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In neutrophils (but also in eosinophils and in mast cells), different inflammatory stimuli 
induce histone deimination, chromatin decondensation, and NET formation. These 
web-like structures that trap and kill microbes contain DNA, cationic granule proteins, 
and antimicrobial peptides, but the most abundant proteins are core histones. Histones 
contained in NETs have been deiminated, and arginines are converted in citrullines. 
While deimination is a physiological process amplified in inflammatory conditions, only 
individuals carrying genetic predisposition to develop rheumatoid arthritis (RA) make 
antibodies to deiminated proteins. These antibodies, collectively identified as anti-
citrullinated proteins/peptides antibodies (ACPA), react with different deiminated proteins 
and display partially overlapping specificities. In this paper, we will summarize current 
evidence supporting the role of NETosis as critical mechanism in the breach of tolerance 
to self-antigens and in supporting expansion and differentiation of autoreactive cells. 
In fact, several lines of evidence connect NETosis with RA: RA unstimulated synovial fluid 
neutrophils display enhanced NETosis; sera from RA patients with Felty’s syndrome bind 
deiminated H3 and NETs; a high number of RA sera bind deiminated H4 contained in 
NETs; human monoclonal antibodies generated from RA synovial B cells decorate NETs 
and bind deiminated histones. In RA, NETs represent on one side an important source 
of autoantigens bearing posttranslational modifications and fueling the production of 
ACPA. On the other side, NETs deliver signals that maintain an inflammatory milieu and 
contribute to the expansion and differentiation of ACPA-producing B cells.

Keywords: rheumatoid arthritis, neutrophils extracellular traps, histones, ectopic lymphoid structures, 
autoantigens, autoantibodies

iNTRODUCTiON

NETosis was discovered as a new function of neutrophils and thoroughly investigated as an 
important mechanism in the protection against bacterial, fungal, and parasitic infections (1). When 
the size of microorganisms is excessive for phagocytosis (2), neutrophils activate an alternative 
pathway leading to the extrusion of decondensed chromatin fibers containing histones as well as 
antimicrobial granular and cytoplasmic proteins (3). NETs are released during a form of cell death, 
distinct from necrosis and apoptosis, which requires reactive oxygen species (ROS) produced by 
NADPH oxidase.

Recent data however challenge the prevalent view of NETosis as a cellular suicide. An early 
NETosis has been described, which occurs rapidly after exposure to microbial specific molecular 
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patterns (e.g., within 60  min following Staphylococcus aureus 
stimulus), acts by a NADPH oxidase-independent pathway, and 
leads to the release of NET after nuclear envelope blebbing and 
vesicle formation, thereby preserving plasma membrane integ-
rity. During this vital NETosis, cells are still able of some typical 
functions, such as chemotaxis and phagocytosis.

Slowly released from dying neutrophils or budding from live 
cells, NET fibers entrap microorganisms and represent a scaffold 
for enzymes, antimicrobial peptides, and ion chelators. These 
substances reach locally high concentrations and are thus able to 
cleave virulence factors and kill microorganisms (4).

Since the original description, it soon became apparent that 
both a defective and an excessive NET formation could have 
important consequences in human diseases, suggesting that a 
tight regulation of NETosis is critical to control pathogens while 
minimizing host damage.

When NET formation is impaired, as a result of NADPH 
oxidase or myeloperoxidase (MPO) deficiency (5), an immu-
nodeficiency condition ensues, i.e., in chronic granulomatous 
disease, due to defective NADPH oxidase, restoration of NET 
formation by gene therapy allowed the control of severe fungal 
infection (6).

Conversely, a subset of neutrophils, identified for their lower 
density on gradients, is more abundantly represented in systemic 
lupus erythematosus (SLE) patients and is more prone to NETosis.

Netting neutrophils have not only been identified in nephritic 
kidneys in systemic lupus but also in ANCA-associated vascu-
litides (AAV), suggesting that NET constituents may be involved 
in the induction of severe manifestations of these systemic 
inflammatory disorders.

NET may also contribute to the pathogenesis of human 
diseases in a more subtle way, making potential autoantigens 
accessible to the immune system and creating the milieu where 
an autoimmune response may be triggered and fueled.

In this review, we shall summarize the current knowledge 
accumulated in recent years that point toward an important 
contribution of NET to the breach of immunological tolerance 
and the maintenance of autoimmunity and chronic inflammation 
in rheumatoid arthritis (RA).

NeUTROPHiLS, CiTRULLiNATiON, 
AND NeTosis iN RA

Neutrophils are the most abundant cells in the synovial 
fluid of RA patients although they appear a less important 
component of the chronic synovial inflammatory infiltrate 
where neutrophils are believed to only transiently populate 
the synovial tissue. In RA, circulating but especially tissue-
infiltrating and synovial fluid neutrophils have all the features 
of activated cells, characterized by a prolonged survival 
and by the ability to secrete a wide range of inflammatory 
mediators including chemokines and cytokines (7). Neutrophil 
contribution to arthritis has been directly addressed in animal 
models such as antibody-induced arthritis (i.e., anti-collagen 
antibody-induced arthritis) or the transgenic KBxN mouse 
model. In these models, neutrophil depletion or interference 
with key signaling receptors (leukotriene B4 receptors, C5aR, 

CXCR1, and CXCR2) renders the mice resistant to disease 
induction. In RA, immune complexes engaging FcγRs activate 
neutrophils and trigger the release of ROS and proteases and 
the production of chemokines and cytokines. By means of 
these mediators, neutrophils recruit and modulate the func-
tion of other cell types, such as monocytes, dendritic cells, 
natural killer (NK), and lymphocytes, thus bridging innate 
and adaptive immunity (7).

A number of autoantibodies have so far been described in 
RA, but only anti-citrullinated proteins/peptides antibodies 
(ACPA) can be considered specific disease markers with suffi-
cient specificity and sensitivity to be used as diagnostic tests (8). 
ACPA are a partially overlapping family of antibodies specific 
for protein sequences containing the aminoacid citrulline, the 
deiminated form of arginine residues (9, 10). ACPA display 
extensive genetic diversity and are characterized by somatic 
hypermutation in their variable Ig domains, suggestive of an 
antigen-driven response (11).

Indeed, it appears that the immune response to citrullinated 
epitopes is initially restricted but expands with time from the 
preclinical, immune phase of the disease to the clinical onset 
(12). Specifically, in the pre-disease stage of RA, the breach of 
immune tolerance to citrullinated antigens appear to be triggered 
in genetically predisposed individuals by protein citrullination 
at putative extra-articular sites, such as the periodontal tissue 
during Porhyromonas gingivalis-induced periodontitis or in the 
lung of smokers (13–15), which gives rise to a restricted ACPA 
repertoire. However, with the progression to clinical disease 
onset, epitope spreading and further affinity maturation of ACPA 
occurs (16).

In established RA patients, the targets of ACPA include 
autoantigens (i.e., filaggrin, fibrinogen, vimentin, collagen II, 
and histones) as well as exogenous antigens (i.e., alpha-enolase, 
EBNA-1, and EBNA-2 proteins). All these proteins become 
target of ACPA after deimination (or citrullination), a post-
translational modification (PTM) catalyzed by the calcium-
dependent enzyme peptidyl arginine deiminase (PAD). PADs 
are inactive at intracellular calcium concentrations but can be 
activated by Ca2+ influx due to different stimuli: ionophore-
induced macrophage apoptosis (extracellular calcium influx) 
(17) or lipopolysaccharide treatment of neutrophils (intracel-
lular calcium mobilization). In neutrophils, PAD activation due 
to calcium influx takes place in the absence of caspase activation 
and triggering of apoptosis (18).

Furthermore, PADs can be released from the cell and become 
activated, as a result of the extracellular Ca2+ concentration (19).

Citrullination is a physiological process that regulates the 
homeostasis of several organs but is strongly amplified during 
inflammation. In RA, multiple proteins are citrullinated, especially 
in target organs of the disease, primarily the synovium but also 
in the lungs (20) and in myocardial tissue (21). In the RA joints, 
citrullinated fibrin is not only particularly abundant (22) but 
also several other citrullinated proteins including vimentin and 
aggrecan (23) are detectable. Citrullination is not an RA-specific 
process, and citrullinated proteins are present in several other 
inflammatory processes including the inflamed skeletal muscle 
tissue in myositis (24) and the synovium of spondyloarthritis 
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FiGURe 1 | A high number of citrullinated proteins is produced in neutrophils upon stimulation. Total proteins from A23187-stimulated (S) or unstimulated 
(NS) neutrophils were subjected to SDS-PAGE and western blotting and probed with an anti-modified citrulline human monoclonal antibody (anti-MC), NHS or RA 
sera, anti-citrullinated H3 (anti-H3cit), or anti-citrullinated H4 (anti-H4cit) polyclonal antibodies. Anti-MC h-mAb decorates a high number of proteins in stimulated 
neutrophils, part of which are recognized by RA sera. Proteins of 10–15 KDa are bound by anti-MC h-mAb, by RA sera, and by anti-H4cit or anti-H3cit antisera, 
thus suggesting that in stimulated neutrophils, H3 and H4 are citrullinated and become target of RA immune response, as previously showed (57, with the 
permission of BMJ Publishing Group, N° 3976570562524).
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patients (25). Currently, the existence of a citrullination profile 
typical of RA is still an unsettled issue.

Neutrophils contribute to protein citrullination in RA in sev-
eral ways. Cells contained in synovial fluid (mainly neutrophils 
and monocytes) are characterized by the citrullination of a wide 
variety of proteins. Neutrophil exposed to a variety of stimuli 
(cytokines, TLR ligands) contain deiminated histones (18). 
Moreover, both perforin and complement membranolytic path-
ways lead to pore formation in the membranes, augmenting the 
intracellular calcium concentration and favoring the activity of 
PAD enzymes (26). Thus, granzyme B/perforin and complement 
activation with membrane attack complex (MAC) formation are 
able to induce in synovial fluid neutrophils an extensive protein 
citrullination.

Although a large spectrum of citrullinated proteins is produced 
by neutrophils in RA joints, the immune response detected in RA 
sera is relatively restricted (Figure 1).

A major contribution to the generation of citrullinated 
proteins comes from the propensity of RA neutrophils from 
peripheral blood or synovial fluid to form NET, either spontane-
ously or after LPS stimulation (27). Indirect evidence for the 
higher spontaneous NETosis of RA neutrophils comes from the 
observation of Dwivedi et  al. who detected higher deiminated 
H3 content in RA as compared with controls (28). Moreover, 
exposure to RA immunoglobulins or purified ACPA induces 
NET formation, as already observed with autoantibodies of other 
specificities (see ANCA in AAV) (29), and netting neutrophils 

can be detected in synovial tissue and rheumatoid nodules from 
RA patients (27).

In synovial fluid, netting neutrophils release enzymatically 
active PAD2 and PAD4 that under the local conditions of 
inflamed joints may citrullinate extracellular proteins. Both 
soluble and NET-associated PAD can be detected, thus sug-
gesting that NET may act as a molecular scaffold for protein 
citrullination (19).

Several recent works have evaluated the mechanisms behind 
NET regulation by PAD4. A single nucleotide polymorphism 
(SNP) at position 1858 (C1858T) in the DNA encoding a 
protein tyrosine phospatase (PTPN22), which results in the 
conversion of an arginine (R620) to a tryptophan (W620), 
has risen interest due to its strong connection with RA (30). 
Interestingly, Chang et al. (31) have investigated the correlation 
between C1858T and PAD4 to test the hypothesis that PTPN22 
might negatively regulate protein citrullination independently 
from its phosphatase activity. They observed that PTPN22 is 
a strong inhibitor of PAD4 and that the presence of R620 is 
required for this inhibitory mechanism, which is lost in the 
presence of C1858T modification, thus resulting in an expan-
sion of the pool of citrullinated antigens and possibly in an 
increase in NET formation. Despite their results, Chang et  al. 
also highlighted that this SNP is not disease specific. Indeed, 
C1858T modification is present in other autoimmune diseases 
such as SLE or type 1 diabetes. Furthermore, only a subset of 
RA patients appears to carry this SNP.
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NET from RA patients is also able to activate synoviocytes, 
upregulating the production of pro-inflammatory cytokines and 
amplifying joint inflammation.

Thus, neutrophils have an active role in the inflammatory 
process of RA not only regulating the function of other immune 
or structural cells (32) but also being the source of and posttrans-
lationally modified autoantigens (33, 34).

An increased NETosis has also been observed in SLE. 
A   peculiar subset of neutrophils, identified by density gradi-
ents as low density granulocytes (LDGs) and more frequently 
detectable in active SLE, has a pro-inflammatory phenotype 
(35) and forms spontaneously NET (36). On the other hand, 
it has been demonstrated that SLE patients have a decreased 
ability to degrade NET (37). Upon exposure to NET or NET 
components, activated caspase-1 is produced in macrophages, 
leading to the production of active IL-1β and IL-18 (38), while 
plasmocytoid dendritic cells are activated and release IFNalpha 
(39). Antimicrobial peptides like LL37 (40) and acetylated his-
tones (41) are important mediators in these processes. Thus, 
NET represent on one side an important source of autoantigens 
fueling the production of anti-chromatin antibodies, on the other, 
a critical mechanism of disease induction, affecting several cell 
types and influencing the disease phenotype.

Increased NETosis has not only been described in type 1 
diabetes, correlated with autoantibody titers and beta cell damage 
(42), but also in type 2 patients, and a direct role of hyperglycemia 
in increased NETosis has been shown (43).

More recently, an increased number of netting neutrophils has 
been reported in type 1 and type 2 diabetes, and their direct role 
in retarding wound healing has been demonstrated (44, 45).

HiSTONe DeiMiNATiON iN NeUTROPHiLS

The core nucleosome, comprising an H3–H4 tetramer and two 
H2A/H2B dimers is not a static DNA packaging structure, but 
on the contrary is a dynamic complex, and the modulation of 
its structure is an important component of transcriptional 
regulation.

Modifications in the conformation of histones, highly con-
served in eukaryotic cells, from yeast to humans, are widely used 
in the dynamic modulation of chromatin structure and function. 
Indeed, evolutionary PTMs are more useful than amino acid 
substitutions.

So far, 20 types of histone PTMs have been described, which 
are able to modulate chromatin function by either altering the 
amino acid charge and consequently the inter-nucleosomal 
interactions or by enabling/inhibiting interactions with specific 
binding proteins external to nucleosomes but nonetheless essen-
tial for DNA regulation. Among all, one of the latest described is 
the deimination of arginine.

The first description of histone deimination was reported by 
the Yamada’s group (46). They observed that when HL60-derived 
granulocytes and peripheral blood granulocytes are stimulated 
with A23187 (a mobile ion-carrier known as calcium ionophore), 
their cytoplasmic PAD V deiminates histone H2A, H3, and H4 
(other than nucleophosmin/B23). The percentage of deiminated 

histones detected in these studies was 10% of the total histone 
content.

In 2004, Cuthbert et al. (47) and Wang et al. (48) reported that 
PAD4 (correspondent to PAD V described by Yamada) deimi-
nates histone H3 and H4 and has an impact on gene transcription 
by fine tuning the chromatin structure.

In particular, the group of Koutzarides (47) showed that PAD 
is activated when it is bound intracellularly by estrogen receptor. 
PAD deiminates histone H3 and H4 in different arginine located 
preferably in the N-terminal tail and increases the affinity of 
estrogen receptor for its target genes, thus resulting in a decrease 
of gene expression under the control of estrogen and thyroid 
hormones.

When PAD4 activity is inhibited by Cl-amidine, an increase 
in the expression of p53 and p53-related genes is observed as 
described by the group of Coonrod (48).

PAD4 is not the only PAD isoform involved in chromatin 
regulation. Indeed, Zhang et  al. (49) suggested that stimula-
tion of ERα-positive cells with 17β-estradiol (E2) promotes 
global citrullination of histone H3 arginine 26 (H3R26) on 
chromatin, catalyzed by PAD2 and not by PAD4, which instead 
deiminates H4R3.

Importantly, deimination may involve arginine but also 
methylarginine on H4 and H3 induced by PRMT1 and CARM1, 
respectively, thus dubbing PAD4 as a demethylating enzyme, 
thereby reverting the epigenetic modification of arginine 
methylation.

Moreover, deimination of the H2A/H2B dimer, probably 
involving three arginines (given the mass increase of 2.7  Da) 
stabilizes the dimer, making it less susceptible to harsh condi-
tions than the native complex, as demonstrated by mass spec-
trometry analysis with increasing concentration of ammonium 
acetate (50).

Like core histones, extranucleosomal linker histones can also 
be the target of PAD activity. Christophorou et al. (51) recently 
demonstrated that H1 can also be citrullinated. In pluripotent 
stem cells, the presence of citrullinated H1 is highly correlated 
with the adoption of a more open state of chromatin and with 
a high level of transcription of pluripotency genes. Conversely, 
inhibition of PAD4 activity and consequently of H1 citrullination 
leads to a more compact state of chromatin and to higher tran-
scription of differentiation genes. Dwivedi et  al. demonstrated 
that H1 is an additional substrate for PAD4, providing evidence 
that during NETosis a variety of linker H1 can be deiminated 
on multiple arginines. Notably, H1.2 is deiminated on arginine 
53, and the neo-formed epitope is thus recognized by specific 
anti-citrulline antibodies present in a small percentage of SLE 
and SS patients but not in RA (28).

Nevertheless the topic of histone deimination is still a tangled 
issue, given the high number of PTM co-expressed on histones 
and the limitations of the chemical and biological methods 
presently available for citrulline detection, which are not fully 
citrulline specific (52).

For instance, the antibody-detecting citrulline after chemical 
modification with antipyrine and 2,3-butanedione, the so called 
“Senshuo reagent,” also recognizes carbamylated proteins (53).
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This lack of citrulline complete specificity is also a character-
istic of some anti-unmodified citrulline antibodies commercially 
available.

To overcome this problem, recently Bicker et al. (54) suggested 
a rhodamine tagged phenylglyoxal derivative that can be used to 
directly visualize protein citrullination in a simple and highly 
sensitive quantitative method.

Besides technologies like mass spectrometry that allow deter-
mination of site-specific citrulline on proteins with high sensitiv-
ity but at high costs, the development of simple but nonetheless 
reliable and specific chemical or biological tools is a field still 
open to innovation.

Taken together, these results show that histone citrullination 
is a key regulatory mechanism for cell life, but in particular cells 
(neutrophils, eosinophils, mast cells, monocytes) histone deimi-
nation may lead to decondensation of the entire cell chromatin, 
thus affecting in an irreversible way the cell life and leading to 
ETosis (extracellular traps formation).

DeiMiNATeD HiSTONeS AND 
AUTOANTiBODieS iN RA

Core histones are the most abundant proteins in NET (55), and 
several reports indicate that deiminated histones are a target of 
antibodies in RA. Specifically, sera from RA patients decorate 
NET, co-localizing on chromatin with anti-deiminated histone 
H3 antibodies. Moreover, sera from patients with Felty’s syn-
drome (characterized by RA, splenomegaly, and neutropenia) 
display a preferential binding to deiminated histones by ELISA, 
which was further identified to be directed against deiminated H3 
using SDS-PAGE fractionated histones (56).

We have recently shown that RA sera, tested by immu-
noblot on acid-extracted proteins from calcium ionophore-
stimulated neutrophils, frequently react with a band of 
11 kDa. Its identity with deiminated H4 has been suggested by 
specific antibody recognition and demonstrated by MALDI/
TOF analysis. The recognition of deiminated H4 has been 
confirmed by ELISA using either the entire molecule or citrul-
linated peptides corresponding to H4 sequences. When RA 
sera are tested with proteins contained in NET, the reactivity 
with a band identified as H4 is again detected. Moreover, 
by derivatization of citrulline residues, it has been shown 
that H4 contained in NET and recognized by RA sera is 
deiminated on arginine 23.

Antibodies specific for H4-derived citrullinated peptides 
(HCP1 – H414–34 and HCP2 – H431–50) are present in 67 and 63% of 
established RA (57). Their frequency is lower in early RA (37.3 and 
48.5%, respectively), but they can be detected years before disease 
onset. As reported for other ACPA subtypes, anti-citrullinated 
histone antibodies precede symptom onset and predict disease 
development (58).

Similarly, antibodies against citrullinated sequences of H2A 
and H2B have been detected in healthy subjects that later develop 
RA. An increase in antibody frequency, together with the produc-
tion of inflammatory cytokines, predicts the imminent develop-
ment of clinically active RA (16).

Recently, citrullinated H2B has been detected as a target of 
autoantibodies in a high number of patients with established 
RA (59). RA synovial fluids contain high levels of citH2B and 
its immune complex, which have pro-inflammatory and immu-
nostimulatory capacity.

Most importantly, Sohn et al. (59) demonstrated the arthri-
togenic potential of citH2B by immunization in a mouse model, 
although it was necessary to generate a low-grade articular 
inflammation to observe this peculiar effect.

On the whole, the definition of “true ACPA” and their patho-
genic role in the initiation of arthritis is still a matter of debate. 
Production of citrulline-specific autoantibodies was non-detected 
in MRL-lpr/lpr and (NZB × B6)F1-hbcl-2-transgenic mice (60), 
and any arthritogenic role in Lewis and Brown-Norway rats was 
excluded (61). It has been later shown that immunization with 
citrullinated antigens like collagen II can enhance tissue injury 
and stimulate ACPA production in experimental arthritis (62, 
63), and that administration of anti-citrullinated fibrinogen in 
collagen-induced arthritis enhances tissue injury (62). Genuine 
ACPA, which is ACPA non-reactive with the correspondent 
non-deiminated antigen, are actually detectable in mice, but the 
production of these antibodies is highly dependent on the mouse 
strain, the antigen used for immunization and ACPA detection, 
and the immunization protocol (64). Further support for a 
pathogenic role of the immune response to citrullinated antigens 
derives from a recent report on the immunomodulatory potential 
of synthetic citrullinated antigens. In rats, a tolerogenic injection 
protocol using synthetic multiepitopes derived from common 
citrullinated proteins ameliorates adjuvant-induced arthritis, 
inducing an expansion of regulatory T cells and a reduction of 
Th17 cells (65).

eCTOPiC LYMPHOiD STRUCTUReS AS A 
SOURCe OF ANTi-NeT ANTiBODieS iN RA

Approximately 50% of patients with RA are characterized by 
the presence of clusters of infiltrating lymphomononuclear cells 
in the RA joint synovium forming ectopic lymphoid structures 
(ELS). Synovial ELS not only resemble secondary lymphoid 
organs (SLO) but they can also support a germinal center (GC) 
response. In particular, ELS are characterized by segregation of 
T and B lymphocytes, differentiation of high endothelial venules 
(HEVs), and networks of stromal follicular dendritic cells (FDC) 
(66, 67). Moreover, ELS are functional structures supporting 
the affinity maturation and clonal selection of autoreactive B 
cells bringing to the differentiation of plasma cells producing 
antibodies toward citrullinated antigens (68). Thus, ELS in the 
RA synovium can directly sustain autoimmunity by not exclud-
ing self-reactive B cells to affinity mature into the ectopic GC. 
This process is also antigen and disease specific. In RA, ectopic 
GC support the production of antibodies against citrullinated 
proteins (68–70), in other autoimmune diseases, they can sup-
port the production of antibodies targeting other autoantigens, 
i.e., in Sjögren’s syndrome ribonucleoprotein Ro/La (71, 72), in 
Hashimoto’s thyroiditis thyroglobulin and thyroperoxidase (73), 
and in myasthenia gravis acetylcholine receptor (74).
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Of relevance, we have recently demonstrated that up to 40% of 
recombinant monoclonal antibodies derived from single CD19+ 
synovial tissue cells (RA-syn-rmAbs) obtained from ACPA+ RA 
patients with functional ectopic GC display reactivity toward 
citrullinated histones (75). In particular, in this work we not only 
showed a strong reactivity of the RA-syn-rmAbs toward citrul-
linated histone H2A and H2B but also citrullinated vimentin 
and fibrinogen. Importantly, the reactivity against histones was 
confirmed in a cell-based NETs co-localization assay using either 
RA synovial fluid or circulating neutrophils as cell substrate. 
These antibodies were thus defined as anti-NETs antibodies. 
Moreover, the anti-NETs immunoreactivity was shown to be 

acquired within the synovial microenvironment in the ectopic 
GC through affinity maturation and intra-synovial diversification 
and was lost when the Ig H and L variable regions were reverted 
to their germline sequences (75).

As discussed above, NETs formation is critically dependent 
on histone citrullination, and citrullinated histones comprise 
around 70% of all NETs proteins. A proteomic analysis of NETs 
derived from healthy control neutrophils has identified at least 
25 different proteins that decorate these chromatin structures, 
such as citrullinated vimentin and α-enolase, which are also 
targets of ACPA, as discussed above (27). Therefore, a delay in 
the clearance of NET could form a reservoir of citrullinated and 

FiGURe 2 | Neutrophil NeTosis and anti-NeT antibodies in synovial eLS: a new model suggesting linking inflammation and autoimmunity to 
citrullinated proteins in RA. The figure illustrates the hypothetical evolution of ACPA from a pre-disease phase outside the joint to a disease phase associated 
with chronic synovial inflammation. In particular, it has been proposed that environmental factors such as bacterial infection in periodontal disease and smoking can 
lead to the formation of citrullinated antigens outside the joint which, in the context of HLA-DRB1 shared epitope, can lead to the production of ACPA prior to the 
clinical onset. However, the second inflammatory hit that occurs in the synovium is not clear yet. Here, we proposed that migration of neutrophils from the periphery 
followed by aberrant neutrophil NETosis during chronic inflammation within the RA compartment (synovial tissue and fluid) provide a continuous source of 
externalized citrullinated antigens, such as citH2A, citH2B, and citH4 histones that can be presented by antigen-presenting cells following engulfment of neutrophils 
nuclear fragments. Such process would sustain an antigen-driven autoimmune response toward citrullinated antigens within ELS in the RA joint resulting in the 
production of anti-NET autoantibodies, which may contribute to the perpetuation of chronic inflammation and autoimmunity (75).
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