
INTRODUCTION

Multiple system atrophy (MSA) is a sporadic neurodegenerative 
disease characterized by a combination of  parkinsonism, 
cerebellar ataxia and autonomic dysfunction [1]. The distribution 
of pathology classically encompasses three functional systems 

in the central nervous system – the striatonigral system, 
olivopontocerebellar system and autonomic system – impacting 
on movement, muscle control, blood pressure, heart rate and 
bladder function [2,3]. MSA affects equally both men and women 
primarily in their 50s, although it can strike as early as 30s. The 
progression of disease is rapid and patients are confined to bed 
within 5 years of onset of symptoms and death results within 
~9 years [4]. MSA shares some similarities with Parkinson’s 
disease (PD) with overlapping clinical presentation of motor 
impairments, and as such, MSA is commonly misdiagnosed as 
PD [1,5]. However, in comparison to PD, MSA is relatively rare, 
with a prevalence rate of 3~4 per 100,000 [6-8]. The aetiology 
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of MSA is largely unknown, although studies point to a possible 
genetic component [9,10], as well as environmental factors capable 
of increasing susceptibility [5,11]. Based on current information 
the sequence of pathological events of MSA is now recognized 
as abnormal protein redistributions in oligodendrocytes first, 
followed by myelin dysfunction and then neurodegeneration and 
loss of neurons (Fig. 1). 

NEUROPATHOLOGY OF MSA

Current understanding of  MSA neuropathology is that 
both grey and white matter pathology occur in the form 
of  neuro degeneration, g l iosis , myelin loss  and axonal 
degeneration [12]. These changes also typically occur in specific 
anatomical locations that include subcortical regions within 
the olivopontocerebellar pathway (e.g. inferior olives, pons, 
cerebellum), striatonigral pathway (e.g. striatum and substantia 
nigra), and in autonomic nuclei within the spinal cord and 
brainstem [13,14]. Furthermore, although earlier studies reported 
the cerebral cortex was spared in MSA, later studies have reported 

decreased neuronal density in the primary and supplementary 
motor cortex of MSA patients [14,15], as well as atrophy occurring 
in regions within the frontal lobe [7]. Therefore, as exemplified by 
these studies, neuropathological changes occur widely throughout 
various subcortical and cortical regions in MSA brains. 

However, while these neuropathological changes are commonly 
observed in post-mortem brains of MSA patients [13], the most 
consistent pathological hallmark of MSA is glial cytoplasmic 
inclusions (GCIs) (Fig. 2). These inclusions are variably shaped, 
filamentous protein aggregates that form in the cytoplasm of 
oligodendrocytes, which are thought to play a primary role in 
the pathogenesis of MSA [12], as their anatomical distribution 
correlates with regions where neurodegeneration occurs 
[16,17]. In terms of their constituents, GCIs are composed of a 
multitude of proteins including ubiquitin, the heat shock protein 
αβ-crystallin, and the microtubule proteins, α- and β-tubulin 
[18]. However, the predominant constituent is the α-synuclein 
protein [19,20]. Normally, α-synuclein is mainly localized to the 
presynaptic terminals of neurons as a non-phosphorylated, soluble 
and unfolded monomer [8,21]. α-Synuclein is putatively involved 
in regulating synaptic plasticity [22] and presynaptic events [23,24], 
although gaps in our understanding of its normal physiological 
role still remain. Nonetheless, the presence of these α-synuclein 
aggregates thus places MSA in a category of diseases known as 
α-synucleinopathies alongside PD and Lewy body dementia, 
which are similarly characterized by abnormal α-synuclein 
aggregates.  

α-SYNUCLEIN PATHOLOGY AND NEURODEGENERATION

In contrast to the neuronal localization and normal structure 
of  α-synuclein in healthy brains [8,21], during the MSA 
disease process, the localization and structure of α-synuclein 
is vastly altered. As suggested by the location of GCIs in MSA, 

Fig. 1. A putative pathogenic pathway of multiple system atrophy.

Fig. 2. The pathological hallmark of MSA is the presence of glial 
cytoplasmic inclusions (GCIs) in the brain.
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α-synuclein becomes aberrantly translocated to the cytoplasm 
of oligodendrocytes. However, the mechanism by which this 
occurs remains unknown, although it is possible neurons 
secrete α-synuclein into the extracellular environment, which is 
subsequently taken-up by surrounding oligodendrocytes [12,25-
27]. Nonetheless, α-synuclein also undergoes multiple structural 
modifications including phosphorylation at serine residue 129, 
while also developing an ordered β-sheet-rich secondary structure, 
with the latter being facilitated by an increase in surrounding 
lipid concentrations [28-31]. Together, these structural changes 
are thought to promote the self-aggregation of α-synuclein into 
intermediate species (e.g. oligomers and protofibrils) that precede 
the formation of mature fibrils [32,33].  

The formation of GCIs and intermediate species of α-synuclein 
also cause alterations in α-synuclein function in MSA. That is, 
rather than contributing to the regulation of synaptic plasticity 
and presynaptic events [22-24], α-synuclein appears to contribute 
towards neurodegeneration, albeit the precise mechanism(s) 
that induces this remains unclear.  Potential mechanisms 
suggested by in vitro studies of other α-synucleinopathies include 
oxidative stress and neurotoxicity evoked by mitochondrial 
and lysosomal damage [34,35], as well as impaired transport 
of crucial presynaptic proteins (e.g. synapsin-1), which cause 
synaptic dysfunction to contribute towards neuronal death [36]. 
Furthermore, another hypothesis posits that annular shaped 
intermediate species form abnormal membranous pore-like 
channels that are capable of altering membrane permeability and 
reducing the integrity of presynaptic vesicles [37]. This is then 
subsequently thought to promote dysregulated ion homeostasis 
and dopamine release respectively, to cause the excessive release of 
dopamine and ions such as calcium into the extracellular space, to 
ultimately result in neurodegeneration induced by neurotoxicity. 

The downstream consequences of these α-synuclein induced 
mechanisms of neurodegeneration have also been illustrated 
through transgenic mice overexpressing human α-synuclein 
(e.g. under the control of the murine myelin basic protein 
promoter). More specifically, these mice demonstrated selective 
accumulation and aggregation of α-synuclein in oligodendrocytes 
that preceded neurodegeneration, as well as gliosis, myelin 
loss and axonal abnormalities [38-40]. The severity of these 
neuropathological features also correlated with the degree of 
α-synuclein overexpression, whereby mice expressing higher 
amounts of α-synuclein exhibited more severe neuropathological 
changes and vice versa, ultimately providing further evidence for 
a causative relationship between α-synuclein and downstream 
neuropathological changes. Furthermore, these consequences 
from α-synuclein accumulation and aggregation also appeared 

sufficient to produce motor impairments and induce death, 
which draws similarities with the clinical profile of MSA patients 
[1,38,39].  

Therefore, given the apparent ability of α-synuclein to cause 
a variety of neuropathological abnormalities that are similarly 
observed in MSA patients, alterations in its localization and 
function have been incorporated into the current working 
hypothesis of MSA pathogenesis. This working hypothesis suggests 
that the initiating culprit of MSA pathogenesis is the uptake of 
α-synuclein into oligodendrocytes, and its subsequent aggregation 
into GCIs. The latter is facilitated by p25α, which is normally 
involved in myelination and stabilization of microtubules [41], but 
re-localized from myelin to cell soma during the early stages of 
MSA, where it acts as potent stimulator of α-synuclein aggregation 
to promote GCI formation [42,43]. The relocation of p25α and 
the formation of GCIs then leads to oligodendrocyte dysfunction, 
with the retraction of myelinating processes. Consequently this 
demyelination causes myelin loss-induced axonal and neuronal 
degeneration that subsequently account for the onset of clinical 
symptoms [12]. 

MYELIN PROTEIN FUNCTION 

Another important, yet under-studied aspect of  MSA 
pathogenesis is myelin dysfunction. Myelin is a large modified 
membrane produced by oligodendrocytes that encases the axons 
of all neurons. It provides the insulation required to facilitate 
rapid signal transmission between neurons [44]. Critical to 
myelin function is membrane-associated proteins. These include 
proteolipid protein (PLP), which spans the myelin membrane 
bilayer, and myelin basic protein (MBP), which is located on the 
cytoplasmic surface of myelin membranes [45,46]. Together PLP 
and MBP constitute the majority of the total myelin proteins 
(85%). Furthermore, they are both located in the compact portion 
of myelin, which is where adjacent myelin layers become fused 
in forming the central segment of the myelin sheath, as opposed 
to the non-compact portion where layers do not fuse and form 
the periphery of the myelin sheath [47]. Here, PLP and MBP 
function to ensure the proper compaction of myelin layers and 
thus stabilize the ultrastructure of compact myelin [44]. More 
specifically, PLP stabilizes the intraperiod line (IPL) to maintain 
a separation between myelin layers, whereas MBP stabilizes the 
major dense line (MDL) to facilitate the adhesion of these layers 
[48,49].  

Maintaining the necessary levels of MBP and PLP for the proper 
compaction of myelin is integral for normal myelination. This has 
been demonstrated through previous studies investigating the 
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myelination capabilities of PLP and MBP mutant mice, whereby 
mice exhibited defects in myelin compaction corresponding to the 
specific ultrastructure they are known to stabilize. That is, in both 
MBP and PLP mutant mice that have undetectable levels of the 
proteins, a complete absence of the MDL and IPL was observed 
respectively [50,51]. The detrimental effects resulting from the 
absence of these ultrastructures was subsequently exemplified 
by myelin instability in the form of dysmyelination (i.e. myelin 
is formed, but in an aberrant pattern) and hypomyelination 
(i.e. inability to form adequate amounts of myelin) in both 
PLP and MBP mutant mice [50,52]. Notably however, these 
abnormalities were more pronounced in MBP deleted mice 
[46,50], thus suggesting either MBP holds a more important role 
in myelination, or that other unknown molecules may compensate 
for the functional and structural consequences associated with 
the loss of PLP to consequently reduce the severity of myelin 
abnormalities [44]. Nonetheless, in conjunction with the trend of 
increasing myelination throughout life [53] and the requirement 
of continual myelin turnover to maintain neuronal networks 
even at older ages [54], it is clear retaining adequate levels of PLP 
and MBP is essential for both the maintenance and formation of 
myelin throughout life. Thus, reductions in the amount of these 
proteins in myelin could account for myelin dysfunction observed 
in MSA brains. 

As suggested by the aforementioned studies, genetic mutations 
are one way in which the levels of MBP and PLP can be reduced. 
However, given the sporadic origin of MSA, this may be unlikely 
in MSA and hence, a more relevant mechanism could be through 
the disruption of their synthesis and subsequent transport from 
oligodendrocyte cell body to its myelin. The appropriate synthesis 
and subsequent transport of myelin constituents is of utmost 
importance, as different compartments of myelin (e.g. compact, 
non-compact) have different compositions required for executing 
their functions [55]. Furthermore, similar to their contrasting 
functions in myelination, the synthesis and transport pathways 
of MBP and PLP are also considerably different. That is, MBP 
mRNA is transcribed in the nucleus of oligodendrocytes and 
directly transported as mRNA granules towards myelin [56,57]. 
The protein synthesis of MBP then occurs de novo in myelin to 
prevent non-specific interaction during its transport to myelin, 
due to the highly adhesive properties of MBP in protein form 
[58,59]. In contrast, PLP protein is synthesized in the ER before 
being packaged into vesicles for transport to the Golgi apparatus 
[55,60]. From here, PLP indirectly reaches the myelin membrane 
by associating with a lipid raft domain of the oligodendrocyte 
membrane [61,62].  

PROTEIN-LIPID INTERACTION IN MYELIN

Originally implicated in the transport of apical epithelial cell 
membrane constituents [61], lipid rafts are involved in the sorting 
of myelin constituents, as observed with PLP [60]. However, this 
is with an exception of MBP, as it does not appear to interact 
with lipid rafts for transport to myelin [55,59,63], although the 
MBP transcriptional regulator, fyn, is localized in lipid rafts 
[64,65]. Hence instead of transport, this suggests lipid rafts may 
indirectly influence the production of MBP by acting upstream 
of the protein itself.  Nonetheless, the transport of PLP to myelin 
is assisted by lipid rafts being enriched in particular lipids, 
namely sphingomyelin and cholesterol, as studies have indicated 
protein-lipid interactions are essential for proper PLP transport. 
This includes the study by Kramer-Albers and colleagues [66], 
who used mice with missense mutations in the PLP gene that 
subsequently interfered with the ability of PLP to interact with 
cholesterol. Interestingly, this lack of a PLP-cholesterol association 
in mice consequently impeded their ability to transport PLP to 
lipid rafts [66]. Thus, since lipid rafts are required for the delivery 
of PLP to myelin, these findings were thought to disturb the 
delivery of PLP to myelin, to ultimately prevent the downstream 
compaction of  myelin layers necessar y for myelination. 
Furthermore, in vitro studies have also demonstrated the depletion 
of cholesterol is capable of abolishing PLP-lipid raft associations, 
with the inhibition of sphingomyelin synthesis exerting similar 
consequences [67]. Hence, disruption of these interactions, 
whether it is through alterations in myelin proteins or disrupted 
brain lipid homeostasis, could initiate myelin impairment in MSA. 
Therefore, with regards to the latter, given that members of the 
ATP-binding cassette (ABC) transporter family regulate brain 
lipid homeostasis, aberrant function in ABCA members could 
potentially contribute to myelin impairment and loss in MSA. 

ATP-BINDING CASSETTE (ABC) TRANSPORTERS 

ABC transporters are a large superfamily of transmembrane 
proteins involved in the active translocation of various substrates 
(e.g. lipids, ions, sugars and peptides) across membranes, by 
binding and utilizing ATP hydrolysis for energy [68]. Thus far, 48 
transcriptionally active human ATP transporter genes have been 
identified, and are divided into the seven subfamilies designated 
ABCA to ABCG based on their sequence homology, gene 
structure and transmembrane domain [68,69]. ABCA transporters 
hold a specialized role in maintaining lipid homeostasis by 
transporting lipids across cellular membranes [69]. For example in 
the periphery, ABCA1 mediates cholesterol efflux from peripheral 
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tissues to the lipid acceptor apolipoprotein A1 for subsequent liver 
metabolism [70], whereas ABCA3 transports phospholipids to 
lamellar bodies in lungs for the synthesis of pulmonary surfactants 
[71,72]. Furthermore, as genetic mutations in these ABCA 
transporters result in disorders such as Tangier’s disease and 
respiratory distress syndrome, respectively, this clearly exemplifies 
the importance of these transporters for the maintenance of 
lipid homeostasis [73,74]. These deleterious effects following 
dysfunctional lipid transport from ABCA gene mutations affects 
the central nervous system similarly. 

ABCA8 IN THE EARLY STAGES OF MSA PATHOGENESIS

These findings suggestive of ABCA transporters being involved 
in the regulation of lipid homeostasis have recently been extended 
to the relatively unknown member ABCA8 [75], another putative 
brain lipid transporter of the ABCA subfamily [76]. Initial 
evidence suggestive of its role in regulating brain lipid homeostasis 
arose from its expression in the choroid plexus of adult mice [77] 
and in the human brain [75], along with its ability to transport 
the lipophilic substrate, leukotriene C4, across Xenopus laevis 
oocyte membranes [77]. A recent study by Kim and colleagues [75] 
has also provided the first in-depth functional study of ABCA8. 
Here, it was revealed ABCA8 specifically regulates sphingomyelin 
production in oligodendrocytes. Thus, given the necessity 
of sphingomyelin for the formation of lipid rafts to properly 
transport myelin constituents necessary for myelination [61], this 
suggested ABCA8 was involved in myelination. This was also 
consistent with the finding that ABCA8 expression correlated with 
the normal pattern of myelination throughout life [75], whereby it 
increases from neonatal periods to adulthood [53]. Additionally, 
the expression of ABCA8 was also highly elevated in the myelin-
enriched white matter of the superior frontal lobe, in comparison 
to its grey matter counterpart, which also contains myelin, albeit to 
a much lesser degree [75]. Taken together, it was suggested ABCA8 
appears to play a role in myelination through the regulation of 
sphingomyelin homeostasis. Therefore, in conjunction with the 
finding that ABCA8 expression is increased seven-fold in the 
brains of MSA patients in comparison to control brains [78], it is 
possible the dysregulation of lipid homeostasis could contribute to 
myelin dysfunction in the early stages of MSA. However, it remains 
to be determined whether ABCA8 is also capable of influencing 
other key myelin constituents such as MBP and PLP in carrying 
out this role, and whether their levels are altered by ABCA8 during 
MSA pathogenesis. 

Besides myelination, recent evidence has also alluded to the 
involvement of  ABCA8 in α-synuclein related pathogenic 

processes. This was suggested through the stimulation of the 
α-synuclein production upon overexpression of ABCA8 in 
cultured oligodendrocytes [78], thus suggesting a potential 
relationship between ABCA8 and α-synuclein production. If there 
is local aberrant α-synuclein synthesis in MSA oligodendrocytes 
following increased ABCA8 expression, the increased p25α 
expression that has been observed early in MSA [43] may stimulate 
the α-synuclein aggregation into GCIs [42]. Overall, these lines of 
evidence suggest ABCA8 is upregulated during the earlier stages 
of MSA, and may contribute to aberrant α-synuclein production 
and aggregation through dysregulated lipid homeostasis. 
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