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High endothelial venules (HEVs) are specialized postcapillary venules composed of
cuboidal blood endothelial cells that express high levels of sulfated sialomucins to bind
L-Selectin/CD62L on lymphocytes, thereby facilitating their transmigration from the blood
into the lymph nodes (LN) and other secondary lymphoid organs (SLO). HEVs have also
been identified in human and murine tumors in predominantly CD3+T cell-enriched areas
with fewer CD20+B-cell aggregates that are reminiscent of tertiary lymphoid-like
structures (TLS). While HEV/TLS areas in human tumors are predominantly associated
with increased survival, tumoral HEVs (TU-HEV) in mice have shown to foster lymphocyte-
enriched immune centers and boost an immune response combined with different
immunotherapies. Here, we discuss the current insight into TU-HEV formation, function,
and regulation in tumors and elaborate on the functional implication, opportunities, and
challenges of TU-HEV formation for cancer immunotherapy.

Keywords: high endothelial venules, tertiary lymphoid structures, tumor endothelial cells, tumor immunity,
immunotherapy, lymphotoxin beta receptor, sentinel lymph node, metastasis
INTRODUCTION

Tumoral Angiogenesis and Immune Escape
Solid tumors are heterogeneous and complex cellular ecosystems in which cancer cells shape their
microenvironment to their advantage by actively remodeling the local immune, vascular and
stromal compartments (1). Thus, tumors have also been considered as “wounds that never heal”
because they increasingly promote immunosuppression and neovascularization to sustain the rapid
growth of cancer cells (2, 3). Due to the anomalous proangiogenic signals, these tumors exhibit a
continuously growing tumor vasculature with a chaotic composition of venules, postcapillary
venules, arterioles, and capillaries. Consequently, angiogenic tumor vessels typically exhibit
abnormal structural and functional characteristics of poor vessel maturation, leakiness, and
staggered blood flow due to the elevated interstitial pressure (4–6) (Figure 1). With these
vascular aberrations, hypoxic, acidic, and necrotic regions appear in tumors that induce an
additional wave of proangiogenic signals, exacerbating disease because they support metastasis by
enabling tumor cell intravasation into the bloodstream and obstructing adequate delivery of anti-
cancer drugs (4, 7). Importantly, as part of the wound repair program, angiogenic factors including
vascular endothelial growth factor (VEGF) and angiopoietins also convey immunosuppressive
org August 2021 | Volume 12 | Article 7366701
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FIGURE 1 | Modulating vascular-immune interactions in solid tumors via TLS and HEV formation. (A) In solid tumors, vascular-immune interactions promote
immunosuppression and neovascularization to allow the growth of cancer cells. Continuous angiogenic sprouting of ECs leads to an abnormal, less mature tumor
vasculature with poor pericyte coverage leading to leakiness, dysfunctional blood flow and increased interstitial pressure which in turn promotes hypoxia and
necrosis. Importantly, tumor blood vessels convey immunosuppressive signals that inhibit CD4+ and CD8+ lymphocyte infiltration, DC maturation and activate
immunosuppressive regulatory T-cells (Tregs). Finally, innate immune cells, including TAMs and neutrophils, also suppress immunosurveillance and promote vascular
remodeling. (B) Tumoral TLS and HEV induction promote anti-tumor immunity. In an immune-stimulatory setting, the tumor vasculature becomes transiently
normalized with increased pericyte coverage, thus re-establishing blood flow and perfusion and reducing hypoxic and necrotic areas of the tumor. Due to the
enhanced functionality, vessels are angiostatic and more prone to recruit immune cells which can lead to the formation of HEVs. Subsequently, HEV-containing TLSs
form, with immune cell centers composed of CD4+ and CD8+ T, B lymphocytes, and mature DCs that promote an anti-tumor immune response. Tregs, TAMs, and
neutrophils are less abundant, thus no longer exerting an immunosuppressive function. Altogether, re-awakening and boosting the immune system via TLS and HEV
formation leads to reduced tumor cell growth and is ultimately beneficial for cancer progression. ECM, extra-cellular matrix; EC, endothelial cell; TLS, tertiary-
lymphoid structure; HEV, high endothelial venule; HEC, high endothelial cell; iDC, immature dendritic cell; mDC, mature dendritic cell NK, Natural Killer cell; TAM,
tumor-associated macrophage; RBC, red blood cell.
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signals. They reduce the expression of ICAM1 and VCAM1
lymphocyte adhesion molecules in endothelial cells that limit
vascular adhesion of lymphocytes and subsequent infiltration
into the tumor (8, 9). Further, VEGF can directly inhibit
dendritic cell (DC) maturation and activate antigen-specific
regulatory T-cells (8, 9). Tumor-recruited innate immune cells,
including macrophages, myeloid-derived suppressor cells
(MDSC), and neutrophils, are an additional source of
angiogenic and immunosuppressive factors to suppress
immunosurveillance and promote vascular and matrix
remodeling (Figure 1) (3, 10). Thus, tumors employ multiple
mechanisms of the tissue repair program to keep their
environment in a favorable, immunosuppressive and
angiogenic state.

TLSs in Tumors
The in situ detection of tumor-infiltrating lymphocytes has been
commonly used in the clinic because the degree of CD8 T cell
infiltration often correlates with patient survival (11). Such
histopathological studies revealed substantial lymphocyte
aggregates in some tumors of patients who had a
predominantly favorable outcome compared to those who did
not. These structures display variably organized T- and B cell
aggregates, sometimes even a T cell-rich zone with mature DCs
juxtaposing a B cell follicle with germinal center characteristics.
They are commonly located at the tumor interphase or in
adjacent areas to the tumor and entail blood and lymphatic
vessels and other stromal cells that are commonly observed in
secondary lymphoid organs (SLOs). Indeed, due to their
resemblance with SLOs, these ectopic lymphoid-like structures
have been coined tertiary lymphoid structures (TLS) and have
been observed in the pathological contexts of chronic
inflammatory and autoimmune diseases (12, 13); including
rheumatoid arthritis (14, 15), autoimmune thyroiditis (16),
inflammatory bowel disease (17, 18), and H. pylori gastritis
infections (19, 20). The reader can refer to (21–23) for their
detailed description. Under these conditions, TLSs are abnormal
structures of an active immune response against self-antigen,
promote autoimmune reactions, and subsequently aggravate the
disease. Since TLSs in solid tumors are mostly associated with
improved tumor response, it is conceivable that they are also sites
of activated lymphocytes generating an immune response (22).
This raises the question as to how lymphocytes can preferentially
infiltrate these locations despite the presence of an overall
immunosuppressive vascular environment.

TLSs, Like SLOs, Contain High
Endothelial Venules
While histopathological studies have extensively characterized
immune infiltrates and defined tumoral TLSs in human cancer
for the last 30 years (22), less is known regarding the vascular
components of tumoral TLSs. TLS vessels present a resemblance
to those in lymph nodes and other SLOs. Lymphatic vessels (LV)
have been identified around multiple TLSs and are recognized by
the typical lymphatic markers such as LYVE-1, PROX-1, and
podoplanin (24). LVs remove interstitial fluid (containing
Frontiers in Immunology | www.frontiersin.org 3
plasma proteins, lipids etc.) that extravasate from blood
capillary filtrates back into the blood circulation. They serve as
the main route for dendritic cells, antigens, and inflammatory
mediators into the lymph node (LN) and are essential players in
peripheral tolerance, immunosurveillance, and resolution of
inflammation (25). Only about a decade ago, Martinet and
colleagues made the first observations of unusual blood vessels
in human solid cancer samples which resembled high endothelial
venules (HEV) in SLOs (26). HEVs are morphologically and
functionally specialized blood vessels that deliver naï ve
lymphocytes from the bloodstream into the LN, in which
lymphocytes become primed and educated by antigen-
presenting cells (APC) (e.g., DCs) (Figure 1). Lymphocytes
exit then through efferent LVs, which lead into the blood
vascular system via the thoracic duct to circulate the cells
through the body (27–31).

These observations beg the question as to whether HEVs and
LVs in TLSs play comparable roles and are regulated similarly to
those in LNs. In this review, we will focus on recent advances in
HEV formation, function, and regulation in the tumoral context.
From observations in human cancer, we will highlight studies of
intratumoral HEVs in several mouse cancer models and describe
the morphological and functional HEV alterations in
premetastatic and metastatic LNs. Finally, we will discuss the
functional implication, opportunities, and challenges of tumoral
HEV formation for cancer immunotherapy.
PHYSIOLOGICAL HEVS IN SLOS

Characteristics of HEVs
HEVs develop from postcapillary venules in LN, Peyer’s patches
(PPs), and other SLOs but are absent in the spleen. In SLOs,
adaptive immune responses are initiated through the active
recruitment of naïve lymphocytes, which is facilitated by
HEVs. In contrast to the common flat appearance of
endothelial cells (EC), ECs lining HEVs have a cuboidal
appearance with a prominent glycocalyx for which they have
been coined “high” endothelial cells (HEC) (27, 32). HEVs form
a thick basal lamina and are encompassed by a perivascular
sheath of fibroblastic reticular cells (FRC) (33–36). Due to their
specialized function as lymphocyte portals, HEVs express high
levels of the ligand of L-Selectin/CD62L, the classic homing
receptor for T and B-lymphocytes. L-Selectin ligands are
sialomucins that entail sulfated mucin-like glycoproteins,
including podocalyxin, endomucin, CD34, nepmucin, and
GlyCAM-1 (rodent-specific) (30, 37). Importantly, sialomucins
bind more effectively L-selectin after HEV-specific post-
translational modifications by sulfotransferases and
glycosyltransferases, including Carbohydrate Sulfotransferase 4
(CHST4) (38, 39) and Alpha-(1,3)-Fucosyltransferase VII (FucT-
VII) (40, 41), which are highly expressed in HECs but not in
other endothelial cells. Thus, antibodies have been developed
that recognize HEVs by binding to these modified sialomucins.
The most prominent antibody MECA79 (“Mouse Endothelial
Cell Antigen-79”) detects sulfated peripheral node addressin
August 2021 | Volume 12 | Article 736670
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(PNAd) that is decorated with the carbohydrate element 6-sulfo
sialyl LewisX, (sialic acida2-3Galb1-4(Fuca1-3(sulfo-6)
GlcNAcb1-R) (37, 42, 43). Aside from these HEV-specific
characteristics, HEVs express different vascular addressins in
an SLO-dependent manner. While PNAd+ HEVs are mainly
found in peripheral LNs (pLN), HEVs in PPs express mucosal
addressin cell adhesion molecule-1 (MAdCAM-1) but not PNAd
(44). Notwithstanding, neonatal pLN-HEVs first express
MAdCAM-1 for 3-4 weeks after birth before they switch to the
PNAd+ phenotype concomitant with HEV maturation,
suggesting that MAdCAM-1 is an immature HEV marker in
pLNs (45). Finally, mesenteric, sacral, and cervical LN-HEVs
display expression of both PNAd and MAdCAM-1 vascular
addressins (46, 47). It is noteworthy that most of our
knowledge of HEV biology is derived from studies on pLNs.

HEVs Facilitate the Transmigration
of Lymphocytes
The detailed migration process of lymphocytes across
endothelial cells, including HEVs has been thoroughly studied
by intravital microscopy (48, 49). This multistep event of
lymphocyte tethering, rolling, sticking, and transmigration is
tightly regulated by a coordinated interplay of adhesion
molecules, integrins, and chemokines (37, 45, 48, 50).
Migration of naïve and central memory T cells, as well as naïve
B cells, starts with the binding of L-selectin to the 6-sulfo sialyl
LewisX on the HEV walls. This tethering interaction reduces
lymphocyte rolling and enables binding to the chemokines
CCL19, CCL21, CXCL12, and CXCL13, which are presented
on the luminal surface of HEVs, via CCR7, CXCR4, and CXCR5
receptors (51–53).

The chemoattractant-chemoattractant receptor axes that
predominately govern the trafficking of lymphocytes into and
out of LNs are CCL19/CCR7 and sphingosine 1-phosphate
(S1P)/sphingosine 1 receptor 1 (S1PR1), respectively (30, 54).
Blood-borne lymphocytes downregulate S1PR1 and use CCR7
signaling to adhere to HEVs for transmigration. During their LN
residency, recirculating lymphocytes reacquire S1PR1 and
attenuate their sensitivity to chemokines. Eventually,
lymphocytes exit the LN by entering the cortical or medullary
lymphatics, a process that depends upon S1PR1 signaling. Upon
entering into the lymph, lymphocytes lose their polarity,
downregulate their sensitivity to S1P due to the high
concentration of S1P, and upregulate their sensitivity to
chemokines (55). However, many of the details of lymphocyte
transmigrat ion across endothel ia l barr iers remain
poorly understood.

The integrin lymphocyte function-associated antigen 1(LFA-
1/aLb2) on lymphocytes interacts with the ICAM1 and ICAM2
adhesion molecules on the HEV surface, which leads to a firm
arrest and subsequent paracellular or transcellular lymphocyte
transmigration into the LN parenchyma (56, 57). Another
notable characteristic of HEVs is their ability to form HEV
pockets in which lymphocytes can be temporarily retained before
their egress (56, 58). Although their function remains obscure, it
is tempting to speculate that they exhibit specific lymphocyte
Frontiers in Immunology | www.frontiersin.org 4
communication centers and/or form when an overflow of
lymphocytes arrives.

While HEVs typically recruit naïve and central memory
lymphocytes in homeostatic LNs (30), HEVs of inflamed LNs
become phenotypically remodeled, expand, and are capable of
recruiting novel immune subsets into the LN. Specifically, they
upregulate P-selectin, E-selectin, and CXCL9 and appear less
mature because they induce gene expression of MAdCAM-1
while reducing Fut7 and Glycam1 transcription (59–61).
Inflamed LN-HEVs can therefore recruit activated/effector T
cells, plasmacytoid DCs, monocytes and neutrophils, whereas
their capability to enroll naïve lymphocytes is not compromised
(59, 60, 62–64)

HEV Regulation and Signaling in
Lymph Nodes
The development of LNs is a well-organized event that involves
the crosstalk between the hematopoietic lymphoid tissue inducer
(LTi) cells and the mesenchymal lymphoid-tissue organizer
(LTo) cel ls (65). It is thought that HEVs develop
concomitantly with the accumulation of LTi cells to form the
lymphoid anlagen; however, the developmental ontogeny of
HEVs in lymphoid organs as well as the stepwise
transcriptional program of HEV specification has not been
clearly identified so far (66). The most important signaling
pathway that has been directly linked to developmental LN-
HEV formation and maintenance is the lymphotoxin- (LT)/
lymphotoxin b receptor (LTbR)–signaling pathway (67–69).
LTbR is a member of the TNF receptor superfamily which
binds the LTa1b2 heterotrimers or LIGHT (“homologous to
lymphotoxin, exhibits inducible expression and competes with
HSV glycoprotein D for binding to herpesvirus entry mediator, a
receptor expressed on T lymphocytes”) also known as TNSF14
(tumor necrosis factor superfamily member 14). Although the
LTbR can activate both the canonical and non-canonical NFkB
pathways, the non-canonical axis appears to be preferentially
activated, specifically through the NIK kinase and the RelB/p52
transcriptional complex (70). Deletion of LTbR in ECs impaired
the formation of HEVs in LN and subsequently LN
homeostasis (69).

More recently, the S1P/S1PR1 axis has also been proposed to
regulate HEV integrity in an autocrine manner and to facilitate
HEV-DC interactions in LNs (71), thus suggesting the
involvement of alternative signaling pathways regulating LN-
HEV maintenance.
HIGH ENDOTHELIAL VENULES IN
HUMAN CANCER

Martinet and colleagues made the first and formal observations
of ectopic HEVs in human cancer samples (26). They observed
MECA79+ vessels by immunohistochemistry in a subset of
human primary and naïve melanoma and breast, ovarian,
colon, and lung tumor sections. They further confirmed with
additional human HEV-specific marker HECA-452 (72) and
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human HEV-specific antibodies G72 and G152 (73) that these
vessels phenotypically resembled LN-HEVs and thus, termed
them tumor HEVs (TU-HEV). Importantly, TU-HEVs were
specifically located within lymphocyte-rich areas and
frequently contained luminally-attached or extravasating CD3+

cells. Indeed, the density of TU-HEVs in breast cancer was a
predictor of CD3 T cell and B cell infiltration, suggesting that
TU-HEVs, like their homologs in LNs, are major gateways for
lymphocyte infiltration (26). Importantly, the density of TU-
HEVs positively correlated with disease-free, metastasis-free, and
overall survival rates in a retrospective cohort of primary breast
cancer patients, thus suggesting their implication in the
formation of immune-active TLS-like structure (74).

To date, these seminal results have been confirmed by other
groups in breast cancer (75) and extended to a broader panel of
other human cancers (76–79). Thus, MECA79+ vessel-
containing lymphocyte aggregates were described in renal (80),
gastric (81), pancreatic (82–84), and head and neck carcinomas
(85–88), among many other cancer types (89).

Although these studies defined a common TU-HEV
phenotype by MECA79-positivity across the different human
tumor types, they also described a more heterogeneous
phenotype in comparison to that of LN-HEVs. For instance, in
lung cancer, MECA79+ blood vessels were also shown to express
high levels of MAdCAM-1 (78). Additionally, in human
melanoma (90) and oral squamous cell carcinoma (85, 88), the
typical thick MECA79+ vasculature with cuboidal ECs coexists
with thin-walled MECA79+ vessels displaying a flattened EC
morphology and dilated lumens. It is conceivable that these
observations could reflect different degrees and stages of TU-
HEV maturation, thus implying functional differences among
intratumoral MECA79+ vessels. Indeed, plump TU-HEVs, that
are surrounded by substantial lymphocyte aggregates are thought
to be more mature than some isolated and flat TU-HEVs located
at the periphery.

Since these observations are, however, only correlative, there
is still a debate to which extent TU-HEVs are necessary to
actively influence cancer progression in TLSs or TLS-like
structures. Certainly, there are discrepancies between studies
that are not only inherent to the considered tumor type but
also dependent on intratumoral heterogeneity of TU-HEVs and
TLSs, respectively. For instance, TU-HEVs can be present in T
cell- and DC-rich areas (74, 91) while also present in B cell-rich
areas (92, 93). Moreover, TU-HEVs appear to be more frequent
than TLSs in breast cancer (26, 94) and melanoma (79, 91). Thus,
it appears that the presence of TU-HEVs does not always
correlate with bona fide intratumoral TLSs that inherit a
“strict” definition but instead with a broader spectrum of TLS-
like structures (23).

As the correlation of spontaneous TU-HEV and TLS
formation with a positive outcome is preferentially observed in
specific cancer types, one can envision that these naïve cancers
have obtained a permissive environment for ectopic HEV
formation. In line with this idea, “hot” tumors may be more
prone to TU-HEV formation while “cold” tumors remain
anergic (95).
Frontiers in Immunology | www.frontiersin.org 5
This further raises the question as to whether cancer therapies
and specifically those generating an immune-stimulating
reaction, can instigate HEV and TLS formation. So far, only a
few reports in breast (75, 96) and colorectal (97) tumors have
correlated the presence of tumoral TLSs/HEVs with a favorable
response to combined radio- and chemotherapy (22). Given the
plethora of ongoing clinical trials evaluating the effects of
immune checkpoint inhibitors (ICI), it is of great interest to
evaluate thoroughly TU-HEV/TLS formation and its correlation
with patient response. In support, higher TLS density in tumors
correlated with an improved response to ICIs and increased
survival in melanoma and soft-tissue sarcoma patients (92,
93, 98),

In summary, there is accumulating evidence from these
clinical data that the formation of HEV-containing TLSs can
be a marker of good prognosis but whether TU-HEV formation
is a prerequisite for instigating TLS formation and antitumor
response in human cancer remains obscure.
LESSONS LEARNED FROM HEVS IN
MURINE TUMORS

Spontaneous TU-HEV Formation
Why do some tumors spontaneously form HEVs while others do
not? One clue comes from the observation that spontaneous
HEV formation in tumors of mice was only observed when
tumor cells expressed strong antigens, i.e., the commonly used
OVA-antigen peptide in tumor cell lines or the viral oncoprotein
simian virus SV40 large T-antigen to drive endogenous tumor
formation in pancreatic islets (99, 100). The presence of such
antigens suggests that strongly antigenic tumors may have a
more robust lymphocyte activity and, thus, be better poised to
instigate TU-HEV formation.

So far, observations of spontaneous TU-HEVs in mice are
rare and only reported in B16-OVA melanomas, LLC-OVA lung
carcinomas and Rip1Tag5 (RT5) pancreatic neuroendocrine
premalignant lesions (99–101). In line with the requirement of
a tumor antigen to elicit a robust immune response, expression
of SV40 Tag in the beta cells of pancreatic islets in RT5 mice does
not commence before 10–12 weeks of age, leading to the
recognition of Tag as a nonself protein (102). In contrast,
pancreatic beta cells express Tag in Rip1Tag2 (RT2) mice
already during embryonic development, probably due to
differences in the site of integration of the transgene, and thus
become tolerant to Tag (103). As a consequence, Tag expression
in RT5 mice causes a severe immune response with intense
infiltration of CD4 and CD8 T cells, B cells, and macrophages in
hyperplastic RT5 islets, while islets of RT2 mice display a paucity
of lymphocytes and do not become inflamed. This leads to the
formation of immature MAdCAM-1+ HEVs in inflamed RT5
hyperplastic islets but not in non-inflamed RT2 hyperplastic
islets suggesting that immune cell infiltrates are required to
initiate HEV formation although they appear not to be fully
developed (100). Similarly, the spontaneously formed TU-HEVs
in B16-OVA melanoma and LLC-OVA exhibited much weaker
August 2021 | Volume 12 | Article 736670
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PNAd positivity compared to LN-HEVs likely reflective of an
immature HEV phenotype similar to that observed in RT5
hyperplastic islets (99, 100). What these data also imply is the
necessity of reactive immune cells to enable HEV formation
in tumors.

Immune Cells Regulate HEV Neogenesis in
Tumors
The first evidence that hematopoietic cells can regulate LN-
HEVs in adulthood comes from the study of Moussion and
Girard (68). Depleting CD11c+ DCs in adult CD11c-DTR mice
by administering diphtheria toxin (DTX) degenerated HEVs and
reverted them to a MAdCAM-1+ immature stage reminiscent of
neonatal HEVs. Congruently, CD11c+ DCs are crucial for the
switch from MAdCAM-1 to MECA79/PNAd expression during
neonatal development of peripheral LNs (104). Consequently,
due to the reduced HEV ability to recruit lymphocytes into the
LN, LN size and cellularity was reduced (68).

Observations of DC-LAMP+ mature DCs in close proximity
of TU-HEVs in human breast cancer and melanoma tissue led to
the initial proposition that DCs may also regulate HEVs in
cancer (74, 105, 106) (Figure 2). Nevertheless, most of the
studies in mouse tumor models point to a more predominant
role of lymphocytes. Spontaneous HEVs did not occur in B16-
OVA tumors grown in Rag2-/- mice, lacking B and T
lymphocytes but appeared when Rag2-/- mice were
reconstituted with CD8 T cells before tumor implantation (99).
Similarly, CD3 and CD8 T cell depletion led to a reduction of
TU-HEV frequency and lymphocyte infiltrates in the pancreatic
RIP1-Tag5 and a methylcholanthrene-induced fibrosarcoma
tumor models (107, 108). The role of CD8 T cells as critical
inducers of TU-HEV formation is further underscored by the
observation that depletion of immunosuppressive CD4 T
regulatory (Treg) cells renders tumors permissive to TU-HEV
and TU-TLS neogenesis (108–110) (Figure 2). Noteworthy,
FoxP3+Treg cell depletion with DTX using the FoxP3-DTR
system, also disrupted the physiological LN-HEV network
(108). DCs were, however, not required to form HEVs in Treg-
depleted fibrosarcomas because HEVs were unaffected upon DC
depletion (108). Although CD11c is a marker traditionally
associated with pan-DCs, the expression of CD11c often
overlaps in macrophages and DCs in non-lymphoid tissues
(111). Therefore, the depletion of CD11c+ cells in the before-
mentioned study may not be restricted to the intratumoral DCs.
So far, it remains unknown whether Tregs may directly suppress
HEV neogenesis by interacting with tumor endothelial cells or
indirectly by inhibiting CD4 and CD8 lymphocytes and creating
an immunosuppressive environment.

Although lymphocytes appear to be the main regulators of
TU-HEV neogenesis, innate immune cells have also been
proposed as potential candidates (107, 112). Particularly,
CD68+ macrophages have also been shown to facilitate TU-
HEV formation in the Rip1Tag5 tumor model by producing the
TNF receptor ligands TNFa and LTa (107). Moreover, in a Kras
(G12D)-driven mouse model of lung cancer, the depletion of
GR1+ neutrophils increased the intensity of MECA79 staining in
Frontiers in Immunology | www.frontiersin.org 6
CD31+ ECs, indicating that Gr1+ neutrophils are negative
regulators of TU-HEVs (112) (Figure 2).

What are then the signaling pathways in ECs that instigate
HEV formation in tumors? So far, it appears that the signaling
cues and mechanisms involved in LN-HEV formation are also
involved in tumoral HEV neogenesis. Several studies point to the
lymphotoxin (LIGHT, LTa1b2)/LTbR pathway as the prevailing
signaling cue in inducing TU-HEVs. Treatment with the LTbR
agonist or the LTbR ligand LIGHT, which had been targeted to
the tumor vasculature by fusing it to a vascular zip code peptide,
induced MECA79+ HEVs in various mouse tumor models,
including those of breast cancer, neuroendocrine pancreatic
tumors, and glioblastomas (107, 113–115).

Important to note is that anti-angiogenic immunotherapy in
the form of anti-VEGF plus anti-PDL1 induced the
noncanonical LTbR pathway in ECs of breast and pancreatic
endocrine tumors, which enabled HEV formation, enhanced
lymphocyte infiltration, and prolonged survival of tumor-
bearing mice (113). The addition of agonistic LTbR antibodies
to anti-VEGF plus anti-PDL1 therapy, thus fully activating the
LTbR signaling cues, further increased HEV numbers and
maturation in breast and pancreatic cancer and sensitized
glioblastoma to the therapy. Combination treatment with
LTbR antagonists, however, reversed these effects (113,
114) (Figure 2).

Further, TNFR1 stimulation via TNFa or LTa3 seems to be
accountable for spontaneous TU-HEV formation independent of
LTbR. While LTbR-Ig blockade did not alter spontaneous HEVs
in B16-OVA melanomas, HEVs were absent in these tumors
when grown in TNFR1/2-/- mice or Rag2-/- mice replenished
with LTa-/- CD8 T cells (99). In a carcinogen-induced
fibrosarcoma model, Treg depletion increased numbers,
proliferation, and activation of TNFa-producing intratumoral
CD8+ T cells, which then induced the formation of intratumoral
HEVs in a TNFR-dependent manner. Blockade of TNFR with
TNFRII.Ig, anti-TNF antibodies, or via anti-LTa treatment
reduced TU-HEV areas specifically in Treg-depleted
fibrosarcomas, while LTbR-Ig had no effect (108). Targeting an
LTa fusion protein to the tumor site has been shown to be
another strategy to successfully induce MECA79+ HEVs and
lymphoid aggregates in the tumor microenvironment. In this
study, electron microscopy observations confirmed the HEV
morphology of around 30% of the blood vessels. Moreover, the
therapy was efficient in eradicating subcutaneous B78-D14
melanomas and their established pulmonary metastases (116).
These observations are in line with a study conducted in chronic
inflammation where the transgenic expression of LTa under the
control of a rat insulin promoter generated structures resembling
lymph nodes concerning the cellular composition and HEV
detection (117).

Another potential signaling molecule involved in HEV
formation is IFNg produced by NK cells and T cells because it
stimulates the expression of the CXCR3 ligands CXCL9 and
CXCL10, and the CCR7 ligand CCL21 as well as ICAM-1 in ECs,
which all together induce T cell recruitment and infiltration
(118). Although IFNg is not sufficient to directly induce HEV
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FIGURE 2 | Mechanisms of TU-HEV formation and maintenance. Several treatment regimens in mouse model studies have demonstrated the transition from TU-
ECs to TU-HECs expressing PNAd; including 1- the combination of anti-VEGFR2 anti-angiogenic therapy with anti-PD-L1 immunotherapy, 2- the single activation of
the LTbR axis with LTbR agonists, 3- the triple combination of anti-VEGFR2 anti-angiogenic therapy with anti-PD-L1 immunotherapy and LTbR agonists, 4- the triple
combination of anti-VEGFR2 anti-angiogenic therapy with anti-PD1 immunotherapy and Myct1 siRNA-mediated silencing, 5- engineered EC-specific VTP peptides
expressing LIGHT and 6- fusion protein antibodies delivering LTa to the tumors (antibody-LTa fusion protein). TU-HECs are regulated by specific immune cell types
and signaling cues within the tumor microenvironment; including 1- CD3+/CD8+ T cells via TNFa, LTa3 and IFNg, 2- FoxP3+ Tregs that either directly regulate PNAd
expression or indirectly by exerting an immune-suppressive effect on CD3+CD8+ T cells, 3- NK cells via LTa3 and IFNg, 4- CD11c+ DC-LAMP+ DCs via membrane-
bound LTa1b2, 4- LIGHT-induced CD68+ macrophages via TNFa and 5- GR1+ neutrophils. TU-EC, tumoral endothelial cell; TU-HEC, tumoral high endothelial cell;
PNAd, peripheral node addressin; DC, dendritic cell; NK, Natural Killer cell.
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neogenesis (99), it may have supporting functions in instigating
TU-HEVs by increasing lymphocyte influx. This may have
important implications because the signaling pathways
described above, induce vessel normalization. During this
process, excessive immature tumor vessels become pruned,
lymphocyte adhesion molecules increase, and pericytes align
more closely to and stabilize the vasculature which leads to
enhanced blood flow and T-cell infiltration. Vessel-targeted
LIGHT normalized blood vessels in murine primary tumors
and metastases (107, 114, 115, 119) and antiangiogenic therapy,
alone and in combination with checkpoint blockade induced
vessel normalization and boosted by further activation of the
LTbR signaling using a LTbR agonistic antibody (113). In
addition, a recent study has shown that genetic deletion of
Myct1, a direct target gene of ETV2, was sufficient to
normalize tumor vessels and induce TU-HEV formation in
subcutaneous sarcoma, concomitant with antitumoral
immunity. Myct1 deletion combined with immunotherapy was
successful in increasing long-term survival in anti-PD1
refractory breast cancer model (120).

Thus, although it remains obscure whether vessel
normalization is a prerequisite for HEV formation, it is
tempting to speculate that vessel normalization in tumors is a
trigger to enhance lymphocyte infiltration which in certain areas
reaches a signaling threshold that could lead to HEV neogenesis.

What these studies also reveal is that the complex process of
TU-HEV development likely involves multiple pathways and
signals, and requires further investigation. It is plausible that a
process similar to the proposed two-step differentiation model of
HEV formation in chronic inflammation, may take place. In
accordance with this model, TNFR1 is required in the initial
stages of chronic inflammation and induces flat MECA79+ blood
vessels, whereas the LTbR pathway is involved for the additional
maturation and acquisition of a fully mature HEV phenotype
(121, 122).

Do Tumoral HEVs Generate Specific
Immune-Reactive Centers?
Naïve T cells are thought to become primed and activated by
tumor antigen-presenting DCs, expand and differentiate in the
tumor-draining lymph node, also referred to as sentinel LN,
from which they home to the tumor site (123).

Interestingly, analysis of T cell clonality and homing indicate
that TU-HEVs can facilitate infiltration of naïve T cells via the
selectin L/CD62L axis into the tumor (99, 116). T cell activation,
therefore, not only occurs in the sentinel LN, but may also take
place at the tumor site (22, 116, 124). The recruitment of naïve T
cells into the tumor, bypassing the activation in the sentinel LN,
may help to speed up and favor the generation of an in situ
antitumoral response but also requires antigen presentation by
DCs and other APCs for T cell activation (125). Congruently,
TLSs have been shown to facilitate interactions between T cells
and tumor-antigen-presenting CD11c+ DCs in a genetically
engineered mouse model of lung adenocarcinoma. Staining of
g-tubulin (a marker of the microtubule-organizing center
[MTOC]) depicted immunological synapses between DCs and
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CD8 T cells, in the tumors, which in turn upregulated the early
activation marker (CD69) and became proliferative (109). The
concept that naïve T cells may be educated within the tumor has
also been observed in human tumors. Mature LAMP+ DCs
closely associated with CD3 T-cells have been identified in
juxtaposition to TU-HEVs in human breast cancer (74).
Importantly, dense aggregates of MHC-II+ APCs and CD8 T
cells have been identified in human renal cell carcinomas (RCC).
These niches contain TCF1+PD1+stem-like CD8 T-cells that
undergo slow self-renewal and give rise to terminally
differentiated CD8 T cells. They provide the proliferative burst
and thereby foster the antitumoral immune response seen after
anti-PD1-immunotherapy (126, 127). Interestingly, these T cell-
enriched nests appear to be active immune centers that closely
resembled the extrafollicular regions of the lymph node and were
quite distinct from the typical B cell-enriched-identified TLSs
found in RCCs which did not exhibit closely interacting DCs and
T cells (126). Whether TU-HEVs are also an integral part of
these APC niches remains to be investigated.

Besides therapeutically exploiting TU-HEVs as lymphocyte
gateways, they also offer a “route” to deliver chemotherapeutic
agents. One of the key features of the pancreatic ductal
adenocarcinoma (PDAC) is the dense and poor vascularized
microenvironment which limits the penetrance of drugs to the
site of the tumor. TU-HEVs have been identified in the stroma of
human PDAC implanted in a humanized mouse model (84).
Targeting TU-HEVs with MECA79-Taxol-nanoparticles has
been shown to improve efficacy in delivering Paclitaxel to the
tumor, resulting in tumor growth inhibition (84). Similarly, in
preclinical models of breast as well as pancreatic tumors, an
antibody (MHA112)-based strategy has been used to directly
deliver the chemotherapeutic agent to tumors via targeting of
TU-HEVs (128). Given these results, combining HEV-inducing
strategies with HEV-specific deliverables of chemotherapeutical
agents may represent a synergistic approach for future
cancer therapy.
HEV ALTERATIONS IN SENTINEL LNS

LNs are critical for immune surveillance, providing a highly
organized hub to obtain optimal conditions for naïve
lymphocytes to interact with APCs. In response to certain
stimuli such as infection and inflammation, the draining LNs
undergo considerable expansion, known as lymphadenopathy, to
accommodate the increased need of lymphocyte priming. This
process is characterized by increased blood flow and lymphocyte
trafficking while the lymphocyte exit via lymphatics is
temporarily blocked (129–131). These changes increase the
probability of antigen presentation and ensure the initiation of
the appropriate antigen-specific immunity. LN expansion is
orchestrated by transient LN-vasculature remodeling. Upon
inflammation, HEVs quickly expand by undergoing clonal
proliferation of a putative progenitor cell and succumb upon
cessation of inflammation to return to their homeostatic stage
(132). LN-HEV plasticity and remodeling upon inflammation
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are controlled by extensive reprogramming and have been
comprehensively investigated at the transcriptional level (59).

Sentinel LNs are considered the major site at which the anti-
tumoral immunity is initiated, but they also represent a
privileged site for cancer cell dissemination (133) (Figure 3).

Similar to inflamed LNs, sentinel LNs also undergo vascular
remodeling (88, 134–137). Sentinel LN-HEVs often show
dramatic morphological changes, shifting from thick-walled
blood vessels with a small lumen to a thin-walled vasculature
with an enlarged lumen and abundant red blood cells (RBC).
Moreover, HEVs of sentinel LNs can display loss in PNAd/
MECA79 expression in association with dysregulation of CCL21
in perivascular FRCs (134–136). Given the importance of PNAd
and CCL21 in the recruitment remodeling of naïve T cells and
initiation of the adaptive response, the dysregulation of these
components in sentinel LNs may indicate impaired
LN functionality.

Noteworthy, experiments in nude mice have shown that these
dramatic changes occur only in tumor-reactive LNs and not in
endotoxin-induced lymphadenopathy, indicating that the
mechanism of vascular reorganization in sentinel LN may
differ from that of inflammatory-reactive LNs. Importantly,
these studies have also shown that T cells are not the major
players in the vascular remodeling of sentinel LN (135).

HEV abnormality has been observed in sentinel LNs of breast
cancer, melanoma, and squamous cell cancer patients (88, 134–
137). As these modifications occur before detection of metastatic
cancer cells in the sentinel LN (135, 136), it is conceivable that
tumor-emanating factors induce LN-HEV alterations to
establish a pre-metastatic niche permissive for tumor cells. One
could also speculate that the presence of enlarged HEV lumen
engorged with RBC, could enhance oxygen and nutrient delivery
for arriving cancer cells.

The majority of cancers invade the sentinel LN via lymphatic
vessels before spreading to distant organs (138). Until recently, it
was expected that metastatic cancer cells would also leave the LN
through the efferent lymphatic vessels, the LNs of higher
echelons, and the thoracic duct (139) (Figure 3). However, two
recent seminal studies in mice have revealed that cancer cell
dissemination can occur through the LN-HEVs by intravital
microscopy. In the first study, murine 4T1 breast cancer cells
intra-lymphatically infused into the subcapsular sinus of pLNs,
migrated towards the LN center, then localized around HEVs,
transmigrated through HEVs, and subsequently disseminated
into the lungs. Importantly, lymphatic ligation did not
compromise the capability of cancer cells to colonize the distal
organs (140). Similar results were obtained in the second study,
in which, using time-lapse multiphoton intravital microscopy,
the photo-converted metastatic cancer cells were first seen in the
subcapsular sinus and later invaded the cortex of the LN where
they transmigrated into HEV+ vessels. Metastatic cancer cells
were then eventually detected in the systemic blood circulation
and in the lungs (141).

Overall, these experimental studies revealed that LN-HEVs
serve as a gateway not only for lymphocyte trafficking into the
LN but can also enable tumor cell intravasation into the
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bloodstream. Concomitantly, HEV alterations into flattened,
dilated blood vessels occur that have lost their morphological
and likely functional properties and may likely be induced by the
tumor. To this end, the implication of tumor-emanating factors
in HEV remodeling in the premetastatic niche in LNs is
unknown (Figure 3). In addition, whether tumor cell
dissemination in human LNs also occurs through HEVs,
remains to be clarified, but substantial LN-HEV remodeling
preceding LN metastasis has also been shown in human breast
cancer patients (136). The premetastatic LN alterations also
provide an opportunity for identifying biomarkers of vascular
changes in sentinel LNs that could be used to predict disease
progression in human cancer (136).
CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Since sufficient infiltration of intratumoral T cell effector cells in
malignant lesions is a major hurdle in anti-cancer
immunotherapy (11, 142), therapeutic induction of HEVs
represents a compelling approach to boost effective
transmigration of lymphocytes into the tumor. This may
increase the benefits of immune checkpoint blockade and
improve cell-based immunotherapies using chimeric antigen
receptor (CAR) T cells in solid tumors. An additional and
specific advantage of therapeutic HEV induction may be the
creation of immune-reactive niches that spurt T cell activation
and differentiation and replace exhausted and dysfunctional
effector T cells.

Although these are tantalizing concepts, they also raise several
questions about the tumor-specific ontogeny, regulation, and
function of HEVs. Studies in mouse tumor models have provided
the first insight into the cellular and molecular regulators of HEV
formation and maintenance, partly resembling those of LN-
HEVs and partly depicting disparities. The varying degrees of
HEV morphology in tumors may also affect HEV functionality,
as shown in sentinel LNs, raising concerns about the implication
of HEVs in recruiting tolerance-promoting lymphocytes in
tumors. Indeed, TLSs are correlated with a worse prognosis in
some tumor types, including hepatocellular carcinomas, RCC
lung metastases, and head and neck cancer, although the reasons
are unknown (22, 143, 144).

An accumulation of Tregs has been observed in TLSs of a lung
cancer mouse model (109). However, Treg depletion enhanced
HEVs and improved an immune response in these tumors (109),
as also observed in fibrosarcoma (108). Recent single-cell
transcriptomic analyses of homeostatic and inflamed LNs (59,
145) have provided a specific transcriptional signature of LN-
HEVs that has shed some light on LN-HEV-specific signals
(146). Comparing transcriptomics between LN-HEVs and TU-
HEVs will be important to inform about general and tumor-
specific HEV characteristics and functions. To this end, HEV
development in LNs and in tumors remains obscure. When LNs
become inflamed and enlarged, HEVs quickly expand in part by
progenitor cell propagation but by what means HEVs arise from
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A B

FIGURE 3 | Remodeling of LN-HEVs during cancer metastasis. (A) Metastasis is a stepwise process leading to the dissemination of cancer cells from the primary
tumor towards preferential metastatic sites. Most commonly, metastatic cancer cells use the lymphatic system to exit the primary tumor, reach a proximal sentinel
LN, circulate into adjacent LNs and eventually drain from the thoracic duct into the systemic venous system, thus spreading towards metastatic sites (e.g., lungs).
Metastatic tumor cells in the LN parenchyma can also directly intravasate into the bloodstream via LN-HEVs and disseminate towards metastatic sites. (B) This
alternative route involves an important remodeling of the sentinel LN already at the pre-metastatic stage, in preparation for the arrival of cancer cells. Overall, the
sentinel LN expands, as evidenced by 1- expanded T and B cell compartments in the paracortex and cortex, respectively, and by 2- an extensive
lymphangiogenesis. Importantly, HEVs are remodeled as 1- HECs switch to a PNAdlow flat phenotype with thin-walled basal lamina and enlarged lumens filled with
numerous RBCs, and 2- CCL21 expression is dysregulated in FRCs, suggesting impaired lymphocyte-recruiting functions of sentinel LN-HEVs. Whether tumor cells
from the primary site secrete specific factors preparing this pre-metastatic niche prior to their circulation into the sentinel LN remains to be elucidated. Altogether, the
expanded sentinel LN and remodeled HEVs allow the direct spreading of cancer cells from afferent lymphatics into the venous bloodstream during the metastatic
stage. LN, lymph node; HEV, high endothelial venule; HEC, high endothelial cell; RBC, red blood cell; FRC, fibroblastic reticular cell.
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tumor endothelial cells and expand is unknown. Such
knowledge, however, will be crucial to therapeutically switch
on and off HEV formation in a controlled manner in malignant
lesions to avoid potential autoimmune reactions.

Finally, in situ HEV model systems can help to dissect the
cellular and molecular circuits controlling TU-HEV neogenesis.
To date, nonetheless, HEVs cannot be cultured and maintained
ex vivo, thus rendering mechanistic analyses difficult. Indeed,
several attempts to culture purified HEV-ECs have failed due to a
rapid loss of their unique features once plated as monolayers
suggesting the necessity of additional cell types, factors and
specific growth conditions (147–150). One attractive model
system may be bona fide vascular organoids that have been
successfully generated from human ES cells and fully recapitulate
the heterogeneity and functionality of vessels in vitro and in vivo
upon transplantation (151–153). Other systems involve
microfluidics (154) or EC reprogramming (155) which could
serve as more relevant platforms to induce and maintain HEV
ex vivo.

High endothelial venules display a unique specialization of
blood endothelial cells and due to their explicit interaction with
lymphocytes, only arise in specific lymphoid organs during
development. The fact that they can also ectopically develop in
Frontiers in Immunology | www.frontiersin.org 11
non-lymphoid organs during chronic (tumor) inflammation in
the adult is again linked to their intimate relationship with
lymphocytes, which may go far beyond mere lymphocyte
transportation. Looking into the future, further investigations
of TU-HEV blood vessels are timely to better comprehend their
nature and functionality because enabling their therapeutic
induction in tumors offers promising avenues, not only for
immunotherapies, but also for other types of cancer treatment.
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