
EXPERIMENTAL AND THERAPEUTIC MEDICINE  21:  315,  2021

Abstract. The aim of the present study was to induce 
chronic atrophic gastritis (CAG) with intestinal meta‑
plasia (IM) in rats by administering saturated salt and 
methyl‑N'‑nitro‑N‑nitrosoguanidine (MNNG) via oral gavage. 
Changes in gastric mucosal blood microcirculation and acti‑
vation of the cyclo‑oxygenase‑2 (COX‑2)/hypoxia inducible 
factor‑1α (HIF‑1α)/vascular endothelial growth factor (VEGF) 
signaling pathway during CAG and IM development were 
investigated. After administering saturated salt and MNNG for 
25 weeks, mild atrophy was detected in the stomach of model 
rats using hematoxylin and eosin staining. CAG with IM was 
successfully induced in the gastric mucosa of the model rats 
after 35 weeks. Gastric mucosal blood flow was decreased in 
comparison with controls as early as 15 weeks after treatment 
to induce CAG and the mRNA expression levels of COX‑2, 
HIF‑1α, vascular endothelial growth factor receptor (VEGFR)1 
and VEGFR2 were increased in comparison with untreated 
rats as early as 25 weeks after treatment. HIF‑1α, COX‑2 and 
VEGFR2 expression levels were increased as early as 25 weeks 
after CAG induction treatment when compared to controls and 
HIF‑1α, COX‑2, VEGFR1 and VEGFR2 expression levels 
were significantly increased after 35 weeks. These findings 
indicated that administering saturated salt and MNNG by 

gavage for 35 weeks successfully induced CAG and IM in 
rats. Furthermore, the microcirculation was disturbed before 
activation of the COX‑2/HIF‑1α/VEGF signaling pathway.

Introduction

Gastric cancer (GC) is one of the most common malignant 
gastrointestinal tumors and the third leading cause of cancer 
deaths worldwide (1). The majority of reported cases of GC 
are in East Asia, Eastern Europe and South America, and more 
than half of GC cases occur in developing countries, with the 
majority in China (1‑3). The global incidence rates of chronic 
atrophic gastritis (CAG) range from 0‑10.9% yearly (4), and it 
takes several years for chronic gastritis to develop into gastric 
cancer. Dysplasia and intestinal metaplasia (IM) occur after 
CAG and are considered premalignant lesions of GC (5). CAG 
and IM greatly increase the risk of GC, as they promote the 
development of dysplasia (3). Chronic Helicobacter pylori (Hp) 
infection is one of the most important risk factors for GC 
development. According to the anatomic site and criteria, GC 
is divided into cardia GC, which arises 2‑5 cm from the gastric 
mucosa distal to the esophagogastric junction, and non‑cardia 
GC which originates from the gastric mucosa distal to the 
cardia (6). Hp is thought to cause 65‑80% of all gastric cancer 
cases (3), however, Hp is not a risk factor for cardia GC (1,3,7‑9). 
Environmental factors, such as high dietary salt intake and 
oncogenic agents such as methyl‑N'‑nitro‑N‑nitrosoguanidine 
(MNNG), are also important risk factors, particularly under 
Hp infection‑free conditions (1,3,5,10). In China, the mean 
sodium intake is 5,400 mg/day, which is much higher than the 
World Health Organization's recommended daily intake of 
2,000 mg (11). Several meta‑analyses have shown that excess 
dietary salt intake is a health hazard worldwide and is associ‑
ated with CAG and IM (12‑14). Studies conducted in Japan and 
Korea, where residents tend to have high‑salt intakes owing to 
their dietary habits of eating salt‑rich traditional foods such 
as miso soup, found that high‑salt intake was related to an 
increased risk of CAG and IM (12‑17). 

Animal models are important for drug screening and for 
studying GC, CAG and IM. Several animal models of CAG 
are used, such as rats, mouse or Mongolian gerbil (18,19). 
Gastric mucosal injuries, due to Hp infection, surgery, ethanol 
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or indomethacin, and oncogenic agents (primarily MNNG) 
are the main causes of CAG with precancerous lesions (20,21). 
Several studies have shown that a synergistic interaction 
between Hp and a high‑salt diet accelerates chronic inflam‑
mation and GC development in Mongolian gerbils (22,23) and 
a high‑salt intake is also associated with CAG and IM (14). 
However, animal models of CAG induced by MNNG and satu‑
rated NaCl (to simulate high‑salt intake) are rare (22,23); thus, 
developing a model of CAG with IM in rats treated with onco‑
genic agents and saturated NaCl may be beneficial for future 
research and development of drugs to treat CAG and IM. 

Chronic inflammation plays an important role in GC 
development and progression. Moreover, high‑salt intake and 
interleukin‑17 (IL‑17) synergistically induce vascular endothe‑
lial growth factor (VEGF)‑A expression through nuclear factor 
of activated T cells 5 (NFAT5)/signal transducers and activa‑
tors of transcription 3 (STAT3) interaction in breast cancer 
cells (24). High‑salt intake also promotes inflammation in 
the tumor microenvironment and enhances angiogenesis and 
VEGF expression (25). A previous study showed that micro‑
circulatory disorders existed in CAG (26). However, whether 
high‑salt intake with MNNG can induce microcirculatory 
disorders and whether the hypoxia‑inducible factor (HIF)‑1α 
pathway is activated during the pathological process of CAG 
with IM remains uncertain. 

In the present study, a new rat model of CAG with IM was 
developed by administration of saturated salt and MNNG 
by gavage. Dynamic changes in the gastric mucosal blood 
microcirculation and activation of the cyclo‑oxygenase‑2 
(COX‑2)/HIF‑1α/VEGF signaling pathway during the 
development of CAG with IM were investigated.

Materials and methods

Materials. MNNG (95%) and sodium chloride (99.8%) were 
purchased from Sinopharm Chemical Reagent Co., Ltd. The 
primary antibody against VEGF receptor (VEGFR)1 (cat. 
no. ab184784) was purchased from Abcam. The primary 
antibodies against COX‑2 (cat. no. 12282S), VEGFR2 (cat. 
no. 9698S) and glyceraldehyde‑3‑phosphate dehydrogenase 
(GAPDH; cat. no. 5174S) were provided by Cell Signaling 
Technology, Inc. The primary antibody against HIF‑1α (cat. 
no. 610958) was supplied by Becton‑Dickinson and Company.

Animals. A total of 30 male Wistar rats (160‑180 g; 5 weeks 
old) were obtained from Shanghai Laboratory Animal Center 
of the Chinese Academy of Science (Shanghai, China), 
and housed in the Laboratory Animal Center of Shanghai 
University of Traditional Chinese Medicine (Shanghai, 
China). All rats were housed under a 12‑h light/dark cycle 
at room temperature (25±2˚C) and humidity (60±2%) with 
free access to food and water. All animal experiments were 
conducted according to protocols approved by the Animal 
Ethics Committee of Shanghai University of Traditional 
Chinese Medicine (approval no. SZY201703012). For eutha‑
nasia, rats were anesthetized by an intraperitoneal injection of 
3% pentobarbital sodium (30 mg/kg body weight), once fully 
anesthetized, rats were sacrificed by cervical dislocation and 
verification of death was defined by cessation of breathing and 
faded eye color.

CAG model induction. Rats were randomly divided into the 
control group (n=10) and 4 model groups (n=5/group). Model 
rats were treated with MNNG at 200 mg/kg body weight by 
oral gavage on days 0 and 14. Saturated NaCl (1 ml per rat) 
was administered 3 times per week by oral gavage for the first 
3 weeks. MNNG (600 µg/kg) and saturated NaCl (1 ml per rat) 
were then administered by gavage on alternate days (Fig. 1). 
From week 5, 1 group of 5 model rats was killed every 
10 weeks (at weeks 5, 15, 25 and 35).

Measurement of gastric mucosal blood flow (GMBF). Rats 
were fasted for 24 h, then anesthetized with 3% pentobar‑
bital sodium (30 mg/kg body weight). After exposing the 
stomach, a fiber‑optic probe for laser Doppler flowmetry 
(Moor Instruments Ltd.) was placed on the stomach wall of 
the fundus, gastric body and antrum to measure the blood flow 
in the stomach. The voltage number was recorded to represent 
the relative GMBF.

Specimen collection. After measuring the GMBF, anesthe‑
tized rats were sacrificed by cervical dislocation. The stomach 
was then quickly removed, cut along the greater curvature and 
washed with 0.9% sodium chloride. The antral tissues were then 
separated into two or three parts. A part was fixed for 24‑48 h 
in 10% formalin at room temperature for hematoxylin and 
eosin (H&E) and alcian blue‑periodic acid‑Schiff (AB‑PAS) 
staining. The other two parts were used for western blotting 
and quantitative PCR analysis and stored at ‑80˚C. 

Morphological assay. Tissue specimens were fixed for 
24‑48 h with 10% formalin at room temperature, processed, 
embedded in paraffin and cut into 5‑µm sections. All sections 
were stained with H&E and AB‑PAS (12), observed under a 
light microscope and scored according to the histopathological 
grading standard. The degrees of atrophy and metaplasia were 
assessed according to the updated Sydney classification as: 
1, absent; 2, mild; 3, moderate; or 4, severe (12). 

Western blot analysis. Stomach tissue was homogenized on 
ice with CellLytic™ MT mammalian tissue lysis reagent 
(Sigma‑Aldrich) containing protease and phosphatase 
inhibitor cocktails and centrifuged at 13,523 x g for 15 min 
at 4˚C. The supernatant was then collected, and the protein 
concentration was determined via BCA assay. Next, 30 µg of 
protein per sample was loaded and separated by SDS‑PAGE 
(8 for HIF‑1α, VEGFR1 and VEGFR2 or 15% for COX‑2, 
GAPDH), then transferred onto polyvinylidene fluoride 
(PVDF) membranes by a wet‑transfer system (Bio‑Rad 
Laboratories, Inc.). The PVDF membranes were then blocked 
with 5% bovine serum albumin (BSA; cat. no. G611BA0007; 
Sangon Biotech Co., Ltd.) in 1X phosphate buffered saline 
with 0.1% Tween‑20 (PBST) for 1 h. PVDF membranes were 
incubated with primary antibodies (each, 1:1,000) against 
COX‑2, HIF‑1α, VEGFR1, VEGFR2 and GAPDH at 4˚C 
overnight. The membranes were further incubated with goat 
anti‑rabbit horseradish peroxidase‑conjugated secondary 
antibodies (Jackson ImmunoResearch Laboratories, Inc.; 
cat. no. 111‑035‑003; 1:1,000) for 1 h at room temperature. 
Thereafter, the protein bands were visualized using an 
ECL‑prime kit (EMD Millipore; cat. no. WBKLS0500) 
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in a Tanon‑5200 (Tanon Science & Technology Co., Ltd.). 
Quantification of the target proteins was normalized to that of 
GAPDH within the same sample.

Reverse transcription quantitative PCR (qPCR) analysis. Total 
RNA was extracted from the stomach tissues using TRIzol® 
reagent (Invitrogen; Thermo Fisher Scientific, Inc.) as per the 
manufacturer's instructions. cDNA was reverse transcribed 
from RNA (1 µg) using the RevertAid First Strand cDNA 
Synthesis kit (cat. no. K1622; Thermo Fisher Scientific, Inc.) 
according to the manufacturer's protocol. The cDNA (1 µl) 
was diluted with nuclease‑free water 5 times for the qPCR 
reaction. RT‑qPCR was performed using SYBR Premix EX 
Taq (Roche Diagnostics) on the Quant Studio 6 Flex System 
(Applied Biosystems; Thermo Fisher Scientific, Inc.) under the 
following conditions: 95˚C for 30 sec, followed by 40 cycles 
of 95˚C for 5 sec, 60˚C for 34 sec, 95˚C for 15 sec, 60˚C for 
1 min and 95˚C for 15 sec. The target genes were quantified via 
the 2‑ΔΔCq method (27). Table I lists the sequences of primers 
obtained from Shanghai GeneRay Biotech Co., Ltd. The rela‑
tive expression of the individual target genes were normalized 
to that of GAPDH in the same sample. 

Statistical analysis. All data are expressed as the mean ± SEM. 
Differences between two groups were analyzed using an 
unpaired Student's t‑test. Differences among more than two 
groups were analyzed using one‑way analysis of variance with 
Dunnett's multiple comparison test. Analyses were performed 
using GraphPad Prism 6 (GraphPad Software, Inc.). Differences 
were considered significant at P<0.05.

Results

Atrophic changes in the gastric mucosa. In control rats, 
stomach glands were arranged neatly and were the same size. 
After treatment for 5 and 15 weeks, the glands were arranged 
in order, and the number of glands remained similar (Fig. 2). 
CAG was detected by HE staining developed in the model rats 
after 25 weeks. Changes in the glands were much more evident 
after 35 weeks of treatment than at earlier weeks and compared 
with the control rats, the glands were reduced in number and 
visibly disordered. IM, detected by AB‑PAS staining, was 
induced after 35 weeks of induction (P<0.01 vs. control).

IM changes in the gastric mucosa. The AB‑PAS staining 
results showed that, compared with the control rats, glands 
were decreased in number, but mild IM was not obvious at 
25 weeks of treatment (Fig. 3). After 35 weeks of induction, 

moderate and severe IM appeared in the antrums of the model 
rats (P<0.001 vs. control).

GMBF changes at different time points. After 5 weeks of 
treatment, the GMBF of the fundus, gastric body and antrum 
did not differ between the control and model rats (Fig. 4). 
After treatment for 15‑35 weeks, the GMBF of the fundus, 
gastric body and antrum in the model rats was decreased 
time‑dependently, compared with that of the control rats 
(P<0.01; P<0.001 vs. control). 

Activation of the COX‑2/HIF‑1α/VEGF pathways at different 
time points. As early as 25 weeks after treatment, the mRNA 
expression levels of HIF‑1α (P<0.05 vs. control), COX‑2 
(P<0.01 vs. control), VEGF (P<0.001 vs. control), VEGFR1 
(P<0.05 vs. control) and VEGFR2 (P<0.05 vs. control) were 
increased compared with those of the control rats. However, 
the mRNA expression levels of Ang‑1 and Ang‑2 were not 
obviously affected (Fig. 5).

Further study demonstrated that the protein expression 
levels of HIF‑1α (P<0.001 vs. control), COX‑2 (P<0.05 vs. 
control) and VEGFR2 (P<0.05 vs. control), but not VEGFR1 
were significantly enhanced in the model rats after 25 weeks 
compared with those of the control rats (Fig. 6). The protein 
levels of HIF‑1α (P<0.01 vs. control), COX‑2 (P<0.05 vs. 
control), VEGFR1 (P<0.05 vs. control) and VEGFR2 (P<0.05 
vs. control) were obviously upregulated in the model rats after 
35 weeks compared with those of the control rats.

Discussion

CAG with IM and dysplasia are the most significant risk factors 
for GC and considered the two key types of precancerous 
lesions in GC (1‑3). However, the molecular mechanisms of 
CAG with precancerous lesions are unclear. Suitable animal 
models that are similar to clinical patients are important for 
determining the underlying molecular mechanisms of CAG 
and drug screening and development to treat CAG with 
precancerous lesions. At present, several methods exist to 
induce CAG with precancerous lesions in animals. The main 
methods include Hp infection with or without MNNG (28,29) 

in Mongolian gerbils, surgery with or without 150 g/l NaCl 
paste at 50‑70˚C (30,31), and MNNG with or without the other 
two or more factors (32‑37) (Table II). However, multiple 
factors, complex operations, long procedure times, high costs 
and high death rates have resulted in no standard model for 
CAG with precancerous lesions. Oncogenic agents, such as 
MNNG, can easily penetrate the pylorus and gastric mucosa 

Figure 1. CAG induction protocol in rats. CAG, chronic atrophic gastritis; MNNG, methyl‑N'‑nitro‑N‑nitrosoguanidine.
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of the stomach to cause DNA damage; thus, MNNG in the 
drinking water is used as a specific carcinogen to induce 

GC (38). However, it takes a long time for MNNG in the 
drinking water to induce precancerous lesions in animals, and 

Figure 2. CAG is induced by intragastric administration of saturated NaCl and MNNG. Hematoxylin and eosin staining (magnification, x100) in (A) control 
group, (B) week 5, (C) week 15, (D) week 25, (E) week 35. Values are expressed as the mean ± SEM (n=5/group). Data were analyzed using one‑way analysis 
of variance (ANOVA). **P<0.01 vs. model group. CAG, chronic atrophic gastritis; MNNG, methyl‑N'‑nitro‑N‑nitrosoguanidine.

Table I. Primer sequences used in the qPCR analysis.

Genes Forward primer (5'‑3') Reverse primer (5'‑3')

VEGF CCTCTCCCTACCCCACTTCCT CACTTTCTCTTTTCTCTGCCTCCAT
VEGFR1 TTGATGGTAGGCTGAGGGATG AGATGTAACTGCCGAGGATGC
VEGFR2 GAGTTGGTGGAGCATTGGGAA ATACAGGAAACAGGTGAGGTAGGCA
HIF‑1α CCCATTCCTCATCCATCAAACATT CTTCTGGCTCATAACCCATCAACTC
COX‑2 TGAAATATCAGGTCATCGGTGGAG CATACATCATCAGACCCGGCAC
Ang‑1 TTGGTTACTCGTCAGACATTCATC TCTTCTTCTCTTTTTCCTCCCTTTA
Ang‑2 AAGTCAACGCTGCCATCTTCC GACCTTCCCCAACTCCACAGA
GAPDH TCTCTGCTCCTCCCTGTTC ACACCGACCTTCACCATCT

COX‑2, cyclooxygenase‑2; HIF, hypoxia inducible factor; VEGFR, vascular endothelial growth factor receptor; Ang, angiotensin.
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the success rate is low (35). Thus, other stimulating factors, 
such as ammonia, sodium deoxycholate, salicylic acid and 

ethanol, are also used to promote the development of CAG 
with precancerous lesions (Table II). 

Figure 4. Gastric mucosal microcirculation disorder was induced by intragastrically administering saturated NaCl and MNNG. (A) GMBF of the fundus, 
(B) GMBF of the gastric body, (C) GMBF of the antrum, (D) GMBF of the whole stomach. Values are expressed as the mean ± SEM (n=5/group). **P<0.01, 
***P<0.001 vs. model group. GMBF, gastric mucosal blood flow.

Figure 3. Gastric intestinal metaplasia is induced by intragastric administration of saturated NaCl and MNNG (Alcian blue‑periodic acid‑Schiff staining, x100 
magnification). Gastric intestinal metaplasia changes were stained purple and blue. (A) Control group, (B) week 25, (C) week 35. Values are expressed as the 
mean ± SEM (n=5/group). ***P<0.01 vs. model group.
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High‑salt diets can directly damage the gastric mucosa and 
induce hypergastrinemia, leading to parietal cell loss and GC 

progression (39). High‑salt diets also promote inflammatory 
cell infiltration and increased COX‑2 expression in Hp‑infected 

Figure 6. Protein expression levelsof COX‑2, HIF‑1α, VEGF and VEGFR1 in the gastric tissue. (A) Week 15, (B) week 25 and (C) week 35. Values were expressed 
as the mean ± SEM (n=5/group). *P<0.05. **P<0.01, ***P<0.001 vs. model group. COX‑2, cyclooxygenase‑2; HIF, hypoxia inducible factor; VEGFR, vascular 
endothelial growth factor receptor.

Figure 5. Gene expression levels of COX‑2, HIF‑1α, VEGFR1, VEGFR2, Ang‑1 and Ang‑2 in the gastric tissue. (A) Week 15, (B) week 25 and (C) week 35. 
Values are expressed as the mean ± SEM (n=5/group). *P<0.05. **P<0.01, ***P<0.001 vs. model group. COX‑2, cyclooxygenase‑2; HIF, hypoxia inducible factor; 
VEGFR, vascular endothelial growth factor receptor; Ang, angiotensin.
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Mongolian gerbils (40). Transgenic COX‑2 expression and 
high‑salt intake enhance susceptibility to methylnitrosourea 
(MNU)‑induced GC development in mice (39,41). A 10% NaCl 
diet significantly increased the incidence of GC induced by 
oncogenic agents, such as MNNG, in drinking water (42). 
These findings indicate that high‑salt intake plays an impor‑
tant role in GC progression. Reports on the induction of CAG 
with precancerous lesions in animals using MNNG and NaCl 
are rare. A previous study reported that combining 100 µg/ml 
MNNG in the drinking water and chow pellets with 8% NaCl 
induced CAG with precancerous lesions in rats after modeling 
for 42 weeks. However, the mortality rate was 45% with only a 
31.3% success rate (34).

Therefore, in the present study, only MNNG and satu‑
rated NaCl were intragastrically administered to induce 
CAG with IM in rats. At week 25, the success rate reached 
60% with no deaths. At week 35, the success rate reached 
100% with no deaths. Moreover, long‑term saturated NaCl is 
similar to high‑salt intake in clinical patients with CAG with 
IM (43,44). Therefore, the protocol described in the present 
study of inducing CAG with IM is simple, easy, controllable, 
less costly and repeatable.

Angiogenesis and microcirculatory disorders have been 
found in both CAG patients and animals (45,46). As a transcrip‑
tion factor, HIF‑1α directly regulates VEGF gene expression in 
cancer angiogenesis, especially under hypoxia (47). The HIF‑1α 
signaling pathway plays a vital role in blood microcirculatory 
disorders, including ischemia, hypoxia, inflammation and 
tumor angiogenesis (48‑51). Gastric mucosal injury can induce 
upregulation of HIF‑1α, VEGF and COX‑2 (52). COX‑2 can 
enhance the expression of HIF‑1α and VEGF (53). HIF‑1α 
can also upregulate COX‑2 expression in human endothelial 
cells (54). However, whether high‑salt and MNNG intake can 
induce gastric microcirculatory disturbance and activation of 
the HIF‑1α pathway remains uncertain. In the present study, 
GMBF disturbance first appeared without significant activa‑
tion of the HIF‑1α pathway at week 15. This demonstrated that 
blood microcirculatory problems began to appear before the 
development of HIF‑1α pathway dysfunction and CAG with IM, 
indicating that high‑salt‑induced gastric injury may be involved 
in blood microcirculatory disorders of the stomach. At week 25, 
CAG was successfully established, and the blood microcircula‑
tory disorder was much more severe. The gastric mucosal blood 
flow was reduceded, indicating that the decreased speed of the 
GMBF induced hypoxia in the model rats. HIF‑1α and COX‑2 
mRNA expression levels were significantly increased, indi‑
cating that blood microcirculatory disorder‑induced hypoxia 
activated the HIF‑1α pathway and COX‑2. After 35 weeks, 
moderate or severe atrophic gastritis with IM occurred in the 
model rats, indicating that high‑salt‑induced gastric mucosal 
injury may induce microcirculatory disorders, then microcir‑
culatory disorder‑induced hypoxia would induce abnormal 
HIF‑1α pathway expression and gastric inflammation evidenced 
by COX‑2 upregulation. This would further enhance angiogen‑
esis and consequently enhance the GC process (48,50,55,56). 
VEGFR1 and VEGFR2 are VEGF receptors (57). Upregulated 
VEGFR1 and VEGFR2 expressions in the gastric tissues of 
rats with CAG and IM are consistent with overactivation of the 
COX‑2/HIF‑1α/VEGF pathway. In this study, blood microcir‑
culatory disorders occurred during CAG with IM in rats. Thus, 

this animal model can help clarify the molecular mechanisms 
of CAG with IM and help develop drugs to treat CAG with IM.

In conclusion, a new rat model of CAG with IM was stably 
and effectively established by intragastrically administering 
saturated NaCl and MNNG. Activation of the HIF‑1α pathways 
and gastric inflammation, resulted from high‑salt‑induced 
stomach microcirculatory disorders, might be involved in the 
pathological process of CAG with IM induced by high‑salt and 
MNNG intake. However, the inconsistencies between replicate 
experiments is a limitation of the present study, which should 
be improved in future work.
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