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Abstract

Understanding deltaic resilience in the face of Holocene climate change and human impacts is an important
challenge for the earth sciences in characterizing the full range of present and future wetland responses to global
warming. Here, we report an 8000-year mass balance record from the Nile Delta to reconstruct when and how this
sedimentary basin has responded to past hydrological shifts. In a global Holocene context, the long-term decrease in
Nile Delta accretion rates is consistent with insolation-driven changes in the ‘monsoon pacemaker’, attested
throughout the mid-latitude tropics. Following the early to mid-Holocene growth of the Nile’s deltaic plain, sediment
losses and pronounced erosion are first recorded after ~4000 years ago, the corollaries of falling sediment supply
and an intensification of anthropogenic impacts from the Pharaonic period onwards. Against the backcloth of the
Saharan ‘depeopling’, reduced river flow underpinned by a weakening of monsoonal precipitation appears to have
been particularly conducive to the expansion of human activities on the delta by exposing productive floodplain lands
for occupation and irrigation agriculture. The reconstruction suggests that the Nile Delta has a particularly long history
of vulnerability to extreme events (e.g. floods and storms) and sea-level rise, although the present sediment-starved
system does not have a direct Holocene analogue. This study highlights the importance of the world’s deltas as
sensitive archives to investigate Holocene geosystem responses to climate change, risks and hazards, and societal
interaction.
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Introduction

A key challenge concerning continental rivers is to better
understand past, present and future river fluxes in the face of
climate shifts, land-use alterations, river catchment
modifications and their impact upon base-level geosystems
[1-3]. Within this context, delta fronts are particularly sensitive
recorders of global change because their sedimentary basins
have sequestered rich environmental information at the
terminus of the source-to-sink sediment conveyor [4-6].
Furthermore, deltas have been preferred areas of human
occupation throughout the Holocene, nurturing the agricultural
innovation, social organization and cultural exchange that led
to the emergence of early complex societies [7-13]. Today, it is
estimated that deltas host nearly half a billion people [14],
engendering a series of environmental pressures that have
sharpened focus on the resilience of these sensitive
geosystems to future change [15-17].

The recent worldwide degradation of deltaic wetlands is often
highlighted as an expression of global warming and human
impacts [14]. For the instrumental period, sediment mass
balance studies have greatly improved understanding of the
link between natural and anthropogenic forcing factors in
collectively mediating the fate of the world’s deltas [18]. Whilst
human activities have increased fluvial sediment supply, the
net amount of sediment reaching the ocean has actually
decreased by ~10% through infrastructure projects such as
dams and reservoirs [6,19]. These changes in sediment flux
have led to significant coastal retreat, particularly in deltaic
areas, and underscore the importance of understanding
source-to-sink sediment conveyors at a variety of spatial and
temporal scales [20]. Many studies of present delta systems
have addressed the ability of deltaic wetlands to keep pace
with sea-level rise, based on accretion status at decadal or
shorter timescales and their comparison with sea-level rise as
measured by tide gauges [21]. In a key study of 33 of the
world’s most important deltas, Syvitski et al.[14]. found that
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85% of deltaic areas have experienced severe flooding over
recent decades, with forecasts suggesting that the area of
vulnerable land will increase by about 50% in the next 40
years. The societal problems associated with this scenario are
compounded by exponential demographics, particularly in the
developing world [22]. By contrast, deltaic resilience in the face
of longer-term Holocene changes has only been partly
explored, despite its potential importance in characterizing the
full range of present and future wetland responses. The Nile
Delta represents a unique opportunity to fill this knowledge gap
because robust chronostratigraphic, subsidence, sea level,
palaeoclimate and sediment supply frameworks are now
available to explore when and how its accretionary status has
evolved during the Holocene [23-28].

The Nile is the world’s longest river (>6500 km) and shaped
the development of numerous complex societies, providing a
reliable source of water for farming and linking populations
between sub-Saharan Africa and the Mediterranean [29,30]. Its
deltaic system lay at the heart of ancient Egyptian civilization
and therefore understanding modifications in the delta’s
geomorphology and accretionary status is particularly pertinent
in interpreting its rich archaeological record. In recent decades,
the Nile Delta has attracted considerable research interest as
fears of reduced discharge, dwindling sediment supply,
subsidence and projected sea-level rise potentially threaten
one of Egypt’s most valuable economic resources and the
future livelihood of more than 50 million people ([31,32]; Figure
1). This fragility has prompted the Intergovernmental Panel on
Climate Change (IPCC) to assign the delta to its ‘extreme’
category of vulnerability hotspots [33].

To assess the Nile Delta’s state of health over centennial to
millennial timescales, we generated a well-resolved 8000-year
sediment accretion record using more >100 cores studded
across the present deltaic fringe (Figure 2). This holistic
reconstruction provides insights into deltaic response to climate
change and human impacts from the early Holocene up to
present day. At the regional scale, deltaic growth has been
controlled by the combined interaction of sediment supply, sea-
level rise and subsidence. These three histories have been
used to generate the sediment accretion record.

Materials and Methods

Various literature sources [23,24,34,35] and our present
ongoing research [36-38] were used to compile a database of
Holocene radiocarbon dates and stratigraphies from the Nile
Delta area. A total of 359 radiocarbon entries were made in the
database. Locations of core sites and sections (n = 105) are
given in Figure 2. These have all been benchmarked relative to
present Mean Sea Level (MSL). All radiocarbon determinations
were standardized and calibrated using Oxcal [39] with the
IntCal09 and Marine09 datasets [40].

Spatially averaged sedimentation rates were calculated for
all radiocarbon couplets, using classic age-depth techniques.
We refer the reader to [27] for further details. A matrix in annual
increments was plotted for all sedimentation pairs, based on
the age range of the radiocarbon calibrations. We subsequently
summed annual increments and divided by the population

present in each year to generate a spatially averaged
sedimentation figure for the whole delta area. Data were
smoothed using a smoothing spline. We stress that this is a
holistic spatial average for the entire deltaic margin. We have
not focused upon regional differences that might result, for
instance, from fluvial avulsions or channel abandonment. The
scientific data are supported by independent studies from the
prodelta area [26] and Nile delta sedimentation rates before the
construction of the Aswan High Dam. For example, the most
recent figures (160 mm/century) of our reconstruction fit tightly
with pre-1964 measurements of deltaic accretion [41].

The subsidence history was generated using 194
radiocarbon dates deriving from organic-rich peat and lagoon
deposits [23,24,36-38,42-44] (Figure 3). Prodelta muds and
sublittoral sand deposits were not included in our analyses
because these facies are subject to large altitudinal
uncertainties. Peat and lagoon deposition is assumed to have
occurred near historic mean sea level for each specimen. GPS
and topographic maps were used to attitudinally benchmark
these delta points relative to present Mean Sea Level (MSL).
To investigate changes in Holocene delta elevation age-
dependent predictions were obtained for the Relative Sea
Level (RSL) of each point using model data from [45,46].
Elevation residuals were calculated as being the difference
between the age of dated peat and lagoon deposits and
concomitant modelled RSL. This generated 194 residual
estimates for the magnitude of subsidence since deposition of
the radiocarbon-dated point.

All three histories have been normalized into 100-year non-
overlapping windows to generate the final time series in
century-1. Estimates of the delta’s Holocene accretion status
were calculated by subtracting spatially averaged
sedimentation rates from Holocene averaged subsidence and
modelled sea-level rise. Figure 4I plots the 20 and 80
percentiles of the subsidence history, which captures the most
representative part of the dataset.

Results and Discussion

The reconstructed sediment accretion history is presented in
Figure 4I. For the past 8000 years, the values present a range
of ~170 mm/century, with a gradual >70% decrease in
accretionary status between ~7700 cal. BP and ~1300 cal. BP.
This record is comparable in amplitude and direction to other
regional palaeoclimate archives [25-27] and demonstrates that
Nile Delta sedimentation has primarily been controlled by
Holocene shifts in fluvial discharge, modulated by low-latitude
summer insolation and the position of the eastern African Rain
Belt [28]. During the early Holocene, increased summer
insolation generated more intense monsoonal precipitation
associated with high erosional activity which yielded significant
sediment supply to the Nile depocenter that infilled the late
Pleistocene topography [23]. This phase of high Nile flow and
sediment delivery outpaced sea-level rise and subsidence,
leading to the rapid growth of a fluvial-dominated cuspate delta,
with progradation rates of up to 10 m/yr [47], characterized by
the development of extensive wetland areas.

Tracking Nile Delta Vulnerability
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Around 5000 cal. BP, the accretion record presents
decreases in sediment pulsing to the delta driven by a
southerly migration of moisture-bearing monsoon rains (mean
summer maximum ~15° N), which impacted upon both the
watershed’s geosystems and the geography of human

occupation along the Nile corridor and its bordering regions
[48]. The end of the so-called African Humid Period has
attracted considerable research interest due to its importance
in assessing and identifying processes associated with
transitional periods between climatic extremes [49]. Its origin,

Figure 1.  (A) Alexandria tide gauge record for the period 1944 to 2006 (data from reference [65]). (B) Maximum monthly discharge
of the Nile during the 20th century [66]. (C) Bubble plot of dams from the circum Mediterranean and southern Europe (data from
reference [67]). The Aswan High Dam is represented in red. This figure shows the impact of the construction of the Aswan dam on
Nile discharge and, indirectly, a drastic decrease in sediment input to the delta area. In the current context of rising Mediterranean
sea level, locally attested by the tide gauge at Alexandria, this fall in alluvium does not allow the delta system to naturally offset sea-
level change.
doi: 10.1371/journal.pone.0069195.g001
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pattern and underlying forcing agents are not wholly
understood, with apparent geographic disparities in the timing
and amplitude of environmental changes across North Africa.
Opposing scenarios of gradual insolation-driven aridification
[50] versus one of rapid change in environmental conditions
[51,52] have divided recent literature [53]. Whilst the linear
response of the Nile Delta’s accretion status to insolation
changes is unequivocal (r2 = 0.92), a series of centennial-scale
fluctuations evoke shorter-scale, non-precessional forcing
agents as pacemakers of deltaic change. These include, for
instance, relative sea-level changes and ENSO variability [27].
Our reconstruction demonstrates that, for the Nile Delta,
pronounced decreases in sediment supply began ~5000 years
ago reaching a critical threshold ~4000 years ago. Beyond this
tipping point, sediment losses imply that the delta became
more vulnerable to erosion by extreme climate events, such as
high-magnitude storms and floods, and sea-level rise. During
the mid-Holocene, it has been proposed that the decrease in
summer insolation and a concomitant increase in autumn
insolation engendered a fall in the intensity of Blue Nile
discharge and perhaps a relative increase in White Nile runoff
[28]. Because the Blue Nile generates most of the sediment
load to the Nile Delta (~70% at present) this shift manifestly
had a significant impact upon the base-level depocentre.

Deltaic archives bear the signatures of climate-induced
modifications in delta-front geomorphology around this time
[36]. A strontium isotope record from the Maryut lagoon on the
northwestern delta, for example, presents a striking increase in
marine inputs after 5000 years ago [37] consistent with the
erosion of protective beach ridges and salt water intrusion in a
context of falling sediment supply. On the Nile Delta fan a

pronounced increase in dust input, coupled with a decrease in
the relative intensity of discharge from the Blue Nile, are
consistent with the culmination of the gradual aridification of the
Nile valley (Figure 4G [28]). The 4000 cal. BP decrease in
sediment supply is also observed in other East African
palaeoclimate archives [54,55], including the desiccation of
Nile-fed Lake Faiyum [56], and historical evidence. An
important inscription on the tomb of Ankhtifi, a nomarch during
the early First Intermediate Period, narrates great famines that
affected Egyptian populations around 4200-4050 cal. BP [57]
and attests to the impact of hydroclimatic stress on agricultural
production at this time. The failure of Nile floods suggests that
the delta experienced pronounced change, possibly within the
timeframe of just a few human generations. A rapid ~70% drop
in Nile prodelta sedimentation rates confirms that this transition
was relatively abrupt [26].

The onset of the mass balance losses coincides with an
intensification of human occupation of the Nile Delta, when
failing rains in the ‘Green’ Sahara focused populations along
the Nile corridor [48,58,59]. This increased aridity probably
enhanced fluvial incision and drainage of previously swampy
areas in proximity to the main Nile channel, particularly
conducive to the development of agriculture [60]. The delta
area was attractive due to its high productivity and rich
biodiversity, and rapidly became a focal point of social, cultural,
and economic development for Egyptian civilization [29].
Archaeological excavations across the Nile Delta attest to a
rich history of human occupation, with more than 700 sites
having been identified to date [61,62]. Although chronological
constraints are poor for many of these sites, it appears that
between 6000 to 5000 years ago, Pre- and Proto-Dynastic

Figure 2.  Location of the Nile Delta core sites used in this study.  
doi: 10.1371/journal.pone.0069195.g002
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Figure 3.  Data used to generate our Nile Delta subsidence history: (A) sample depth below MSL versus time; and (B)
subsidence values.  Because subsidence values are temporal (i.e. Holocene) and spatial averages, we stress that they are
conservative (<2 mm/yr) when compared, for instance, with present rates (>5 mm/yr) around the Damietta lobe [31]. This suggests
that surficial deltaic sediments undergo their most rapid phase of volume loss in the decades/centuries after deposition.
doi: 10.1371/journal.pone.0069195.g003
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Figure 4.  Nile Delta sediment accretion status and comparison with other regional proxies. .  (A) Location of the study area.
(B) Holocene insolation at 30° N for June–July-August [68]. (C) On the right axis: radiocarbon dates from early and mid-Holocene
occupation sites in the Eastern Sahara [48]. The solid black line denotes a three-point moving average. On the left axis: estimates
for the population of the Nile valley in Egypt [29]. These are represented by the thin black line. (D) Holocene oxygen isotope record
from the Arabian peninsula [25]. (E) Strontium isotope record from Manzala lagoon, eastern Nile Delta [69]. (F) North African lake
levels [70,71]. (G) Reconstruction of changes in Nile runoff using the EM1/(EM2+EM3) ratio (record from [28]). (H) Nile prodelta
sedimentation rates for the Holocene [26]. (I) Nile Delta accretionary status.
doi: 10.1371/journal.pone.0069195.g004
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occupation of the deltaic plain was preferentially centred on
inherited topographic mounds that overlook the floodplain,
locally known as ‘koms’ [37]. These topographic highs of
Pleistocene age afforded protection from the Nile’s annual
floods, the intensity of which is inferred to have been greater at
this time [27]. At the onset of the Early Dynastic phase, around
5000 years ago, changes in the delta landscape, associated
with a fall in Nile flow and seasonally receding flood zones,
may have been one of the factors that encouraged the
expansion of human activities onto the deltaic plain by altering
ecological structure and resource availability [63]. The absence
of robust chronological constraints precludes the precise
spatio-temporal mapping of this process but nonetheless
constitutes an interesting avenue for future research. This was
a dynamic period of human cultural evolution on the Nile Delta
and an intensification of human exploitation of the deltaic plain
fostered channelling and drainage of the wetlands for irrigation
agriculture, that modified sediment and water routing through
the delta [64]. In a context of decreasing Nile flow, these
ancient water-management technologies probably exacerbated
the geosystem’s long-term fragility by promoting subsidence of
Holocene deposits through groundwater lowering and microbial
oxidation of organic-rich sediments. An intensification of human
exploitation shows that, despite the ecosystems’ vulnerability to
coastal change, the environmental potentiality of the Nile Delta
(high fertility, resource multiplicity and transport capabilities)
greatly outweighed perceived risks.

Conclusions

This Nile Delta sediment accretion record reveals new
insights into the delta’s long-term vulnerability to climate
change and human impacts. We have documented a >70%
decrease in the Nile Delta’s accretion status between the early
and late Holocene, consistent with a gradual decrease in
climate-driven sediment supply. The precise spatial expression
of these sediment losses invites closer scrutiny (e.g.
chronologies and geographies of avulsions, channel
abandonment and pronounced areas of erosion). At the
regional scale, the Nile Delta experienced a geomorphological
restructuring from a river-dominated cuspate delta to a wave-
dominated arcuate delta following the end of the ‘African Humid
Period’. A corollary of the millennial-scale ebb in Nile flow and

human channelling of the delta was a gradual reduction in the
number of fluvial distributaries from up to nine around 5000
years ago to just two at present. Furthermore, we suggest that
reduced river flow linked to a weakening of the Ethiopian
Monsoon was particularly conducive to the expansion of
human exploitation of the delta by exposing productive
floodplain lands and producing a sharper contrast between
seasonally-driven Nile minima and maxima. In terms of risks
and vulnerabilities, the impact of sediment deficits would have
been particularly acute along coastal margins and in areas of
young Holocene strata, where subsidence rates in excess of 5
mm/yr are presently attested [31]. Although the current
predicament of the Nile Delta - starved of significant sediment
input since the completion of the Aswan High Dam - is without
precedent for the Holocene, these new mass balance data
suggest that the Nile Delta has a particularly long history of
degradation by climate-driven changes in sediment delivery
and human impacts.
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