P. M. Henson . 1983 . Elastolytic
proteinases of the human macrophage. Chest. 5:60S .

39 . Merril, C . R., D. Goldman, S . A . Sedman, and M. H . Ebert . 1981 . Ultrasensitive stain
for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid pro-
teins . Science (Wash. DC). 211:1437 .

40 . Reeck, G. R., and L . Fisher. 1973 . A statistical analysis of the amino acid compositions
of proteins . Int. J Pept. Protein Res. 5:109 .

41 . Carrell, R. W., J-O. Jeppsson, C-B . Laurell, S . O . Brennan, M. C . Owen, L . Vaughan,
and D. R. Boswell . 1982 . Structure and variation of human al-antitrypsin . Nature (Loud.).
298:329 .

42 . Tarentino, A . L ., C . M. Gomez, and T. H . Plummer Jr. 1985 . Deglycosylation of
asparagine-linked glycans by peptide : N-glycosidase F. Biochemistry. 24:4665.

43 . Hochstrasser, K., and K. Schorn . 1975 . Characterization of proteinase-inhibitor com-
plexes in the purulent secretions ofmucous membranes as complexes between leucocytic
elastase and proteinase inhibitors . In Protides of the Biological Fluids . H . Peeters, editor.
Pergamon Press, Ltd ., Oxford . 231-234 .

44 . Seemfiller, U., M . Arnhold, H. Fritz, K. Wiedenmann, W. Machleidt, R . Heinzel, H .
Appelhans, H-G. Gassen, and F. Lottspeich . 1986 . The acid-stable proteinase inhibitor
ofhuman mucous secretions (HUSI-I, antileukoprotease) . Complete amino acid sequence
as revealed by protein and cDNA sequencing and structural homology to whey proteins



REMOLD-O'DONNELL ET AL .

	

1085

and Red Sea turtle proteinase inhibitor. FEBS (Fed. Eur. Biochem. Soc.) Lett. 199:43 .
45 . Thompson, R. C., and K. Ohlsson . 1986. Isolation, properties, and complete amino

acid sequence ofhuman secretory leukocyte protease inhibitor, a potent inhibitor ofleu-
kocyte elastase . Proc. Nad. Acad. Sci. USA. 83:6692.

46 . Kim, K. C., K . Wasano, R. M. Niles, J . E . Schuster, P J . Stone, andJ . S . Brody. 1987 .
Human neutrophil elastase releases cell surface mucins from primary cultures ofham-
ster tracheal epithelial cells . Proc . Nad. Acad. Sci. USA. 84:9304.

47 . Weiss, S. J ., and S. Regiani . 1984 . Neutrophils degrade subendothelial matrices in the
presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and
oxygen metabolites . J. Clin . Invest. 73:1297.

48 . Campbell, E . J ., R . M. Senior, J . A . McDonald, and D. L . Cox . 1982 . Proteolysi s by
neutrophils . Relative importance of cell-subtrate contact and oxidative inactivation of
proteinase inhibitors in vitro. J Clin. Invest. 70:845 .

49 . Schraufstatter, I . U., S. D. Revak, and C . G . Cochrane . 1984 . Protease and oxidants in
experimental pulmonary inflammatory injury. J Clin . Invest. 73 :1175 .

50 . Ossanna, P J., S. T. Test, N . R . Matheson, S. Regiani, and S . J . Weiss . 1986. Oxidative
regulation ofneutrophil elastase-alpha-l-proteinase inhibitor interactions.) Clin. Invest.
77:1939.

51 . Travis, J ., and G . S . Salvesen . 1983 . Human plasma proteinase inhibitors . Annu. Rev.
Biochem. 52:655 .

52 . Hunt, L . T., andM. O. Dayhofl: 1980 . A surprising new protein superfamily containing
ovalbumin, antithrombin-III, and alpha,-proteinase inhibitor. Biochem. Biophys. Res.
Commun . 95:864.

53 . Doolittle, R . F 1983 . Angiotensinogen is related to the antitrypsin-antithrombin-ovalbumin
family. Nature (Loud.). 222:417 .

54 . Scott, R . W., B. L. Bergman, A . Bajpai, R . T. Hersh, H . Rodriguez, B. N . Jones, C .
Barreda, S . Watts, and J . B . Baker. 1985 . Protease nexin . Properties and a modified
purification procedure . J Biol. Chem. 260:7029.

55 . Ny, T, M. Sawdey, D. Lawrence, J . L . Millan, and D. J . Loskutoff. 1986 . Cloning and
sequence of a cDNA coding for the human 0-migrating endothelial-cell-type plasminogen
activator inhibitor. Proc. Nad. Acad. Sci. USA. 83 :6776.

56 . Ginsburg, D., R . Zeheb, A. Y. Yang, U. M. Rafferty, P. A. Andreasen, L . Nielson, K.
Dano, R. V. Lebo, and T. D . Gelehrter. 1986 . cDNA cloning of human plasminogen
activator-inhibitor from endothelial cells . J. Clin. Invest. 78:1673.

57 . van Mourik, J . A., D. A . Lawrence, and D. J . Loskutoff. 1984 . Purificatio n ofan inhib-
itor of plasminogen activator (antiactivator) synthesized by endothelial cells .J Biol. Chem
259:14914 .

58 . Astedt, B ., I . Lecander, T Brodin, A. Lundblad, and K. Lbw. 1985 . Purification of a
specific placental plasminogen activator inhibitor by monoclonal antibody and its com-
plex formation with plasminogen activator. Thromb. Haemostasis . 53 :122 .

59 . Wun, TC., and E . Reich . 1987 . An inhibitor of plasminogen activation from human
placenta . Purification and characterization . J Biol. Chem. 262:3646.

60 . Ye, R . D., T-C . Wun, andJ . E . Sadler. 1987 . cDNA cloning and expression in Escherichia
coli of a plasminogen activator inhibitor from human placenta . J. Biol. Chem. 262:3718.

61 . Vassalli, J-D., J-M. Dayer, A . Wohlwend, and D. Belin. 1984 . Concomitant secretion
of prourokinase and of a plasminogen activator-specific inhibitor by cultured human
monocytes-macrophages . J. Exp. Med. 159:1653.

62 . Wohlwend, A., D. Belin, andJ-D. Vassalli . 1987 . Plasminogen activator-specific inhibi-
tors produced by human monocytes/macrophages . J. Exp. Med. 165:320 .

63 . Kruithof, E . K . O., J-D . Vassalli, W-D. Schleuning, R . J . Mattaliano, and F. Bachmann .



1086

	

ELASTASE INHIBITOR OF MONOCYTES

1986 . Purification and characterization of a plasminogen activator inhibitor from the
histiocytic lymphoma cell line U-937 . J. Biol. Chem . 261:11207 .

64 . Webb, A. C., K . L . Collins, S. E . Snyder, S. J . Alexander, L . J . Rosenwasser, R . L . Eddy,
T. B . Shows, and P. E . Auron . 1987 . Human monocyte ARG-Serpin cDNA. Sequence,
chromosomal assignment, and homology to plasminogen activator-inhibitor.f Exp. Med.
166:77 .

65 . Babior, B . M . 1984 . The respiratory burst of phagocytes . J. Clin. Invest. 73:599 .
66 . Janoff, A., W. A . Pryor, and Z . H . Bengali . 1986 . NHLBI Workshop Summary, Effect

of Tobacco Smoke Components on Cellular and Biochemical Processes in the Lung . Am.
Rev. Respir. Dis. 136:1058 .


