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Edge betweenness centrality 
as a failure predictor in network 
models of structurally disordered 
materials
Mahshid Pournajar, Michael Zaiser & Paolo Moretti*

Network theoretical measures such as geodesic edge betweenness centrality (GEBC) have been 
proposed as failure predictors in network models of load-driven materials failure. Edge betweenness 
centrality ranks which links are significant, based on the fraction of shortest paths that pass through 
the links between network nodes. We study GEBC as a failure predictor for two-dimensional fuse 
network models of load transmission in structurally disordered materials. We analyze the evolution 
of edge betweenness centrality in the run-up to failure and the correlation between GEBC and failure 
propensity for both hierarchical and non-hierarchical networks exhibiting various degrees of disorder. 
We observe a non trivial relationship between GEBC and failure propensity, which suggests that the 
idea of GEBC as a useful failure predictor needs to be strongly qualified.

The identification of failure locations in materials is a generic problem in engineering mechanics. In a perfect 
material, failure is controlled by the largest stress concentration. Real materials are not perfect. They are disor-
dered, and therefore in fracture of a real material fluctuations and statistical considerations play a major role. 
Thus, the question which we have to address in a disordered material is the following: In which sense are the loca-
tions of catastrophic failure initiation, or of local damage accumulation, different from the rest of the material?

In this research work, we explore a method to predict failure locations in quasi-brittle materials by using 
topological measures to distinguish locations of enhanced local failure probability. In ideal elastic-brittle mate-
rials, failure occurs by nucleation and growth of a crack that separates the sample along a failure surface, thus, 
failure occurs strictly at the location of the largest stress concentration at the crack tip. In quasi-brittle materials, 
by contrast, damage accumulation is spread over a fracture process zone ahead of the crack tip. This behavior 
emerges as a consequence of disorder, which in this case refers to local fluctuations in failure thresholds. In 
materials with large disorder, this process zone may be extensive and increasing the size of process zone leads 
to a transition from localized to diffuse failure. Thus, statistical measures are required for failure prediction1–3.

Many quasi-brittle materials are also microstructurally disordered, i.e., characterized by heterogeneity in 
their structural arrangement. Recently, disordered mechanical meta-materials of this type have been developed, 
which exhibit remarkable properties such as high strength to weight ratio and auxetic behavior4. Mechanical 
properties and failure behavior of materials can, in fact, be controlled by tuning only topology and geometrical 
structure rather than material properties5. Hanifpour et al. showed that the mechanical properties and fracture 
mechanisms of disordered lattices are dependent on geometry6. They have shown that the topology of the lattice 
is crucial for the auxetic behavior of materials with negative Poisson’s ratio as even small changes in topology 
can significantly affect the Poisson’s ratio. More generally speaking, controlling geometry and topology is at the 
core of designing metamaterials with tailored mechanical response7.

In relation to tuneable failure properties, it has been shown that material strength and toughness can be 
improved by endowing materials with appropriately designed hierarchical (micro)structures8,9. Sen and Bue-
hler argue that through a hierarchical structure, mechanical properties of brittle materials can be improved to 
enhance fracture toughness10. Fuse- and beam network models have been used to analyze the effect of hierarchi-
cal organization on damage accumulation and modes of failure11–13. Results indicate that hierarchical (micro)
structure affects failure considerably, by suppressing crack propagation in favor of local damage nucleation and 
diffuse percolation.
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The effect of structural and geometrical properties on failure mechanisms can be investigated via network 
analysis approaches. Network analysis can be applied for analyzing various types of materials and structures that 
are representable as networks carrying loads14–16. The applicability of this method is not merely limited to systems 
that are topologically structured as networks of edges but may also encompass analysis of bulk material proper-
ties, including porous materials17 and biological matter18. There are various studies which apply network analysis 
methods to study technological infrastructures such as the internet, electrical supply networks or transportation 
networks. In view of the stability of such networks, nodes with large betweenness centrality seem to be key fea-
tures of the investigated systems19,20. Edge Betweenness Centrality (EBC) is a measure describing the frequency 
at which an edge lies on the shortest path between pairs of nodes in a network (for a mathematical definition, 
see our methods section). In the context of materials design, it has been proposed that potential failure locations 
can be identified by correlation to large values of edge betweenness centrality21. Recent studies seem to confirm 
that material failure occurs preferentially at locations, which exhibit large Geodesic (i.e., strictly relying on the 
shortest path metric) Edge Betweenness Centrality (GEBC) values22,23. These results demonstrate that assessing 
failure locations of a system not necessarily requires the calculation of the local loadings, e.g. in terms of locally 
stored elastic energy. Analogously, the relevance of the shortest-path metric and of the GEBC has been pointed 
out in problems of force transmission24, heat conduction25, and transport phenomena26.

Predicting failure locations, however, is inherently more complex than establishing that links that fail have 
high centrality, as mechanical failure is contingent on the interplay of local and global stress patterns and their 
evolution under load, and of local material properties and damage evolution27–31.

The goal of our study is establishing the usability of the GEBC metric as a structural predictor of future failure 
events, in models of quasi-brittle brittle materials of varying degrees of local-strength disorder. In particular, we 
consider both hierarchical and non-hierarchical structures. What network metrics set apart future failure loca-
tions before damage takes place? Do predictions improve as damage is accumulated and failure approaches? To 
answer these questions, we simulate loading and failure in our model, using the Random Fuse Model (RFM)32–34. 
We calculate GEBC of elements in the initial state of both hierarchical and random networks, investigate how 
GEBC statistics changes until global failure, and how these changes correlate with the propensity of single net-
work links to fail at a certain stage of the damage accumulation process.

Methods
In the following, we introduce the methods that we have adopted in our analysis. The table below contains the 
definitions of the main symbols and acronyms that we use in the rest of the paper, grouped thematically. 

GEBC Geodesic Edge Betweenness Centrality

RFM Random Fuse Model

HFN Hierarchical Fuse Network

SHFN Shuffled Hierarchical Fuse Network

RFN Random Fuse Networks

C GEBC of a given edge

N Number of nodes in a network

E Number of edges in a network

L Linear size of a system

n Number of hierarchical levels

(ij) Generic edge connecting nodes i and j

Vi Voltage (displacement) at node i

Iij Current (force) at edge (ij)

tij Current threshold of edge (ij)

η Failing edge index

β Failing edge index, counting from failure

Nf Final number of failed edges

(ij)η η-th failing edge

Iη Global current at failure stage η

Vη Global voltage at failure stage η

fη
Maximum current-strength ratio at failure 
stage η

ε Global strain

σ Global stress

σp Peak stress

εf Failure strain

εp Strain at peak stress

α Failure class

z Number of edges per sample in a failure class

�α
C GEBC mean deviation for class α
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Geodesic edge betweenness centrality.  GEBC is a network theoretical measure to characterize the 
relevance of edges for the transport properties of a network, and also to identify community boundaries in net-
work structures. We consider a network consisting of N nodes connected by E edges. Our network is undirected 
(each edge can be traversed in both directions) and unweighted (all edges count as a step of unit length along 
a path). Each edge connecting generic nodes i and j is identified by a generic index h, and its end nodes by the 
the ordered pair (ij). Under these assumptions, we compute path length simply as the number of edges along the 
path. The GEBC value C(h) of an edge h is then defined as

where , σab is the number of all shortest network paths connecting nodes a and b, and σab(h) is the number of 
all of these paths that pass through edge h.

In networks with a community structure, edges that connect different communities have high GEBC values 
since all of the shortest paths connecting nodes from the respective communities pass through those links. 
Therefore, by removing such edges, different communities of the network are separated from each other35.

From a computational perspective, direct implementation of Eq. (1) is prohibitively expensive for large net-
works, hence we use the algorithm formulated by Brandes36 in actual computations.

Construction of hierarchical (HFN) and non‑hierarchical (RFN) networks.  Fuse network models 
provide a computationally efficient way of studying load-driven failure processes. Such models consider net-
works of nodes connected by load-carrying edges. Each node i is associated with a scalar displacement-like 
variable (“voltage”, or “strain”) Vi while the connecting edges, which are assumed of unit length, are associated 
with scalar load variables (“currents”, or “stresses”): an edge (ij) connecting nodes i and j is envisaged as an 
ohmic resistor of unit conductance which, under a voltage difference between the two nodes, carries a current 
Iij = Vi − Vj . Coupled Kirchhoff equations for all nodes are solved to compute the global current/voltage pat-
tern. Once the current through an edge reaches a certain threshold, |Iij| ≤ tij , the conductance of the edge is set 
to zero – in the electrical analogue, the fuse burns. Such fuse network models are characterized by the topology 
of the network on the one hand, and by the physical properties of the edges (conductances and failure thresh-
olds) on the other hand.

In the present study, we shall assume that all edges have statistically equivalent properties, with unit length 
and unit conductance. Threshold currents are independent identically distributed random variables, which are 
assigned to the edges according to a Weibull distribution with unit mean37,38 i.e., the cumulative distribution 
function is

The Weibull shape parameter k (“Weibull exponent”) controls the statistical spread of the values of tij , with larger 
values of k pointing to narrower distribution. The choice of the Weibull distribution is common in the materials 
science literature and is motivated by physical reasoning34,39. Each edge can be considered a one-dimensional 
assembly of load carrying elements of heterogeneously distributed strengths. The global strength of the edge can 
thus be computed using arguments of statistics of extremes, and under relatively general assumptions tij follows 
a Weibull distribution such as in Eq. (2). As customary in statistical models of materials failure, the statistical 
spread of threshold values tij is a way to model local heterogeneity of a material, and thus “disorder”. The use of 
Weibull distributions allows us to tune disorder, by acting on k: systems with k ≈ 1 are highly disordered, whereas 
larger values of k point to a more homogeneous local strength distribution, and thus less disorder. We note that 
other definitions of disorder are possible. For instance, disorder may refer to topological heterogeneity (rather 
then response heterogeneity), as encountered in models for rod- and nanowire networks40–42.

In terms of geometry, we consider two-dimensional (2D) networks where we distinguish a loading direction 
(in the following, “vertical” direction) and a perpendicular direction (in the following, “horizontal” direction). 
The models are based on a square lattice of nodes sandwiched between top and bottom bus bars which ensure a 
constant potential difference across the network in the loading direction. The bus bars are connected by L = 2n 
vertical columns consisting of L− 1 nodes connected by L edges. Vertical edges are in the following denoted as 
load carrying edges, while the columns are denoted as load carrying fibers. In perpendicular direction, the load 
carrying fibers are connected by horizontal edges between adjacent nodes (denoted as “cross links”) to form a 
network structure. We consider two types of cross link patterns which lead to different global network topolo-
gies, henceforth denoted as hierarchical (HFN) and random (RFN) networks. We first deal with the HFN case.

Hierarchical network construction.  A (deterministic) hierarchical fuse network (HFN) of size L = 2n , where n 
is the number of hierarchical levels, can be constructed in an iterative “bottom-up” manner as shown in Fig. 1, 
top11. The resulting structure is sub-divided into a hierarchy of modules separated by load-parallel gaps (HFN 
panel in Fig. Fig. 1, green lines). Defining the length of a gap as the number of vertically adjacent missing cross 
links, we find that HFN exhibit a power-law type gap length distribution. From the point of view of GEBC, it is 
evident that this feature leads to high GEBC values in the cross links in between the longest gaps.

A non-deterministic version of a hierarchical network is obtained by starting from the HFN structure and 
then randomly reshuffling first the columns and then the rows of the adjacency matrix. This process, which 

(1)C(h) =
2

N(N − 1)

∑

a �=b

σab(h)

σab

(2)P(tij) = 1− exp

[

−

(

tij

t0

)k
]

, t0 = 1/Ŵ(1+ 1/k).



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:11814  | https://doi.org/10.1038/s41598-022-15842-y

www.nature.com/scientificreports/

preserves the power-law nature of the gap statistics and thus the hierarchical structure of the network, leads to 
a stochastic hierarchical fuse network, denoted as SHFN (Fig. 1, bottom center).

Random network construction.  A RFN of size L = 2n contains the same number of load carrying edges and 
cross links as the corresponding HFN, but now the cross links are distributed randomly over the available pairs 
of horizontally adjacent nodes (Fig. 1, bottom). Alternatively, one may start from a lattice and randomly remove 
the same fraction of cross links that are missing in the corresponding HFN. This leads to a non hierarchical, 
statistically homogeneous structure where load parallel gaps have an exponential size distribution.

Simulation protocol.  We simulate material loading and failure using the RFM. In this model the applied 
external potential resembles the mechanical displacement while the local current provides a measure of stress. 
Failure of network links occurs once the corresponding current exceeds a threshold value32,33. Our motivation to 
use the RFN is that this model not only is endowed with an evident network structure but has also been exten-
sively studied for representation of basic features of failure processes in disordered materials34, including mate-
rials with hierarchical microstructures11,12. In the simulations, we follow the standard quasi-static deformation 
protocol34. We use an index η to count the failing edges in the sequence of failure, starting from η = 1 . To con-
struct the failure sequence, a unit voltage difference is applied between the top and bottom bus bars, and all nodal 
voltages and edge currents are evaluated. At step η one identifies the edge (ij)η with the highest load-strength 
ratio, fη = maxij(Iij/tij) and sets the global voltage Vη to fη , the value at which this critical edge fails. The cor-
responding global load is evaluated as the average current per upper or lower boundary edge, Iη = fη

∑

ij∈B Iij 
where the sum runs over the set B of L edges that connect the network to the top or bottom bus bars. The values 
of fη , Iη , and (ij)η are stored. After setting the conductance of the critical edge to zero and increasing η → η + 1 , 
the computation is repeated to identify the next critical edge, etc. The process is terminated once the network is 

HFN RFNSHFN

Figure 1.   Network models. Top: Bottom-up construction of a HFN. A module of level zero is a load carrying 
vertical edge. A module of level 1 (generator) consists of 4 level-0 modules plus a load perpendicular cross link 
which spans the module. Higher level modules are constructed recursively by replacing in a module of level 
n, each level n− 1 sub-module by a level-n module. The resulting structure defines a module of level n+ 1 , as 
illustrated in the figure up to n = 4 . Circles indicate network nodes. Dark brown circles are boundary nodes, 
where boundary conditions are applied. Edges are represented as black segments connecting pairs of nodes. 
Boundary edges (triple segments) are not breakable and are excluded from the statistical GEBC study. Bottom: 
Examples of HFN, SHFN and RFN of L = 32 . Green lines indicate load parallel gaps11,13.
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disconnected between top and bottom, as indicated by a zero global conductance. The final value η = Nf  gives 
the total number of failed edges in the sample. The set of (Vη , Iη) pairs constitutes the stress-strain curve of the 
system – or I − V  characteristic – encoding its mechanical response to the applied load. A typical stress-strain 
curve is shown in Fig. 2 (thin blue line).

This simulation protocol mimics an idealized deformation process, where every time voltage is set to the 
exact value that produces failure of the weakest link (i.e. the link of highest load-strength ratio fη ), which ensures 
that only one link breaks at a time. From the sequence of link failures and the corresponding values of global 
voltage and current, the behavior under different, more realistic loading scenarios can be derived. For instance, 
one may assume that the system is loaded by monotonically increasing the voltage difference between the top 
and bottom bus bars – in what is known as displacement control. In this case, the I − V  characteristic and the 
sequence of broken links can be obtained from the quasi-static data by taking its voltage envelope, a procedure 
which we exemplify graphically in Fig. 2 (thick orange line)34. The new sequence of Vηi is the set of monotoni-
cally increasing values of V that we seek for the the displacement-control protocol, while the set of edges that 
are broken before the next increase in Vηi constitutes an avalanche. At every step, ε = Vηi/L is the global strain, 
and σ = Iηi/L the global stress. Similar considerations allow one to extract information for a scenario where the 
voltage difference is adjusted such as to impose an increasing global current through the network (load control).

In the present simulations, we consider the displacement-controlled scenario. Under this boundary condition, 
the global strain ε always increases, the peak stress of the failure sequence is σp = maxη Iη/L , and the failure 
strain is εf = maxη Vη/L = maxη fη/L (see Figure 2). In a typical simulation, the system first reaches the peak 
stress σp (and the corresponding strain value εp ) and successively fails (when strain reaches εf  ). The peak stress 
signals an important deformation stage notably in non hierarchical RFN structures, where it separates a regime 
of stable, statistically homogeneous damage accumulation from a failure regime which is dominated by damage 
localization leading to nucleation and growth of a critical crack34. In HFN structures, instead, a system that has 
reached and passed peak stress still exhibits damage accumulation and prevents the formation of critical cracks, 
a fact that may result in an extended post-peak regime11,12.

Results
Evolution of edge betweenness centrality statistics.  In Fig. 3, the edge betweenness centrality pat-
terns of different initially intact networks are plotted together with the associated GEBC statistics. Fig. 3a–c 
represent GEBC patterns where the edge midpoints are colored based on the edges C values.

Visual inspection of the patterns reveals distinctive differences between hierarchical and non hierarchical 
networks. In the hierarchical structures, GEBC is concentrated in the horizontal rows of cross links which con-
nect multiple modules in the load-perpendicular direction. In these cross-links, GEBC can assume very high 
values. At the same time, it may be noted that these links are, in the initial undamaged state of the network, load 
free, i.e., the network structure systematically ensures that the most central links are not strongly loaded. In the 
random RFN reference structures, on the other hand, the distribution of GEBC values is much more homogene-
ous and no distinctive GEBC patterns can be identified.

The probability distribution p(C) of edge betweenness centrality is shown for each network type in Fig. 3d, 
where for the stochastic SHFN and RFN networks the statistics have been averaged over the initial conditions of 
200 realizations. As expected from visual inspection of the GEBC patterns, the distribution of C values for RFN 
structures is much narrower than for their HFN and SHFN counterparts. Moreover, the distributions for HFN 
and SHFN exhibit a fat power-law tail towards high GEBC values where p(C) ∝ C−δ with δ ≈ 2.6 , a behavior 
which reflects the power-law statistics of gap lengths in the hierarchical-modular structure.

Under increasing load, accumulation of damage is accompanied by changes in the statistical distribution of 
GEBC. On the one hand, the probability of edge failure may depend on the edge’s C value, as suggested in the 
literature. On the other hand, the removal of an edge may change the GEBC values of other edges in the system. 

Figure 2.   Example of I − V  characteristic. Thin blue line: data from the quasi-static simulation protocol. 
Thick orange line: displacement-control envelope, representing the dependence of the global stress σ on the 
global strain ε in the case in which the voltage difference between the top and bottom bus bars is increased 
monotonically. The peak stress σp denotes the peak load that the system can carry, while the failure strain εf  
stands for the maximum strain that is encountered in displacement control, before the system breaks. The 
interval between peak load and failure identifies the post-peak regime.
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We have determined the evolution of the p(C) curve for different numbers of removed edges as shown in Fig. 4 
for SHFN and RFN structures with L = 128 , for which we have determined p(C) curves after removal of 100, 500, 
900, 1300 and 1700 edges. We note that the last number is close to global failure, which for the RFN structures 
occurs at about 1800 edge failures and for the SHFN at about 2100 failures.

For both SHFN and RFN structures, the evolution of GEBC statistics is characterized by a fattening of the 
distribution tails, at both low and high C values. The fattening of the high-C tail of the distribution is particu-
larly evident in RFN where near failure, the p(C) probability density functions develop outliers that extend the 
spectrum of C values to much higher levels than in the initial state. The reason for this – at first glance surprising 
– behavior is that RFN fail by nucleation-and-propagation of a critical crack which separates the system into two 

Figure 3.   Distribution of geodesic edge betweenness centrality across the network. Network edges coloured 
based on GEBC values. (a) HFN model, (b) SHFN model and (c) RFN model, all of size L = 128 , (d) probability 
distributions p(C) of edge betweenness centrality for the different network models. SHFN and RFN data are 
averaged over 200 network realizations. HFN and SHFN exhibit the same tail behavior.

Figure 4.   Evolution of GEBC statistics with accumulating damage. p(C) vs. C curves after 100, 500, 900, 1300 
and 1700 failed edges, for hierarchical SHFN (a), and non-hierarchical RFN (b). In all simuations 
L = 128, k = 3.
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parts11. Edges located near the crack tip thus acquire GEBC values which are much higher than any C values in 
the undamaged initial state and which increase with increasing crack length.

SHFN, on the other hand, fail by diffuse nucleation of damage without formation of a coherently propagating 
crack11. Here, the fattening of the high-C tail occurs in a gradual manner and without development of statistical 
outliers. Instead, we observe a slight decrease of the exponent δ as damage accumulates.

Correlation between GEBC and failure propensity.  Given that the GEBC statistics evolves in the run-
up to global failure, when correlating GEBC and failure propensity we think it is mandatory to account for 
the stage of the damage process at which GEBC is determined, and the stage when failure occurs. We note in 
particular that failure in non-hierarchical systems (akin to our RFN model) is often interpreted as a critical 
phenomenon34, where scale-invariant behavior is encountered at peak load, e.g., in the form of avalanches that 
are power-law distributed in size. Hierarchical systems (and in particular our HFN and SHFN models), instead, 
exhibit generic critical-like behavior: while one can clearly identify a peak load at a given εp , scale invariant ava-
lanches are encountered in broad range of ε < εp for any system size11, a behavior which is was also highlighted 
in problems of hierarchical percolation43,44 and spreading45. Our aim is thus to analyze how the GEBC evolves 
with damage in this complex scenario.

For every simulation, we re-enumerate the failed edges based on their position βs = Nf ,s − ηs in the failure 
sequence of sample s, counting backwards from the point of failure. Based on their βs values we divide the failed 
edges into classes C α = ∪s{z(α − 1) < βs ≤ zα} . Thus, each class consists of zM members where M is the 
number of simulated samples for a given set of parameters L, k. In the following we fix z = 25 , and in order to 
assess the role of system size we consider sizes L = 64, 128, 256 and the corresponding numbers of realizations 
M = 400, 200, 50 . Thus class 1 ( α = 1 ) contains the last 25 edges to fail in all samples, class 2 the 25 edges in 
each sample to fail before class 1, etc.

For each class α we compute the average ratio between edge failure strain and sample failure strain ε/εf  
and the fraction of samples that have passed their peak stress stage, P(εp < ε) . Fig. 5 shows the dependence of 
P(εp < ε) on the strain-to-failure 1− ε/εf , where we recover the phase-transition-like scenario described above. 
Both RFN and SHFN display a transition behavior, where P(εp < ε) acts as an order parameter. This represen-
tation allows us to monitor the statistics of GEBC as follows. For the network configurations at the beginning 
of each class, we determine the statistics of GEBC values of all surviving edges in the simulated samples. The 
average of all the C values of sample s when the damage process is at the beginning of failure class α is denoted 
as C̄α

s  and the values of the individual edges pertaining to class α as Cα
βs

 . Using these notations, we define class 
specific GEBC mean deviation �α

C by

A zero value of �α
C indicates that the edges failing in that class have, on average, the same GEBC as all edges in 

the sample, in other words, there is no correlation between GEBC and failure propensity. Positive values indicate 
that the failing edges have above-average GEBC, thus a positive correlation, whereas negative values demonstrate 
the opposite effect.

Figure 5 shows, for RFN and SHFN of different degrees of disorder, the evolution of the GEBC–failure cor-
relations, by plotting for the different failure classes �α

C values versus the respective mean strain-to-failure. A first 
comparison with the P(εp < ε) curves suggests that in all cases �α

C increases rapidly as the system approaches the 
peak load stage (the increase in P(εp < ε) : as damage progresses, GEBC exhibits higher correlation with failure 
propensity. Interestingly, while in RFN �α

C clearly tends to an asymptotic behavior as sizes increase (especially 
in the lower k cases), it is mostly size-independent in the case of SHFN. The biggest deviations are encountered 
in the low disorder limit ( k = 9 ), where both RFN and SHFN reach failure after breaking very few edges, thus 
providing worse statistics for this type of study.

To elucidate the correlations between GEBC and failure propensity in more detail, we study how the edges fail-
ing in each failure class distribute over the GEBC probability distribution. To this end, we divide the cumulative 
distribution of C into ten-percentiles Cn . Edges for which Cn−1 < C ≤ Cn then fall into the nth ten-percentile of 
the GEBC probability distribution. Similarly, we divide the strain-to-failure of a sample into ten-percentiles. We 
record for each strain ten-percentile the number of failed edges in each ten-percentile of the GEBC probability 
distribution. This is done in two different manners: Fig. 6 considers percentiles of the initial GEBC probability 
distribution prior to loading, it thus reflects the predictive value of the initial GEBC. Figure 7, by contrast, con-
siders percentiles of the GEBC probability distribution at the beginning of the current strain interval, it thus 
accounts for changes in GEBC due to damage accumulation.

The curves in Fig. 6 show that the damage accumulation process is strongly influenced by disorder as reflected 
by the shape factor of the threshold distribution. Samples with high disorder (low k) show a gradual accumula-
tion of damage which accelerates towards failure. In samples with low disorder, on the other hand, loading is 
mainly elastic and damage accumulation is concentrated close to the failure strain. Moreover, the behavior is 
more brittle in the sense that the total amount of damage accumulation is less (i.e., damage is more concentrated 
in a critical flaw). These effects are more pronounced in RFN than in hierarchical structures, which generally 
accumulate more damage before failure. These observations agree with the general picture of disorder-dependent 
damage and failure processes in hierarchical and non hierarchical structures as reported elsewhere13,46 where 
low disorder and absence of hierarchical structure promote a nucleation-and-growth scenario of brittle failure, 
whereas high disorder and hierarchical topology of the load carrying network promote diffuse accumulation of 
damage where failure occurs by damage percolation.

(3)�α
C =

1

zM

∑

s

∑

βs∈C α

[

Cα
βs

C̄α
s

− 1

]

.
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Turning to GEBC effects, we observe a general tendency that more edges fail in the upper percentiles of the 
GEBC probability distribution. As a exception to this general tendency, however, the highest GEBC ten-percentile 
accounts for the smallest amount of early damage accumulation in RFN structures, and also falls behind lower 
percentiles in SHFN structures. Only in the last stages of the failure process, typically beyond the peak stress 
stage, the highest GEBC ten-percentile dominates damage accumulation. This observation is valid irrespectively 
of whether one considers initial GEBC (Fig. 6) or current GEBC (Fig. 7).

Discussion and conclusions
Our investigation confirms the finding of significant correlations between edge betweenness centrality in network 
structures and the propensity for edge failure under load. Such correlations can even be found in hierarchical 
structures that are architectured in such a manner that, in the absence of failed edges, the most central edges are 
load free and thus protected against failure.

At the same time, our investigation of the evolution of GEBC in the run-up to failure and of the associated 
correlations with failure propensity indicates that failure is very far from being controlled by network topology 
alone. There is a statistically significant global correlation between GEBC and failure propensity in the sense that 
failing edges tend to have above average GEBC, and this correlation actually increases in the run-up to global 
failure. However, this general correlation does not necessarily mean that the edges with highest GEBC are most 
likely to fail – as we have demonstrated, under certain conditions (non hierarchical structure, low disorder), 
edges from the highest 10-percentile of the GEBC distribution are actually less likely to fail than edges from 
the lower percentiles. This scenario changes in the immediate vicinity of global failure: due to the reduction of 
stress redistribution pathways, more central edges carry higher loads and become more exposed to failure. Thus, 

Figure 5.   Correlation between GEBC and failure. Solid lines: Fraction of samples beyond the peak stress stage 
vs. reduced strain-to-failure, for networks of sizes L = 64, 128, 256 ; left: RFN, right: SHFN; thresholds are 
Weibull distributed with shape factors k = 2 (a), k = 3 (b) and k = 9 (c). Symbols: GEBC mean deviation vs. 
reduced strain-to-failure.
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changes in the local load pattern and correlated evolution of the GEBC pattern lead to behavior that cannot be 
fully captured in terms of a single statistical signature.

When considering claims that GEBC may serve as a tool for forecasting failure locations, another critical 
remark must be made. A generic problem in predicting materials failure resides in the fact that the actually 
damaged or failed volume usually amounts to a very tiny fraction of the system volume. In our simulations, the 
number of failed edges amounts, at the point of global failure, to between < 2% of all edges (non hierarchical 
structures of low disorder) and ≈ 20% of all edges (hierarchical structures of high disorder). This problem, which 
typically increases with sample size, implies that any test that is used as a forecasting tool must be very specific, 
otherwise the prediction will be swamped by false positives47. Taken as a single indicator, GEBC falls very short 
of this requirement. However, GEBC data might be one component of more complex prediction strategies based 
upon analysis of multidimensional data and their correlations using machine learning approaches31,47.

Figure 6.   Edge failure predictions for RFN and SHFN, based on initial values of GEBC. Number of broken 
edges as a function of the reduced strain-to-failure variable, for systems of size L = 128 . Each curve represents 
the number of broken edges at every strain-to-failure stage, from the set of edges in the ith percentile of the 
distribution of initial GEBC, p(C). Thresholds are Weibull distributed with shape factors k = 2 (a), k = 3 (b) and 
k = 9 (c).
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Data availability
The datasets generated and used during the current study are available from the corresponding author on rea-
sonable request.
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