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Strontium mineralization of shark 
vertebrae
Vincent Raoult1, Victor M. Peddemors2, David Zahra3, Nicholas Howell3, Daryl L. Howard4, 
Martin D. de Jonge4 & Jane E. Williamson1

Determining the age of sharks using vertebral banding is a vital component of management, but the 
causes of banding are not fully understood. Traditional shark ageing is based on fish otolith ageing 
methods where growth bands are assumed to result from varied seasonal calcification rates. Here 
we investigate these assumptions by mapping elemental distribution within the growth bands of 
vertebrae from six species of sharks representing four different taxonomic orders using scanning x-ray 
fluorescence microscopy. Traditional visual growth bands, determined with light microscopy, were more 
closely correlated to strontium than calcium in all species tested. Elemental distributions suggest that 
vertebral strontium bands may be related to environmental variations in salinity. These results highlight 
the requirement for a better understanding of shark movements, and their influence on vertebral 
development, if confidence in age estimates is to be improved. Analysis of shark vertebrae using similar 
strontium-focused elemental techniques, once validated for a given species, may allow more successful 
estimations of age on individuals with few or no visible vertebral bands.

Humanity’s growing demand for protein has led to substantial pressure on both terrestrial and oceanic ecosys-
tems. Harvesting of large predatory fishes by industrial fishing techniques has lowered populations to a fraction 
of their historic numbers in some areas1,2, with some species such as tuna or grouper more depleted than others3,4. 
Sharks are especially vulnerable to fishing due to their low reproductive rates and delayed maturity5–7. Their 
disappearance has negative effects on ecosystems8, and considerable resources have been allocated to their man-
agement and conservation. Basic information about life history parameters such as reproduction, diet, and age 
structure are often lacking, however, making assessment and management of shark stocks difficult.

Ageing sharks is problematic due to the large numbers of samples required, which are often difficult to obtain9. 
Ageing also requires cross-validation, and a lack of calcified structures in the many deeper-water species has con-
tributed to discrepancies between growth and age estimates9. Inaccurate estimates can lead to poor predictions 
of population growth and lead to overfishing10 or, conversely, under-exploitation of resources. Typically, shark 
ageing has been based on a modification of fish otolith ageing but uses vertebral bands instead of otolith rings9, 
which are counted as a proxy for yearly growth patterns under the assumption that banding patterns result from 
changes in calcification rates over time in a manner similar to that of fish11–13. Although the seasonality of these 
bands has been validated for many species14,15, the processes that determine the formation of these bands are not 
fully understood. Moreover, published methods of shark ageing vary substantially because different preparation 
methods must be tested to determine the most effective technique for each newly tested species9. Different ageing 
methods and subjective differences in readability make comparative studies problematic11,16,17.

To investigate the elemental composition of vertebral bands, and by association, the factors that may influ-
ence their deposition, elemental distribution within vertebrae was assessed in five diverse species of sharks using 
Scanning X-ray Fluorescence Microscopy (SXFM)18. Assessments of SXFM images were compared to traditional 
microscope ageing9 to determine their use as an alternate ageing technique.

Results
Calcium and strontium maps showed clear banding within vertebrae of all species. However, strontium bands 
were consistently more visible than calcium bands (Figs 1 and 2). Strontium peak counts agreed with, or were 
slightly under, counts obtained microscopically, while calcium peak counts could be both less than or greater than 
microscope band counts (Figs 3–8). In all cases, counts of strontium peaks corresponded more closely to banding 
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counts determined by light microscopy than to counts of calcium peaks (Fig. 9). Neither strontium concentra-
tions (df =  4, F =  6.7, R2 =  0.69, p =  0.08) nor calcium concentrations (df =  4, F =  0.43, R2 =  0.12, p =  0.55) signif-
icantly correlated with light microscopy band counts. However, the correlation coefficient (R2) of the strontium 
to light microscopy relationship was much higher than the calcium relationship (0.69 vs 0.12).

Discussion
In some species, shark vertebral growth banding may be more closely related to strontium absorption rather 
than to calcification. Strontium and calcium peaks did not correlate. Rather, strontium peak numbers were more 
closely related to counts obtained using light microscopy than were calcium peaks. It is possible that the small 
sample size in this study prevented the establishment of significant statistical relationships. However, strontium 
data had a substantially stronger relationship with traditional counts via light microscopy than the calcium data 
from the same samples. If further individuals were analysed in a similar fashion, it is likely that a statistically 
significant correlation between strontium and light microscopy bands would exist. In addition, the peaks on the 
dorsal and ventral face of the vertebrae had symmetrical shapes and positioning (peaks were equidistant on dorsal 

Figure 1. Images of light microscopy (left side) and SXFM (centre, right side) at different elemental spectra 
(in ppm) of unstained sagittal sections of a 1.7 m female Smooth Hammerhead (Sphyrna zygaena) at 
25 μm resolution. Banding studies usually focus on the corpus calcareum, the denser area on the outside of the 
vertebrae.

Figure 2. Images of light microscopy (top left) and SXFM (all others) at different elemental spectrums (in ppm) 
of sectioned vertebrae of (a) a 2.7 m White Shark (Charcharodon carcharias) vertebra and (b) an 0.9 m Eastern 
angel shark (Squatina albipunctata) at 25 and 15 μ m resolution, respectively. Light microscopy of angel shark 
not shown due to lack of visible growth bands.
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and ventral sides), whereas calcium peaks were asymmetrical. Since growth deposition is physiological, symmet-
rical patterns are expected in the banding.

Origins of strontium variation. Strontium is absorbed during otolith mineralization in fish, often replac-
ing calcium19, and otolith absorption rates are dependent on environmental concentrations of the element20. 
Strontium is preferentially absorbed relative to other trace elements present in the marine environment (e.g., 
magnesium, barium)21, whereas calcium is absorbed at a relatively constant rate regardless of its environmental 
availability20. Though the processes that govern the absorption of strontium in fish are still debated, the model 
that best explains these contradicting results is that preferential strontium absorption is linked to the rate of 
proteinacious matrix formation21. Incorporation of strontium into fish otoliths is not immediate: changes in 

Figure 3. SXFM calcium and strontium concentrations of the corpus calcarum from the dorsal to ventral 
edge of the 1.7 m Smooth Hammerhead (Sphyrna zygaena) shown in Fig. 1. Calcium concentrations were 
reduced by a ratio of 30 to make them comparable to strontium concentrations. Six point moving averages 
were added to reduce noise. Birth marks are at roughly 5000 and 12000 μ m (indicated with red arrows). Data 
are compared to a flattened horizontal microscope image of the corpus calcarum of the vertebra with marked 
‘traditional’ growth bands (grey bands that are lined up with the opaque winter bands throughout the thickness 
of the vertebra for comparison with strontium and calcium). Note how strontium peaks are consistent on both 
sides of the vertebra, while calcium concentrations are not.

Figure 4. SXFM calcium and strontium concentrations of the corpus calcarum from the dorsal to central 
edge of a 2.7 m female White Shark (Charcharodon carcharias). Calcium concentrations were reduced by a 
ratio of 20 to make them comparable to strontium concentrations. Six point moving averages were added to 
reduce noise. Birth mark is at 9000 μ m (indicated with red arrow). Data were compared to a flattened horizontal 
microscope image of the corpus calcarum, with marked ‘traditional’ growth bands (grey bands that are lined 
up with the opaque winter bands throughout the thickness of the vertebra for comparison with strontium and 
calcium).
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concentrations of ambient water strontium have effects on mineralized concentrations but only after ten days, 
and sometimes does not become visible until sixty days after exposure22. Despite the apparent role of strontium in 
fish development, the physiological role of this element is still unknown23.

Strontium does modulate bone metabolism in mammals: higher strontium concentrations increase bone 
mass24 or prevent bone loss25. In humans, high-strontium-content derivatives significantly decrease vertebral 
and non-vertebral fracture risk26,27, offering promise as an anti-osteoporitic and anti-osteoarthritic in medi-
cine. Recent studies that have tried to determine how strontium affects mammalian bone growth have found 
that nearly 50% of available strontium is incorporated into calcium hydroxyapatite or absorbed into collagen28. 
Strontium effects on mammalian cartilage are less well studied, but evidence suggests that increased strontium 
levels promote cartilage matrix formation29. While mammalian and chondrichthyan bone/cartilage development 
are unlikely to be completely analogous, mammalian skeletal elements are deposited on cartilaginous models, and 
the mineral fraction of elasmobranch vertebrae is similar in composition to that of mammals30. It is, therefore, 
probable that strontium also affects the resorption/formation of elasmobranch cartilage and vertebral bands in a 
similar fashion as in mammalian bones.

In this study, strontium peaks sometimes corresponded with thinner, opaque regions known as winter 
bands31. These areas precede areas of higher growth that have lower strontium concentrations. It is possible that 

Figure 5. SXFM calcium and strontium concentrations of the corpus calcarum from the dorsal to ventral 
edge of a 2.4 m female Spinner Shark (Carcharhinus brevipinna). Calcium concentrations were reduced by 
a ratio of 10 to make them comparable to strontium concentrations. Six point moving averages were added to 
reduce noise. Birth mark is roughly at 11500 μ m (indicated with red arrow). Data are compared to a flattened 
microscope image of the corpus calcarum of the vertebra with marked ‘traditional’ growth bands (grey bands 
that are lined up with the opaque winter bands throughout the thickness of the vertebra for comparison with 
strontium and calcium).

Figure 6. SXFM calcium and strontium concentrations of the corpus calcarum from the ventral to dorsal 
edge of a 1.15 m female Port Jackson Shark (Heterodontus portusjacksoni). Calcium concentrations were 
reduced by a ratio of 30 to make them comparable to strontium concentrations. 6 point moving averages were 
added to reduce noise. Birth marks are roughly at 7000 and 11000 μ m (indicated with red arrow). Data are 
compared to a flattened microscope image of the corpus calcarum of the vertebra.
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the accumulation of strontium allows increased bone development in subsequent months, resulting in thinner, 
high strontium ‘winter’ bands and thicker, low strontium ‘summer’ bands in the sharks. The opacity of vertebral 
bands observed in this study may also be due to a denser cartilage matrix, similar to those detected in mammals29.

Previous research assumed that shark growth bands were caused by environmental variables such as temper-
ature and salinity, resulting from changes in environmental conditions32. Spectrometry has shown that temper-
ature has no effect on strontium concentrations in elasmobranch vertebrae, although increased temperatures 
increase rates of vertebral growth in these species33. Otolith strontium/calcium ratios in teleost fish are positively 
linked to environmental strontium concentrations34, and are directly related to salinity in some species35,36, but 
are usually unrelated to temperature35,37. Since salinity varies seasonally38 and increases with depth39, vertebral 
growth bands may be partially caused by seasonal or depth salinity gradients rather than by changes in metabolic 
rates resulting from seasonal variations in temperature. This also raises the possibility of determining the salinity 
of areas visited by the shark, as estuarine movements have been estimated from chemical signatures of teleost 
otoliths40–42. Similar conclusions were obtained from analyses of mass spectrometry on shark vertebral composi-
tion, where lower strontium/barium ratios in Carcharhinus leucas were suggested to be related to movements into 
estuarine waters43. Smalltooth sawfish (Pristis pectinata) also show strontium variations in relation to changes in 
salinity44. One of our model species, Squatina albipunctata, is thought to come inshore every year to pup or mate, 
which may explain the changes in strontium concentrations we observed. While correlations between strontium 

Figure 7. SXFM calcium and strontium concentrations of the corpus calcarum from the dorsal to ventral 
edge of a 2.8 m female Dusky Shark (Carcharhinus obscurus). Calcium concentrations were reduced by a 
ratio of 30 to make them comparable to strontium concentrations. 6 point moving averages were added to 
reduce noise. Birth mark is roughly at 14500 μ m (indicated with red arrow). Data are compared to a flattened 
microscope image of the corpus calcarum of the vertebra with marked ‘traditional’ growth bands (grey bands 
that are lined up with the opaque winter bands throughout the thickness of the vertebra for comparison with 
strontium and calcium).

Figure 8. SXFM calcium and strontium concentrations of the corpus calcareum from the dorsal to ventral 
edge of an 839 mm male Eastern angel shark (Squatina albipunctata). Calcium concentrations were reduced 
by a ratio of 30 to make them comparable to strontium concentrations. 6 point moving averages were added to 
reduce noise. Strontium peaks are marked with black arrows and calcium peaks with blue stars. Birth mark is 
roughly at 1000 μ m (indicated with red arrow). Image of light microscopy not shown as no bands were visible 
on the corpus calcareum in this study or in others52,53.
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and visual growth bands for Heterodontus portjacksoni were weaker at younger ages, they more closely match 
strontium peaks in the animals matured. Port Jackson Sharks (H. portjacksoni) congregate annually for repro-
duction in estuaries once sexually mature45. It is possible that this post-maturity yearly migratory pattern may 
be reflected in the increased correlation between visual bands in later years. Carcharodon carcharias movement 
patterns in south-east Australia are not well understood, but tagging of young individuals (1.8–3.6 metres in total 
length) suggests that they undertake sporadic, large-scale movements46, which are consistent with our findings. 
Future studies should examine the potential drivers of vertebral banding and their links with environmental 
variables, with a particular focus on the interactions between temperature, salinity, and strontium availability.

Strontium maps. Shark ageing can be affected by observer bias9, however, the use of strontium maps can 
decrease subjectivity. In conjunction with traditional ageing methods, strontium mapping may increase the accu-
racy of measurements and/or allow ageing where it was previously unsuccessful (e.g. Squatina sp.), but only when 
species-specific seasonal movement patterns are understood and/or the technique has been validated with indi-
viduals of known age. Round stingrays (Urobatis halleri) have vertebral strontium concentrations that correlate 
well with growth bands47, and they also have seasonal movement patterns. Strontium deposition needs to be 
further investigated to determine whether it is more reliable for band analysis than methods that analyse calcium 
concentrations, and how/why strontium is absorbed. If strontium is a better banding indicator than calcium, it 
would explain why chemical stains historically used in shark ageing (alizarin red, silver nitrate) have varying 
results, since they are indicators for calcium, strontium, magnesium and iron. The use of directed strontium 
reporters may, therefore, produce better results.

The effectiveness of strontium maps as an ageing tool could be validated as a technique by using age-validated 
samples for each species (from tagging programs, bomb-radiocarbon dating specimens, or marking captive 
sharks with oxytetracycline), but may only be effective if species’ migration patterns are known. Movement pat-
terns of elasmobranchs can change with ontogeny48, can be sex-linked49, and may show a high degree of intraspe-
cific variation46. Consequently, reliable ageing of species using strontium mapping requires highly predictable 
migratory patterns that occur at a population level, and at consistent intervals, and with known ontogenetic vari-
ations. Some species of sharks do not fit these criteria. For example, C. carcharias (White Shark) on the east coast 
of Australia can disperse north and south, with individual preferences46. Consequently, strontium maps could not 
be used to determine the age of C. carcharias off Australia. This may explain the disparity between visual band 
counts and strontium peak counts for the C. carcharias sample in this study. However, generalisations should not 
be made a species level. Female C. carcharias in the northeast Pacific have two-year migration intervals between 
aggregation areas, and male sharks return annually49,50. Due to their highly reliable movement patterns, stron-
tium maps could be used to determine the age of C. carcharias from the northeast Pacific if the sex of the shark 
was known. Strontium mapping may thus be useful for elasmobranch vertebrae sourced from populations with 
known seasonal migrations that cannot be aged using traditional techniques. If population-specific information 
was unavailable, strontium maps would still be useful to infer movement patterns across salinity gradients, but 
not for aging.

Figure 9. Counts of strontium and calcium peaks, compared to traditional microscope ageing length for 
(left to right): White Shark (Carcharodon carcharias), Smooth Hammerhead (Sphyrna zygaena), Port 
Jackson Shark (Heterodontus portjacksoni), Dusky Shark (Carcharhinus obscurus) and Spinner Shark 
(Carcharhinus brevipenna). 
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SXFM. SXFM allowed novel, high resolution, and rapid analysis of the elemental composition of shark ver-
tebrae. Nevertheless, future use of SXFM for analysis of shark vertebrae could be improved. A moving average, 
used to reduce noise, reduced the effective spatial resolution to six times the sampling interval (between 90 μ m 
and 150 μ m). The lowered resolution would explain why the oldest shark in this study did not display strontium 
peaks that corresponded to visual bands after nine years of age (Fig. 7). Scanning with a finer sampling interval, 
longer dwell (time spent exposing the area) and a wider sampling band are all feasible using the SXFM, but those 
measurement parameters would have increased scanning time. Using growth band counts to age older individ-
uals is known to lead to age under-estimation due to the greater proximity of growth bands47,51, and so higher 
resolution scans – of order 1 μ m – would be of great interest. While variations in specimen thickness and surface 
topography can confuse the clear identification of banding, the measurements reported in this study are relatively 
free of such artefacts. We are currently developing additional methods to reduce the impact of measurement bias 
that will improve the resolution of this approach.

In summary, the presence of strontium bands in shark vertebrae supports new, comparative, alternative ageing 
methods once validation studies have been conducted. More precise and better-understood shark ageing will lead 
to more accurate depictions of life histories and population dynamics, supporting more effective management of 
shark populations and associated ecosystems exploited by humans.

Materials and Methods
Collection of sharks. Six species of shark were analysed in this study: Sphyrna zygaena (Smooth 
Hammerhead), Charcharodon carcharias (White Shark), Carcharhinus brevipinna (Spinner Shark), Heterodontus 
portusjacksoni (Port Jackson Shark), Carcharhinus obscurus (Dusky Shark), and Squatina albipunctata (Eastern 
Angel shark; this genus is known to have no visible growth bands in the corpus calcarum52,53 and little known 
of their biology54). Sharks were caught by the New South Wales (NSW) Shark Meshing (Bather Protection) 
Program, with the exception of S. albipunctata, which was caught by a commercial fishing trawler near Sydney, 
Australia. NSW shark nets are set during the summer period along the Newcastle to Wollongong region in New 
South Wales, Australia55. The Animal Ethics Committee at Macquarie University agreed that ethics approval was 
not required for this study. Tissue samples were retrieved from animals caught by commercial fisheries for sale in 
local markets and/or the NSW Shark Meshing (bather protection) program, which occasionally catches and kills 
local wildlife, and thus sharks were obtained for purposes other than research.

Laboratory preparation of vertebral sections. Vertebral samples were collected by removing the first 
cervical vertebra from each carcass and freezing it (− 20 °C) in a sealed plastic bag until preparation. During 
preparation, each vertebra was thawed to room temperature, and then manually cleaned of debris with a sterile 
scalpel before being sectioned. To avoid possible contamination no chemical agents (e.g., sodium hypochlorite, 
ethanol) were used during cleaning, and the decision was made to avoid using other cleaning techniques (i.e., 
sonication) because the SXFM is less prone to surface contamination than other elemental techniques. Vertebrae 
were sectioned using an Isomet circular saw with a single 0.1 mm-increment adjustable diamond-edged blade. 
Sections were cut dorso-ventrically through the centre of each vertebra. Cuts were 0.6 mm in thickness or thinner, 
dependent on the degree calcification (more calcified specimens could be cut thinner). Each cut was immediately 
placed on Kapton film and covered with Kapton adhesive tape. This created an airtight seal that prevented dehy-
dration of the samples that can cause severe tissue warping. Samples were then flattened between two microscope 
slides and transported to the Australian Synchrotron in Melbourne.

Scanning x-ray fluorescence imaging of vertebral sections. Samples were attached to polycar-
bonate frames at the Australian Synchrotron’s X-ray Fluorescence Microprobe56 using clear double-sided tape, 
with roughly 15–20 samples per frame. Smaller samples were scanned at 15 μ m intervals (e.g., S. albipunctata) 
while larger samples were scanned at 25 μ m intervals (e.g., Charcarhinid spp., C. carcharias, S. zygaena). Sampling 
intervals were chosen to balance scanning time and measurement sensitivity with the expected length scale of ele-
mental variations. Per-pixel dwell times were typically 10 ms, and the scanning time for each frame was between 
16 and 22 h, depending on the dwell, the samples, and scanned area. Elemental maps were created and viewed 
using GeoPIXE57, which uses a detailed specimen model to determine first-order depth-independent elemental 
concentrations. A series of x-ray fluorescence concentration standards (Micromatter) were measured at regular 
intervals through the experiment to control for experimental drift if present; none was observed, and so all data 
were processed using a single fit model.

The quantitative accuracy of elemental mapping relies on the uniform illumination of a narrow column 
through a specimen, and the measurement of characteristic x-ray fluorescence emitted from that column. The 
high incident x-ray energy (18.5 keV) ensured uniform illumination; however, the lower energy of the charac-
teristic x-ray fluorescence can result in significant absorption of the x-ray fluorescence for various elements. The 
absorption length of calcium fluorescence (~3.7 keV) in water (a crude model for wet cartilage) is around 110 μm, 
whereas that of strontium (~14.1 keV) is 500 μ m, leading to a strong dependence of the depth sensitivity on ele-
mental species. The matrix correction applied by GeoPIXE corrects for this differential escape depth, assuming 
that the elemental distribution is uniform through the thickness. Here we have recorded elemental maps with the 
illumination closely aligned along the elemental bands so that this assumption is valid. Any sample misalignment 
would result in a blurring of the strontium distribution relative to calcium due to the increased depth penetration, 
and such is not observed in our elemental images.

To determine age, elemental lineouts were taken from data from the corpus calcarum, from the centre to the 
outer edge. Data were transformed using a moving six-sample mean to reduce noise. Sample results post-birth 
mark (defined as an angle change on the centrum face9) were counted for large peaks using a moving framework 
and a six-point moving average (more than 2.5% variation) in both the calcium and strontium spectrums.
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Sample microscope imaging. Traditional visual ageing was done on 0.6 mm sections of the vertebrae 
directly adjacent to the vertebra used for the SXFM analysis (thus in total, two vertebrae were used for each 
shark in this study, for a total of 12 vertebrae and 6 species). Vertebrae were manually cleaned with a scalpel and 
sectioned using an Isomet diamond saw. Excess tissue remaining after the sectioning was also removed with a 
scalpel. No chemicals were used when preparing these vertebrae to enable effective comparison with the SXFM 
samples. Vertebrae were observed in saltwater under a high-contrast binocular microscope immediately after sec-
tioning. Images were taken via USB camera and saved with ImageJ software, where optimum lighting was applied 
to increase the contrast of growth bands. Images of the samples were then independently aged by two experi-
enced observers after establishing band criteria for each species. A yearly increment consisted of one opaque 
and one translucent band9. Only vertebrae where the growth bands were well defined and visible were scored. 
Outside experts helped determine the band counts using similar criteria of the C. carcharias, C. brevipenna and  
C. obscurus, as the available samples were difficult to age. These experts aged the specimens blindly, with no 
knowledge of the sharks’ age or sex. To compare how well strontium and calcium peak counts matched the num-
bers of visual growth bands, data were analyzed using a multiple linear regression analysis with an alpha of 5%. All 
data analyses were done using Microsoft Excel and the Real Statistics data analysis tool pack.
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