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ABSTRACT: To enhance the efficiency of organic solar cells, accurately predicting the
efficiency of new pairs of donor and acceptor materials is crucial. Presently, most machine
learning studies rely on regression models, which often struggle to establish clear rules for
distinguishing between high- and low-performing donor−acceptor pairs. This study
proposes a novel approach by integrating interpretable AI, specifically using Shapely values,
with four supervised machine learning classification models, namely, support vector
machines, decision trees, random forest, and gradient boosting. These models aim to identify
high-efficiency donor−acceptor pairs based solely on chemical structures and to extract
important features that establish general design principles for distinguishing between high-
and low-efficiency pairs. For validation purposes, an unsupervised machine learning
algorithm utilizing loading vectors obtained from the principal component analysis is
employed to identify crucial features associated with high-efficiency donor−acceptor pairs.
Interestingly, the features identified by the supervised machine learning approach were
found to be a subset of those identified by the unsupervised method. Noteworthy features include the van der Waals surface area,
partial equalization of orbital electronegativity, Moreau−Broto autocorrelation, and molecular substructures. Leveraging these
features, a backward-working model can be developed, facilitating exploration across a wide array of materials used in organic solar
cells. This innovative approach will help navigate the vast chemical compound space of donor and acceptor materials essential in
creating high-efficiency organic solar cells.

1. INTRODUCTION
Competition and investment in next-generation solar cells,
specifically organic solar cells, are driven by the dual prospects
of social benefit and financial rewards in the solar energy
market.1 They offer lightweight and flexible modules, reducing
the need for expensive support structures, and can be applied
to various surfaces, expanding their installation versatility. They
can also be produced in continuous, high-volume processes
through roll-to-roll production.2 However, the key hurdles on
the path to establishing organic photovoltaics (OPVs) as the
leading clean energy generation technology of the future,
surpassing Si cells, lie in the imperative task of elevating their
overall efficiency and operational lifespan. Additionally, there is
a crucial need to enhance the manufacturing yield and
scalability of OPV, ultimately paving the way for it to become
the finest clean energy resource crafted by humanity.

Due to the vast and complex nature of the organic
compound landscape, employing density functional theory
(DFT) and time dependent-DFT (TD-DFT) methods to
explore it can be arduous and impractical.3 Similarly,
experimental approaches face significant challenges and require
substantial financial resources due to the large chemical
compound space. Therefore, in the pursuit of identifying
optimal structures for high-efficiency organic solar cells, the
most viable approach is to employ large-scale data-driven
machine-learning methods.4 Machine learning (ML) methods

provide a more efficient and cost-effective approach by
enabling the investigation of material properties and their
correlations.5 With the increasing availability of large training
data sets, advanced algorithms, and increasing processing
power, ML has revolutionized materials research.6 For organic
semiconductors, ML models have been successful in predicting
photovoltaic parameters, such as power conversion efficiency
(PCE),7 and facilitating tasks like quantitative structure−
property relationship (QSPR) analysis,8 design of experi-
ments,9 and discovery of novel materials.10,11

2. BACKGROUND
In 2006, Scharber et al.12 demonstrated that the efficiency of
bulk heterojunction devices utilizing PCBM as the acceptor is
contingent upon the lowest-unoccupied molecular orbital
(LUMO) level and the band gap of the donor, thereby
establishing a correlation between energy-conversion effi-
ciency, band gap, and the donor’s LUMO level.
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Subsequently, the Harvard Clean Energy Project (CEP)13

utilized Scharber’s model to predict the power conversion
efficiencies (PCEs) of thousands of organic photoelectric
molecules, with later improvements made using Gaussian
process regression (GPR) in machine learning. However, the
limitations of Scharber’s model, such as low accuracy and time-
consuming calculations, hindered its suitability for fast and
accurate high-throughput screening.14

Apart from this, only a limited number of studies have
focused on machine learning-based classification for material
screening in organic solar cells.11 Lopez et al.15 explored the
drawbacks associated with fullerene-containing OPVs and
proposed an innovative approach that utilized density
functional theory and Gaussian process calibration. Nagasawa
et al.16 utilized supervised learning techniques, particularly
random forest (RF) screening, to facilitate the design,
synthesis, and characterization of conjugated polymers. In a
similar vein, Peng17 et al. introduced the application of
convolutional neural networks (CNNs) to generate and
predict the properties of nonfullerene acceptors in organic
solar cells. Chen’s18 research focused on the virtual screening
of semiconductor polymers, specifically targeting high-
performance OPV devices. Their study employed machine
learning algorithms, including support vector machine (SVM)
and ensemble learning, to achieve accurate predictions. Sun et
al.19 developed a comprehensive donor material database for
OPVs and utilized machine learning models to establish vital
structure−property relationships and screen potential new
materials. In another study, Sun et al.20 proposed a deep
learning model based on a deep neural network (ResNet) that
directly predicted the photovoltaic performance of diverse
OPV donor materials solely based on their chemical structures.
Mahmood et al.21 harnessed the power of machine learning to
predict the performance of P3HT-based organic solar cells and

successfully select environmentally friendly solvents based on
predicted ‘Hansen solubility’ parameters. Moore et al.22

addressed the challenge of limited experimental data sets for
predicting energy levels of donor molecules in OPVs by
implementing transfer learning techniques in conjunction with
convolutional neural networks (CNNs). Their novel approach
achieved impressive accuracy, with error margins below 200
meV, and demonstrated the practical applicability of their
model using commercially available donor polymers. The
aforementioned studies primarily concentrated on classification
tasks without delving into the underlying factors influencing
the categorization of donors or acceptors into high- or low-
efficiency groups. In our investigation, we extended this inquiry
by incorporating descriptors from both donors and acceptors.
By doing so, we aim to discern the specific features
contributing to the high efficiency in both donor and acceptor
entities. Notably, previous research predominantly emphasized
the analysis of either donors or acceptors singularly.

3. MATERIALS AND METHODS
The objective of this research is to develop an innovative
approach leveraging interpretable AI and supervised machine
learning techniques, along with unsupervised methods, to
accurately predict high-efficiency donor−acceptor pairs for
organic solar cells and extract crucial features for general design
principles in navigating the chemical compound space. This
model utilizes readily available input data, specifically relevant
chemical structures sourced from the literature, to classify
donor−acceptor pairs. During the exhaustive literature review
conducted to prepare our data set, in addition to relevant
chemical structures, we have also collected important
parameters such as Eg (optical band gap), highest occupied
molecular orbital (HOMO), LUMO, Voc, Jsc, FF, and device
PCE.

Figure 1. Workflow�machine learning classification model.
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The workflow for developing the classification model is
illustrated in Figure 1. In this study, we follow a multistep
process. First, we create data sets that incorporate experimental
data with material and photovoltaic characteristics from both
fullerene and nonfullerene organic solar cells (OSCs). Second,
chemical structures of all donor and acceptor materials were
drawn on ChemDraw software, and their SMILES codes were
generated. Using the SMILES code of distinct donor and
acceptor materials, their molecular descriptors and molecular
fingerprints were generated using various open-source libraries
that are available freely for generating molecular descriptors
and fingerprints.23−27 We have used two types of descriptors
(RDKit and Mordred) and three types of fingerprints
(MACCS, PubChem, Morgan)24 for generating data sets for
both donors and acceptors using SMILES codes. This data is
used for training purposes. Third, we have used four supervised
ML approaches (Support Vector Machines, Decision Trees,
Random Forest, and Gradient Boosting), which are accessible
from the Scikit-learn Python package,28 for the classification
model based on performance metrics, particularly accuracy.
Since the interpretability of the selected features is crucial in
our case, we further obtain important features from the model
through feature selection and interpret the selected classi-
fication machine learning models using recursive feature
elimination and SHapley Additive exPlanations (SHAP).
Finally, through principal component analysis, we obtain the
loadings of the original features in each principal component to
identify features that contribute most to the creation of each
principal component. Features with higher loadings have a
more substantial influence on the principal component.
Therefore, these loadings are also used to infer the importance
of the original features and, thus, validate our findings from
SHAP analysis.
3.1. Data Preparation. The original database, obtained

from a paper by Saeki et al.,29 exhibited a right-skewed
similarity distribution of PCE. In this study, the database is
modified by including devices from literature reviews spanning
the past 5 years encompassing various donor/acceptor pairings
that show the highest achieved efficiency.30,31 All of the extra
references are mentioned in Supporting Information S7. This
expanded database includes both low- and high-efficiency
structures, providing a more comprehensive representation of
the molecular landscape. The data set at hand comprises 1597
donor/acceptor pairs. These pairs are accompanied by
additional details, such as Voc, Jsc, FF, and PCE, as well as
the HOMO and LUMO levels of both the donor and acceptor
and the optical band gaps of the donors and acceptors. Upon
analyzing the data set, it becomes evident from the bar charts
that most of the compounds fall within the range of 10 to 15

and 5 to 10% in terms of their efficiency. Furthermore, the
histogram displays a normal distribution pattern across the
entire efficiency range, indicating that the distribution of the
efficiency values follows a normal distribution with respect to
their counts. This observation suggests that the data set is well-
suited for the application of machine learning algorithms.

The distribution of % PCE is shown in Figure 2a,b. The
calculated mean and median of % PCE are 8.85 and 9.2,
respectively. Further details about the data set are mentioned
in Supporting Information S1.
3.2. Molecular Representation and Feature Extrac-

tion. Out of the 1597 pairs containing D/A combination, 1241
are unique with 320 distinct donors and 736 distinct acceptors.
Chemical structures of all donor and acceptor materials were
drawn on ChemDraw software, and their SMILES codes were
generated. Using the SMILES codes of distinct donor and
acceptor materials, their molecular descriptors and molecular
fingerprints were generated.
3.2.1. Descriptors. Molecular properties were computation-

ally calculated by using two Python libraries: RDKit and
Mordred. RDKit provided 208 descriptors, while Mordred
Library26 offered a more extensive set of 1613 descriptors. All
computations were performed using open-source Python
packages.28

3.2.2. Fingerprints. The other descriptors used in the study
are molecular fingerprints. A molecular fingerprint is a binary
array that represents specific structural characteristics of a
chemical compound. Each bit in the fingerprint corresponds to
a predefined structural feature. When the feature is present in
the molecule, the bit is set to 1 (ON), and when it is absent,
the bit is set to 0 (OFF). The number of bits in the fingerprint
determines the amount of structural information captured.

In this study, three types of fingerprints were used:
1. Molecular ACCess System (MACCS) key (166 bits):32

The MACCS key fingerprint consists of 166 bits and
represents specific chemical substructures in the
compound.

2. PubChem fingerprints (881 bits):33 These fingerprints
contain 881 bits and capture various chemical features
present in the molecule, as defined by the PubChem
database.

3. Morgan fingerprint (1024 bits):34 The Morgan finger-
print, also known as circular fingerprint or extended
connectivity fingerprint, is a type of structural fingerprint
with 1024 bits. It encodes information about molecular
substructures, including circular patterns.

Each type of fingerprint provides a unique representation of
the molecular structure, and the choice of fingerprint depends
on the specific analysis and applications in the study. In our

Figure 2. (a) Bar chart depicting the efficiency of donor/acceptor pairs. (b) Histogram of efficiencies of donor/acceptor pairs.
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study, the fingerprints of all of the donors and acceptor
molecules are calculated by the ChemDes Website.24

Hence, by utilizing molecular descriptors and fingerprints,
five different data sets have been prepared, which are further
used as training data sets for training the classification models
and feature extraction through feature engineering.
3.3. Input Data Preparation for the ML Model. To

prepare the data after descriptor calculation, missing values
were replaced with 0. Subsequently, only columns with
numeric data types were selected for further analysis.
Additionally, numeric values exceeding the maximum
representable value for the input data type were filtered out
to ensure data integrity for subsequent data analysis or
machine learning tasks. Furthermore, redundant features were
identified by analyzing correlations among descriptors.
Features with a correlation coefficient greater than 0.8 were
removed from the data set as they added little unique
information and could potentially introduce noise or multi-
collinearity during analysis.
3.4. Model Building with Machine Learning Ap-

proaches. We have used four supervised ML approaches,
SVM, decision trees, random forest, and gradient boosting,
which are accessible from the Scikit-learn Python package.28

Tuning hyperparameter searches were conducted through 3-
fold stratified cross-validation on training data for better model
performances.
3.4.1. Support Vector Machine Classifier. In our problem,

the kernel function used is the radial basis function (RBF) with
C = 1.0. More details about all machine learning classification
algorithms used are mentioned in Supporting Information S2.
3.4.2. Decision Tree Classifier. In our problem, Gini

impurity or entropy is used as the criteria for splitting nodes.
3.4.3. Random Forest Classifier. For our problem, the

number of estimators is set to 1400, a minimum of 10 samples
is required to split an internal node, a minimum of 2 samples is
required to be at a leaf node, and maximum features are
determined by the square root of the total number of features,
a maximum depth of 80 for each tree, and bootstrap samples
are utilized during the tree-building process.
3.4.4. Gradient Boosting Classifier. In our problem, the

number of boosting stages (n-estimators) was 100, the
maximum depth of the individual decision trees (max-depth)
was 3, the learning rate was, and the loss function was
‘log_loss’.
3.5. Performance Evaluation of the ML Model. The

initial phase involved employing the default parameters for all
machine learning models. Given the substantial size of our data
set (comprising 1558 rows), we opted to employ the hold-one-
out cross-validation (HOOCV) technique to evaluate the
accuracy of the classification model. Subsequently, we
conducted hyperparameter tuning for the random forest
model using RandomizedSearchCV within the Python
programming environment. Specific details about the statistical
metrics used are given in Supporting Information S3.
3.6. Interpretable Selected Feature Importance

through SHAP. The importance of a descriptor is estimated
by recording a reduction of mean square error for each feature
when data is passed through an ensemble and averaging it over
all of the ensemble.35 By isolating these influential features
through hyperparameter tuning36 with 5-fold hold-one-out
cross-validation37 and subsequent recursive feature elimina-
tion,38 we gain insight into the features that are the most

influential for improving the accuracy of the classification
model.

For the ML model explanation, we employed SHapley
Additive exPlanations (SHAP). This visualization technique
enabled a comprehensive and interpretable exploration of the
impact each descriptor had on the model predictions. By
presenting a clear depiction of how individual descriptors
contribute to the overall classification process, the SHAP
visualization added a layer of depth to our analysis, thereby
illuminating critical insights for the advancement of high-
efficiency bulk heterojunction organic solar cells.
3.7. Feature Engineering through Principal Compo-

nent Analysis. The preprocessing steps entail segregating the
data set based on efficiency values, generating canonical
SMILES representations, imputing missing values, and stand-
ardizing data types. Subsequent feature selection involves
eliminating low-variance features and highly correlated ones to
enhance data set robustness. Principal component analysis
(PCA) is then applied, visualizing the cumulative explained
variance, determining principal component numbers, and
exploring chemical space. Feature importance is evaluated
through normalized principal components and the absolute
sum of coefficients. Specific details are mentioned in
Supporting Information S6−S8.

4. RESULTS AND DISCUSSION
4.1. Machine Learning Classification Results.

4.1.1. RDKIT Database. The classification performance of
four machine learning algorithms, support vector machines
(SVM), decision trees, random forest, and gradient boosting,
applied to a data set comprising 1558 samples with 101
RDKIT descriptors is evaluated. The classifiers are evaluated
using hold-one-out cross-validation, and performance metrics
such as accuracy, confusion matrices, Cohen’s Kappa score,
and Matthews correlation coefficient are reported as shown in
Table 1.

Like the application on the RDKIT database, the
classification model is applied to other data sets also. The
findings revealed that certain algorithms exhibited superior
predictive performance for specific data sets. For instance,
gradient boosting demonstrated remarkable accuracy when
employed with Mordred descriptors, while random forest
excelled in predicting outcomes based on Morgan fingerprints.
Moreover, the calculated performance metrics shed light on
the strengths and weaknesses of each algorithm-feature
combination, elucidating the potential for identifying robust
design rules for high-efficiency bulk heterojunction organic
solar cells. The performance evaluation matrix for a four
machine learning model with six data sets in given Supporting
Information S4. The summarized classification accuracy of all

Table 1. Performance Metrics for ML Classification Models
on the RDKIT Database

Algorithm
Accuracy

(%)
Cohen’s kappa

(%)
Matthews

correlation (%)

Support vector
machines

69.87 51.28 54.39

Decision trees 83.97 69.23 69.25
Random forest 87.82 73.08 73.13
Gradient boosting 85.90 71.79 71.89
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four machine learning algorithms employed on five distinct
data sets is shown in Figure 3.

Since the random forest classifier gave the highest accuracy,
the hyperparameters representing the current state were found
for the respective classification models and used for tuning.
4.2. Hyperparameter Tuning of the ML Model. For the

hyperparameter tuning process, a randomized search was
employed to explore a range of values for key parameters in the
random forest model. The hyperparameter grid encompasses
various configurations for critical aspects of the algorithm. The
purpose is to systematically search through this parameter
space and identify the combination that yields the optimal
model performance. The hyperparameter grid consists of a
number of trees (n_estimators): varying from 200 to 2000 in
increments of 200; maximum features at the split (max_fea-
tures): including ‘auto’ and ‘sqrt’; maximum depth of trees
(max_depth): ranging from 10 to 110 with intervals of 10, and
including ‘None’ for unrestricted growth; minimum samples
required to split a node (min_samples_split): examining 2, 5,
and 10 samples; minimum samples required at each leaf node
(min_samples_leaf): considering 1, 2, and 4 samples; and the
bootstrap method (bootstrap): exploring both with and
without replacement. This comprehensive exploration of
hyperparameter values aims to enhance the Random Forest
model’s ability to generalize patterns in the data set. The
randomized search is conducted to efficiently sample a diverse
set of configurations, facilitating the identification of an
optimal set of hyperparameters for improved predictive
performance.

The hyperparameter tuning process, employing Random-
izedSearchCV, resulted in the identification of optimal
hyperparameters for the Random Forest model. The best
configuration is as follows: the number of trees (n_estimators):
1400, minimum samples required to split a node (min_sam-
ples_split): 10, minimum samples required at each leaf node
(min_samples_leaf): 2, maximum features at the split
(max_features): ‘sqrt’, maximum depth of trees (max_depth):
80, and the bootstrap method (bootstrap): True. These
hyperparameters are determined based on a randomized search
that sampled 100 different combinations, utilizing a 3-fold
cross-validation approach. The selection criterion was the

negative mean absolute error (scoring = ‘neg_mean_absolu-
te_error’).

The Random Forest classifier, configured with the optimized
hyperparameters, demonstrated a commendable accuracy of
87.18% on the test data set. This signifies the model’s ability to
correctly classify instances into their respective classes,
showcasing its efficacy in capturing the underlying patterns
within the given data. The high accuracy obtained highlights
the effectiveness of the hyperparameter tuning process in
enhancing the model’s predictive performance.

The above same procedure was applied across five distinct
data sets, each representing diverse molecular descriptors,
including Mordred descriptors, Morgan fingerprints, MACCS
keys, and PubChem fingerprints. For each data set, a random
forest classifier was employed, and a rigorous hyperparameter
tuning process was conducted to optimize the model’s
performance. The optimized hyperparameters, tailored for
each data set, were determined through a randomized search
cross-validation approach. This involved exploring a predefined
hyperparameter space to identify configurations that yield the
optimal predictive accuracy. The key hyperparameters tuned
included the number of trees (n_estimators), minimum
samples required to split a node (min_samples_split),
minimum samples required at each leaf node (min_sample-
s_leaf), maximum features at the split (max_features),
maximum depth of trees (max_depth), and the use of the
bootstrap method (bootstrap). Upon model training and
optimization, predictions were made on respective test data
sets, and the accuracy of each model was computed. The
achieved accuracies across the diverse data sets are reported in
Table 2.
4.3. Feature Selection for Model Interpretability. In

pursuit of enhancing model interpretability and identifying the
most influential molecular descriptors, a rigorous feature
selection process was undertaken. The random forest classifier,
which was previously optimized for predictive accuracy, served
as the foundation for this investigation.

Utilizing recursive feature elimination (RFE), a feature
selection technique embedded in Scikit-learn, the model
underwent iterative training, ranking the importance of each
feature after each iteration. The optimal subset of features was
determined based on the criteria of selecting the top 9 features.

Figure 3. Summarized classification model accuracy.
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Subsequently, the identified features were extracted and
evaluated for their significance. The selected features were
determined through the get_support() method, which
provided a Boolean mask indicating the chosen features. The
column names corresponding to these features were then
extracted for further analysis. These features serve not only as
discriminative elements for the model but also as interpretable
variables that hold chemical relevance.

In the pursuit of understanding the collective impact of the
selected features, a crucial metric, termed “cumulative
importance”, was computed. The cumulative importance is
computed by summing the importance scores of the selected
features. This metric encapsulates the proportion of predictive
power consolidated within a chosen subset of descriptors. The
result unveils that the identified molecular descriptors from the
RDKIT database collectively account for nearly 29% of the
model’s decision-making process. Understanding the max-
imum cumulative importance provides valuable insights into
the collective information encapsulated by the chosen
molecular descriptors. Similar contributions of the 9 most
important features from other data sets are enlisted in Tables
3a, 3b, 3c, 3d, and 3e and Figure 4a−e. Table 4 gives the
computed cumulative importance from the 9 most important
features found out by recursive feature elimination.
4.4. SHAP Analysis. To pinpoint key descriptors that hold

a significant influence within the random forest classification

model, SHAP analysis was conducted. SHapley Additive
exPlanations (SHAP) values originate from cooperative game
theory and are adapted for machine learning model
interpretability. The SHAP value for a specific feature
quantifies the contribution of that feature to the difference
between the actual prediction and the average prediction
across all possible combinations of features. A more detailed
theory about SHAP summary plots and SHAP waterfall plots is
mentioned in Supporting Information S5.
4.4.1. Interpretation of the Summary Plot in SHAP

Analysis. As shown in Figure 5a, the plot indicates that
donor−acceptor pairs with high values for Acceptor_fr_bicy-
clic, Acceptor_S log P_VSA4, and Acceptor_VSA_Estate3 &
low values for Donor_VSA_Estate5 & Acceptor_SMR_VSA7
are more likely to contribute toward high efficiency. In Figure
5b, the plot indicates that donor−acceptor pairs with high
values for Acceptor_ATSC1s, Acceptor_AATSC3Z, and
Acceptor_ATSC5s & low values for Donor_ATSC8dv are
more likely to contribute toward high efficiency. Similarly, in
Figure 5c, the SHAP dependence plot suggests that the
presence of Acceptor_bit_96, Acceptor_bit_584, & Accept-
or_bit_131 have a significant positive impact on the efficiency
of donor−acceptor pairs, whereas the presence of Donor_-
bit_313, Acceptor_bit_64, & Acceptor_bit_879 have a
negative impact on the efficiency of donor−acceptor pairs.
As shown in Figure 5d, the SHAP dependence plot suggests
that the presence of Acceptor_bit_87, Acceptor_bit_41, &
Donor_bit_136 have a significant positive impact on the

Table 2. Achieved Accuracies Across Data Sets after
Hyperparameter Tuning

Accuracy before
hyperparameter tuning for
random forest classifier

Accuracy after
hyperparameter tuning for
random forest classifier

RDKIT
descriptors

0.8590 0.8718

Mordred
descriptors

0.8782 0.8782

Morgan
fingerprint

0.8526 0.8590

MACCS
keys

0.8205 0.8333

PubChem
fingerprint

0.8462 0.8590

Table 3a. Feature Importance Obtained by Recursive
Feature Elimination for the RDKit Data Set

Descriptor Description

Donor MinEStateIndex returns the min tuple of EState indices for the
molecule39

VSA EState5 MOE-type descriptors using EState indices and
surface area contributions

VSA EState descriptor 5 (5.74 ≤ x < 6.00)
MolWt the average molecular weight of the molecule

Acceptor MaxEstateIndex returns the min tuple of EState indices for the
molecule39

S log P VSA4 MOE-type descriptors using log P contributions
and surface area contributions MOE log P
VSA descriptor 4 (0.00 ≤ x < 0.10)

VSA EState3 MOE-type descriptors using EState indices and
surface area contributions EState VSA
descriptor 3 (0.29 ≤ x < 0.72)

fr bicyclic no. of bicyclic rings
allylic oxid number of allylic oxidation sites excluding

steroid dienone
SMR VSA7 MOE-type descriptors using MR contributions

and surface area contributions

Table 3b. Feature Importance Obtained by Recursive
Feature Elimination for the Mordred Data Set

Descriptor Description

Donor ATSC8dv centered Moreau−Broto autocorrelation of lag 8
weighted by valence electrons

BCUTZ-1h the first highest eigenvalue of the Burden matrix
weighted by atomic number

ATSC6dv centered Moreau−Broto autocorrelation of lag 6
weighted by valence electrons

ATSC4s centered Moreau−Broto autocorrelation of lag 4
weighted by intrinsic state

Acceptor ATSC1s centered Moreau−Broto autocorrelation of lag 1
weighted by intrinsic state

ATSC5s centered Moreau−Broto autocorrelation of lag 5
weighted by intrinsic state

ATSC5Z centered Moreau−Broto autocorrelation of lag 5
weighted by atomic number

AATSC3Z averaged and centered Moreau−Broto
autocorrelation of lag 3 weighted by atomic
number

Xch-6d 6-ordered chi-chain weighted by sigma electrons

Table 3c. Feature Importance Obtained by Recursive
Feature Elimination for the Morgan Fingerprints Data Set

fingerprint
(2048 bit) description

donor bit 40 fingerprints calculated by the algorithm in
ref 34bit 313

acceptor bit 879
bit 79
bit 96
bit 64
bit 584
bit 31
bit 131
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efficiency of donor−acceptor pairs, whereas the presence of
Donor_bit_109 has a negative impact on the efficiency of
donor−acceptor pairs. In Figure 5e, the SHAP dependence

plot suggests that the presence of Acceptor_PubChemFP_341
& Acceptor_PubChemFP_144 have a significant positive
impact on the efficiency of donor−acceptor pairs, whereas
the presence of Acceptor_PubChemFP_439 has a negative
impact on the efficiency of donor−acceptor pairs.

Overall, the above SHAP Plots summarize the contribution
of feature values to the efficiency of a given donor−acceptor
pair and quantify the impact of respective feature values on
efficiency.
4.4.2. Interpretation of Waterfall Plot in SHAP Analysis.

Figure 6a−e given below shows the SHAP waterfall plots for
respective data sets. In Figure 6a, the SHAP waterfall plot
shows that Acceptor_fr_bicyclic is contributing significantly to
the other listed feature values in the plot. Similarly, in Figure
6b, Acceptor_Xch6d and Donor_ATSC8dv are found to be

Table 3d. Feature Importance Obtained by Recursive Feature Elimination for the MACCS Keys Fingerprints Data Set

fingerprint
(167 bit) smarts40,41,42 description

donor bit 136 (“[#8]=*”,1) a double bond between an oxygen atom and any other atom
bit 145 (“*1̃*̃*̃*̃*̃*̃1”,1) a chain of atoms linked by single bonds, where the atoms in the chain have the same atomic number
bit 42 (“F”,0) a substructure where there is a fluorine atom
bit 127 (“*@*!@[#8]”,1) a substructure where there is a nonring atom connected to another nonring atom by a nonring bond, and one of

the nonring atoms is oxygen, and this pattern should occur exactly once
bit 152 (“[#8][̃#6]

([̃#6])[̃#6]”,0)
a substructure where there is a single bond between an oxygen atom and three carbon atoms, where the second
carbon atom is part of a ring

bit 109 (“*̃[CH2][̃#8]”,0) a substructure where there is a single bond between any atom, a methylene group, and an oxygen atom
acceptor bit 41 (“[#6]#[#7]”,0) a substructure where there is a triple bond between a carbon atom and a nitrogen atom

bit 87 (“[F,Cl,Br,I]!@*@
*”,0)

a substructure where there is a nonring atom, not connected to a ring, followed by any two atoms, and the nonring
atom is one of F, Cl, Br, or I

bit 158 (“[#6]-[#7]”,0) a substructure where there is a single bond between a carbon atom and a nitrogen atom

Table 3e. Feature Importance Obtained by Recursive Feature Elimination for the PubChem Fingerprints Data Set

fingerprint
(887 bit) description

donor bit 36 ≥8 S no. of sulfur atoms more than 8
bit 185 ≥2 any ring size 6 no. of 6 membered rings more than 2

acceptor bit 341 C(C̃)(C̃)(Õ) a substructure where there is a carbon atom, followed by a ring containing two additional
carbon atoms and an oxygen atom

bit 439 C(−C)(−N)(�O) a substructure where there is a chain of three atoms: carbon, nitrogen, and oxygen,
connected in the specified order

bit 23 ≥1 F no. of fluoride atoms more than 1
bit 174 ≥5 saturated or aromatic heteroatom-

containing ring size 5
no. of saturated or aromatic heteroatom-containing ring size 5 more than 5

bit 144 ≥1 saturated or aromatic carbon-only ring
size 5

no. of saturated or aromatic carbon-only ring size 5 more than 1

Figure 4. Feature importance obtained by recursive feature elimination for (a) RDKIT descriptor, (b) Mordred descriptor, (c) Morgan
fingerprints, (d) MACCS keys fingerprints, and (e) PubChem fingerprints data sets.

Table 4. Cumulative Importance Obtained from the Nine
Most Important Features

data set description
cumulative importance obtained from the nine most

important features

RDKit descriptor 0.29
Mordred descriptor 0.21
Morgan fingerprints 0.38
MACCS keys
fingerprints

0.77

PubChem
fingerprints

0.52
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more impactful. There is a change in the scenario in Figure 6c,
where the presence of Acceptor_bit_584 and Accept-
or_bit_131 has contributed cumulatively to the high-efficiency
donor−acceptor pairs; in contrast, Acceptor_bit_96 corre-
sponds to a negative contribution to the expected output. In
Figure 6d, it can be observed that the presence of
Acceptor_bit_87 and Donor_bit_42 outweighs all of the
negative factors. In Figure 6e, Acceptor_PubChemFP_199,
Acceptor_ PubChemFP_35, Acceptor_ PubChemFP_23, and
Donor_ PubChemFP_341 are positive contributors toward
the expected model output, E(f(x)).
4.5. Statistical Analysis for Validation. Principal

component analysis (PCA) is a powerful technique commonly
employed in data analysis to reduce the dimensionality of data
sets while retaining the most significant information. In this

study, we applied PCA to identify a reduced set of features that
capture a substantial portion of the data set’s variability.

In PCA, the importance of each feature is reflected by the
magnitude of the corresponding values in the eigenvectors.43

Often, when the data are centered and standardized, the
coefficients are normalized so that the sum of the squares of
the coefficients of a component is equal to the variance of the
component. In this normalization, the coefficients can be
interpreted as the correlation between the original variable and
the principal component and are often called loadings.

For feature selection, variables are selected according to the
magnitude (from largest to smallest in absolute values) of their
coefficients (loadings), which are linear combinations of the
original variables that make up the principal component.
Absolute values near zero indicate that a variable contributes

Figure 5. Feature importance summary plot obtained by SHAP analysis for the (a) RDKIT descriptor, (b) Mordred descriptor, (c) Morgan
fingerprints, (d) MACCS keys fingerprints, and (e) PubChem fingerprints data sets.

Figure 6. Feature importance waterfall plot obtained by SHAP analysis for the (a) RDKIT descriptor, (b) Mordred descriptor, (c) Morgan
fingerprints, (d) MACCS keys fingerprints, and (e) PubChem fingerprints data sets.
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little to the component, whereas larger absolute values indicate
variables that contribute more to the component.44

For our five data sets, we have computed the absolute sum
of coefficients for the number of principal components that
show 95% of the explained variance, which is shown in Table
5. For example, in the RDKit database, we have taken 41
principal components as they explain 95% variance. Similarly,
all of the remaining four data sets (i.e., Mordred descriptors,
Morgan, MACCS keys, and PubChem fingerprint) have been
analyzed. Thereafter, the absolute sum of coefficients is
calculated for all of the variables that remain in the data set
after preprocessing of the respective data sets, as mentioned in
Methodology Section 3.7. Further specific details are
mentioned in Supporting Information S6−S8.

The pie chart shown in Figure 7a−e shows the distribution
of feature loadings or absolute sum of coefficients for
respective data sets. Here, feature loadings are divided into
four groups according to their values. Group 1 has feature
loadings of more than 4, group 2 has feature loadings between
3 and 4, group 3 has feature loadings between 2 and 3, and
group 4 has feature loadings less than 2.

5. CONCLUSIONS
The relationship between material properties and descriptors
can be used for an inverse material design, identifying
particularly promising materials based on a set of target
functionalities. In our study, we have presented a machine
learning-based classification model that uses the innate
structure of the multidimensional property space. It tries to
overcome the challenge of how to efficiently search the vast
chemical design space to find materials with desired properties.

In our study, we found that the choice of feature set and
model can significantly impact the predictive performance.
Random forest consistently outperformed other models across
multiple data sets, indicating its versatility and robustness in
this context. This algorithm excelled in data sets where feature
engineering was essential, such as the Mordred descriptors and
PubChem fingerprint data sets. Additionally, our feature
importance analysis highlighted the key molecular character-
istics that influence the efficiency of organic solar cells. The
identified features provide valuable insights for materials
scientists and chemists working on the design of new organic
materials for high-efficiency solar cells. In conclusion, this
study underscores the potential of machine learning in
advancing the field of organic solar cells. By leveraging diverse

Table 5. Variance from Respective Data sets after Principal Components Analysis

Data set
no. of principal components, which

explain 95% variance
no. of principal components, which

explain 67% variance
no. of principal components, which

explain 50% variance
variance explained by the first

two components (%)

RDKIT
descriptors

41 13 7 22.60

Mordred
descriptors

54 15 8 20.50

Morgan
fingerprints

34 9 5 31.10

MACCS Keys
fingerprints

12 5 3 43.10

PubChem
fingerprints

18 6 3 40.70

Figure 7. Distribution of features based on feature loadings or absolute sum of coefficients for the (a) RDKIT descriptor, (b) Mordred descriptor,
(c) Morgan fingerprints, (d) MACCS keys fingerprints, and (e) PubChem fingerprints data sets.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02157
ACS Omega 2024, 9, 34445−34455

34453

https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c02157/suppl_file/ao4c02157_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02157?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02157?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02157?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02157?fig=fig7&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02157?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


data sets and machine learning algorithms, we have gained
valuable insights into the design rules for high-efficiency
organic solar cells. The identified essential features serve as a
roadmap for material designers seeking to develop the next
generation of organic solar cell materials. As we continue to
explore the synergy between machine learning and materials
science, the future holds great promise for the development of
more efficient and sustainable solar energy solutions. This
study represents a crucial step in the journey toward harnessing
the full potential of organic solar cells, contributing to the
global effort to transition to cleaner and more sustainable
sources of energy.
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(12) Scharber, M. C.; Mühlbacher, D.; Koppe, M.; et al. Design

Rules for Donors in Bulk-Heterojunction Solar Cells�Towards 10%
Energy-Conversion Efficiency. Adv. Mater. 2006, 18, 789−794.
(13) Hachmann, J.; Olivares-Amaya, R.; Atahan-Evrenk, S.; et al.

The Harvard Clean Energy Project: Large-Scale Computational
Screening and Design of Organic Photovoltaics on the World
Community Grid. J. Phys. Chem. Lett. 2011, 2, 2241−2251.
(14) Eibeck, A.; Nurkowski, D.; Menon, A.; et al. Predicting Power

Conversion Efficiency of Organic Photovoltaics: Models and Data
Analysis. ACS Omega 2021, 6, 23764−23775.
(15) Lopez, S. A.; Sanchez-Lengeling, B.; De Goes Soares, J.;

Aspuru-Guzik, A. Design Principles and Top Non-Fullerene Acceptor
Candidates for Organic Photovoltaics. Joule 2017, 1, 857−870.
(16) Nagasawa, S.; Al-Naamani, E.; Saeki, A. Computer-Aided

Screening of Conjugated Polymers for Organic Solar Cell:
Classification by Random Forest. J. Phys. Chem. Lett. 2018, 9,
2639−2646.
(17) Peng, S.-P.; Zhao, Y. Convolutional Neural Networks for the

Design and Analysis of Non-Fullerene Acceptors. J. Chem. Inf. Model.
2019, 59, 4993−5001.
(18) Chen, F.-C. Virtual Screening of Conjugated Polymers for

Organic Photovoltaic Devices Using Support Vector Machines and
Ensemble Learning. Int. J. Polym. Sci. 2019, 2019, No. 4538514.
(19) Sun, W.; Zheng, Y.; Yang, K.; et al. Machine Learning−Assisted

Molecular Design and Efficiency Prediction for High-Performance
Organic Photovoltaic Materials. Sci. Adv. 2019, 5, No. eaay4275.
(20) Sun, W.; Li, M.; Li, Y.; et al. The Use of Deep Learning to Fast

Evaluate Organic Photovoltaic Materials. Adv. Theory Simul. 2019, 2,
No. 1800116.
(21) Mahmood, A.; Wang, J.-L. A Time and Resource Efficient

Machine Learning Assisted Design of Non-Fullerene Small Molecule
Acceptors for P3HT-Based Organic Solar Cells and Green Solvent
Selection. J. Mater. Chem. A 2021, 9, 15684−15695.
(22) Moore, G. J.; Bardagot, O.; Banerji, N. Deep Transfer Learning:

A Fast and Accurate Tool to Predict the Energy Levels of Donor
Molecules for Organic Photovoltaics. Adv. Theory Simul. 2022, 5,
No. 2100511.
(23) Broad, J.; Binder, A. Hacking with Kali; Elsevier, 2014.
(24) Dong, J.; Cao, D. S.; Miao, H. Y.; et al. ChemDes: an integrated

web-based platform for molecular descriptor and fingerprint
computation. J. Cheminf. 2015, 7, No. 60.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02157
ACS Omega 2024, 9, 34445−34455

34454

https://pubs.acs.org/doi/10.1021/acsomega.4c02157?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acsomega.4c02157/suppl_file/ao4c02157_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hamza+Siddiqui"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0009-0007-9379-248X
https://orcid.org/0009-0007-9379-248X
mailto:hamsid@iul.ac.in
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tahsin+Usmani"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c02157?ref=pdf
https://doi.org/10.3390/ma15165542
https://doi.org/10.3390/ma15165542
https://doi.org/10.1016/j.joule.2020.07.004
https://doi.org/10.1016/j.joule.2020.07.004
https://doi.org/10.1021/acs.chemrev.0c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.0c01303?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/s41524-020-00388-2
https://doi.org/10.1038/s41524-020-00388-2
https://doi.org/10.1038/s41524-020-00388-2
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1016/j.jmat.2017.08.002
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.1038/s41524-019-0221-0
https://doi.org/10.3390/molecules27185905
https://doi.org/10.3390/molecules27185905
https://doi.org/10.3390/molecules27185905
https://doi.org/10.3390/molecules27185905?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c00517?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c00517?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpcc.0c00517?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b04726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b04726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.8b04726?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/aisy.202100261
https://doi.org/10.1002/aisy.202100261
https://doi.org/10.1002/aisy.202100261
https://doi.org/10.1039/D2TC03276G
https://doi.org/10.1039/D2TC03276G
https://doi.org/10.1039/D2TC03276G
https://doi.org/10.1002/adma.200501717
https://doi.org/10.1002/adma.200501717
https://doi.org/10.1002/adma.200501717
https://doi.org/10.1021/jz200866s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz200866s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jz200866s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c02156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c02156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.1c02156?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.joule.2017.10.006
https://doi.org/10.1016/j.joule.2017.10.006
https://doi.org/10.1021/acs.jpclett.8b00635?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b00635?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.8b00635?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00732?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00732?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1155/2019/4538514
https://doi.org/10.1155/2019/4538514
https://doi.org/10.1155/2019/4538514
https://doi.org/10.1126/sciadv.aay4275
https://doi.org/10.1126/sciadv.aay4275
https://doi.org/10.1126/sciadv.aay4275
https://doi.org/10.1002/adts.201800116
https://doi.org/10.1002/adts.201800116
https://doi.org/10.1039/D1TA04742F
https://doi.org/10.1039/D1TA04742F
https://doi.org/10.1039/D1TA04742F
https://doi.org/10.1039/D1TA04742F
https://doi.org/10.1002/adts.202100511
https://doi.org/10.1002/adts.202100511
https://doi.org/10.1002/adts.202100511
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1186/s13321-015-0109-z
https://doi.org/10.1186/s13321-015-0109-z
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02157?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(25) Hong, H.; Xie, Q.; Ge, W.; et al. Mold 2, Molecular Descriptors
from 2D Structures for Chemoinformatics and Toxicoinformatics. J.
Chem. Inf. Model. 2008, 48, 1337−1344.
(26) Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred:

A Molecular Descriptor Calculator. J Cheminf. 2018, 10, No. 4.
(27) Tetko, I. V.; Gasteiger, J.; Todeschini, R.; et al. Virtual

Computational Chemistry Laboratory − Design and Description. J.
Comput.-Aided Mol. Des. 2005, 19, 453−463.
(28) Pedregosa, F.; Varoquaux, G.; Gramfort, A.; et al. Scikit-learn:

Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825−
2830.
(29) Miyake, Y.; Saeki, A. Machine Learning-Assisted Development

of Organic Solar Cell Materials: Issues, Analyses, and Outlooks. J.
Phys. Chem. Lett. 2021, 12, 12391−12401.
(30) Zhang, G.; Lin, F. R.; Qi, F.; et al. Renewed Prospects for

Organic Photovoltaics. Chem. Rev. 2022, 122, 14180−14274.
(31) Bajusz, D.; Rácz, A.; Héberger, K. Why is Tanimoto index an

appropriate choice for fingerprint-based similarity calculations? J.
Cheminf. 2015, 7, No. 20.
(32) Durant, J. L.; Leland, B. A.; Henry, D. R.; Nourse, J. G.

Reoptimization of MDL Keys for Use in Drug Discovery. J. Chem. Inf.
Comput. Sci. 2002, 42, 1273−1280.
(33) Kim, S.; Bolton, E. E.; Bryant, S. H. Similar compounds versus

similar conformers: complementarity between PubChem 2-D and 3-D
neighboring sets. J. Cheminf. 2016, 8, No. 62.
(34) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J.
Chem. Inf. Model. 2010, 50, 742−754.
(35) Breiman, L.; Friedman, J. H.; Olshen, R. A.; Stone, C. J.
Classification And Regression Trees; Routledge, 2017.
(36) Yang, L.; Shami, A. On hyperparameter optimization of

machine learning algorithms: Theory and practice. Neurocomputing
2020, 415, 295−316.
(37) Vardhan, B. V. S.; Khedkar, M.; Thakre, P. In A Comparative
Analysis of Hold Out, Cross and Re-Substitution Validation in Hyper-
Parameter Tuned Stochastic Short Term Load Forecasting, 22nd
National Power Systems Conference (NPSC); IEEE: New Delhi,
India, 2022; pp 448−453.
(38) Darst, B. F.; Malecki, K. C.; Engelman, C. D. Using recursive

feature elimination in random forest to account for correlated
variables in high dimensional data. BMC Genet. 2018, 19, No. 65.
(39) Hall, L. H.; Mohney, B.; Kier, L. B. The electrotopological

state: structure information at the atomic level for molecular graphs. J.
Chem. Inf. Comput. Sci. 1991, 31, 76−82.
(40) SMARTS - A Language for Describing Molecular Patterns.
(41) Ehrt, C.; Krause, B.; Schmidt, R.; Ehmki, E. S. R.; Rarey, M.

SMARTS.plus − A Toolbox for Chemical Pattern Design. Mol. Inf.
2020, 39, No. 2000216.
(42) MACCS Keys Fingerprint Description from Open Babel.
(43) Sarkar, S.; Boyer, K. L. Quantitative Measures of Change Based

on Feature Organization: Eigenvalues and Eigenvectors. Comput. Vis.
Image Underst. 1998, 71, 110−136.
(44) Jolliffe, I. T.; Trendafilov, N. T.; Uddin, M. A Modified

Principal Component Technique Based on the LASSO. J. Comput.
Graph. Stat. 2003, 12, 531−547.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c02157
ACS Omega 2024, 9, 34445−34455

34455

https://doi.org/10.1021/ci800038f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci800038f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1186/s13321-018-0258-y
https://doi.org/10.1007/s10822-005-8694-y
https://doi.org/10.1007/s10822-005-8694-y
https://doi.org/10.1021/acs.jpclett.1c03526?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.1c03526?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.1c00955?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.chemrev.1c00955?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1186/s13321-015-0069-3
https://doi.org/10.1021/ci010132r?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/s13321-016-0163-1
https://doi.org/10.1186/s13321-016-0163-1
https://doi.org/10.1186/s13321-016-0163-1
https://doi.org/10.1021/ci100050t?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1016/j.neucom.2020.07.061
https://doi.org/10.1186/s12863-018-0633-8
https://doi.org/10.1186/s12863-018-0633-8
https://doi.org/10.1186/s12863-018-0633-8
https://doi.org/10.1021/ci00001a012?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ci00001a012?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/minf.202000216
https://doi.org/10.1006/cviu.1997.0637
https://doi.org/10.1006/cviu.1997.0637
https://doi.org/10.1198/1061860032148
https://doi.org/10.1198/1061860032148
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c02157?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

