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Sepsis is a common disorder associated with high morbidity and mortality. It is now 
defined as an abnormal host response to infection, resulting in life-threatening dys-
function of organs. There is evidence from in vitro and in vivo experiments in various 
animal models and in patients that endotoxin or sepsis may directly and indirectly alter 
the  hypothalamic–pituitary–adrenal response to severe infection. These alterations may 
include necrosis or hemorrhage or inflammatory mediator-mediated decreased ACTH 
synthesis, steroidogenesis, cortisol delivery to tissues, clearance from plasma, and 
decreased sensitivity of tissues to cortisol. Disruption of the hypothalamic–pituitary–
adrenal axis may translate in patients with sepsis into cardiovascular and other organ 
dysfunction, and eventually an increase in the risk of death. Exogenous administration of 
corticosteroids at moderate dose, i.e., <400 mg of hydrocortisone or equivalent for >96 h, 
may help reversing sepsis-associated shock and organ dysfunction. Corticosteroids 
may also shorten the duration of stay in the ICU. Except for increased blood glucose 
and sodium levels, treatment with corticosteroids was rather well tolerated in the con-
text of clinical trials. The benefit of treatment on survival remains controversial. Based 
on available randomized controlled trials, the likelihood of survival benefit is greater in 
septic shock versus sepsis patients, in sepsis with acute respiratory distress syndrome 
or with community-acquired pneumonia versus patients without these conditions, and 
in patients with a blunted cortisol response to 250 μg of ACTH test versus those with 
normal response.

Keywords: sepsis, nitric oxide, cytokines, hypothalamic–pituitary–adrenal axis, stress response

Sepsis places a burden on health-care systems worldwide due to an annual incidence of about 100 
per 100,000 inhabitants (1) and mortality rates between 15 and 40% (when shock is present) in 
the short term and up to 80% at 5 years (2). Moreover, roughly half of survivors may present with 
progressive decline in cognitive function (2, 3).

Sepsis is defined as an abnormal host response to infection, resulting in life-threatening dysfunc-
tion of organs (4). Host response to stress was originally described by Selye (5). The so-called 
general adaptation syndrome typically includes an early alarm phase, followed by a phase of 
resistance, and then a phase of exhaustion, which may result in death. Host response to stress relies 
on three major systems: the hypothalamic–pituitary–adrenal (HPA) axis, the autonomic nervous 
system, and the immune system (6). A correct balance between activation of these systems allows 
controlling infection while maintaining cardiovascular and metabolic homeostasis. A typical neu-
roendocrine response to stress includes (i) immediate increased secretion of catecholamines from 
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the sympathetic nervous system and adrenal medulla, release of 
corticotrophin-releasing hormone (CRH) and vasopressin from 
parvocellular neurons into the portal circulation, and secretion 
of oxytocin from the neural lobe of the pituitary, (ii) 5–10  s 
later, secretion of corticotrophin (ACTH) by anterior pituitary 
cells, (iii) followed a few seconds later by decreased secretion of 
pituitary gonadotropins and increased secretion of prolactin and 
growth hormone (in primates), and of renin and glucagon from 
the kidneys and pancreas, respectively, and (iv) a few minutes 
later, increased plasma levels of glucocorticoids and inhibition 
of gonadal steroids secretion. Any imbalance between neuroen-
docrine and immune responses favoring a proinflammatory state 
may trigger organ dysfunction and progression of infection to 
sepsis.

This review will summarize current knowledge on HPA axis 
and disruption during sepsis and the potential role of treatment 
with corticosteroids.

ACTivATiOn OF THe HYPOTHALAMiC–
PiTUiTARY–ADRenAL AXiS 
DURinG SePSiS

During stress, the HPA axis is mainly activated by CRH-
independent pathways, involving immune mediators. The hypo-
thalamus and pituitary glands are protected from exogenous or 
endogenous toxic molecules by the blood–brain barrier (BBB). 
Invading pathogens are identified by various cells, including epi-
thelial, endothelial, and immune cells, thanks to danger molecule 
associated patterns (DAMP) they express on their surface or 
cytosol (7). Subsequently, these cells produce factors promoting 
recruitment of additional cells and destruction and clearance of 
pathogens. Among them, proinflammatory cytokines, such as 
tumor necrosis factor (TNF), interleukin (IL)-1 and -6, and anti-
inflammatory cytokines, such as IL-4 and -10, may contribute 
activating the HPA axis.

Activation of the  
Hypothalamic–Pituitary Axis
At the Hypothalamic–Pituitary Axis Level
There are three main routes for immune mediators to reach the 
hypothalamus and/or the pituitary gland. First, terminal nerve 
endings of autonomic nervous afferent fibers express pathogens 
or DAMP and receptors for many mediators (8). Then, sensing 
pathogens or related DAMP in tissues results in hypothalamic 
signaling via autonomic nuclei in the brainstem, which have 
projections to the hypothalamus, for example, between the locus 
ceruleus and the arcuate nucleus, and other structures of the 
limbic system as well. Then, efferent fibers, particularly of the 
vagus nerve, contribute to the attenuation of inflammation and 
in resuming homeostasis (9). Corticotrophin-releasing hormone 
is released upon acetylcholine stimulation of muscarinic recep-
tor, an effect that is prevented by non-specific nitric oxide (NO) 
blockade (10). Second, inflammatory mediators released in 
blood from tissues can reach the portal circulation in the median 
eminence, located outside the BBB, via the anterior hypophyseal 
arteries. They are carried onto the brain structures, expressing 

receptors for these mediators, either through areas lacking a 
BBB, i.e., the circumventricular organs or across it using specific 
transporters (11, 12). Third, systemic inflammation may cause 
breakdown to the BBB, facilitating blood-borne cytokines traffic 
to deep brain structures (13–16). Among the various factors that 
contribute to the disruption of tight junctions or swelling of the 
BBB, the complement system, particularly C5a anaphylatoxin 
expressed both by astrocytes and endothelial cells, may play a 
key role (17).

Dendritic and microglial cells may produce immune mole-
cules. In animals, peripheral administration of endotoxin yielded 
expression of IL-1 (18) and TNF (19). Similarly, in patients with 
septic shock, postmortem examination suggested overexpression 
of IL-1 and TNF in hypothalamic nuclei (20). Different cytokines 
in different brain regions induce different brain responses. For 
example, IL-1 and TNF are likely the two main mediators of the 
so-called sickness behavior, whereas IL-6 may have no apparent 
direct effect on behavior (21). Experiments in animals suggest 
that TNF- and IL-1-induced release of corticosterone is CRH-
dependent mechanism (22, 23), whereas IL-6 may stimulate 
adrenal function by both CRH-dependent and -independent 
mechanisms (24). IL-1-related activation of the HPA axis is 
mainly dependent on brain endothelial cells and is independent 
of hematopoietic cells and perivascular macrophages (25).

At the Adrenal Gland Level
Tumor necrosis factor is produced in adrenal tissues by resident 
macrophages and by adrenocortical cells, particularly in the 
fasciculate and reticular layers (26). The presence within the 
adrenals of TNF and of its receptors suggests that this cytokine 
plays a role in adrenal function, even though experiments found 
variably stimulatory (27, 28) or inhibitory (26, 29) effects of TNF 
on steroidogenesis. Similarly, IL-1 and its receptor are also pro-
duced in adrenal tissues and may contribute to steroidogenesis at 
least partly by regulating prostaglandins pathways (30). Toll-like 
receptors (TLR) types 2 and 4 are expressed in human’s adrenal 
cortex (31). TLR2 or TLR4 knockout mice showed impaired 
glucocorticoid response to LPS (32, 33). Recent data suggested 
that these DAMP molecules expressed by immune cells recruited 
in adrenal tissues play a major role in the local immune-adrenal 
crosstalk (34).

Mechanisms of Disrupted Hypothalamic–
Pituitary–Adrenal Axis in Sepsis
Irreversible Damage to Neuroendocrine Cells
Sepsis is infrequently associated with necrosis or hemorrhage 
within the HPA axis. The venous drainage of the adrenals being 
limited, sepsis-associated massive increase in arterial blood flow 
to these glands results in enlarged glands (Table 1) (35). Then, 
adrenal necrosis and hemorrhage have been reported as a conse-
quence of sepsis for more than a century (36, 37). Predisposing 
factors of the Waterhouse–Friderichsen syndrome include renal 
failure, disseminated intravascular coagulopathy, and treatment 
with anticoagulants or tyrosine kinase inhibitors. Ischemic 
lesions and hemorrhage have also been described within the 
hypothalamus or pituitary gland (38).
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TABLe 1 | Mechanism explaining hypothalamic–pituitary–adrenal axis 
disruption in sepsis.

HPA axis level Main mechanisms Precipitating factors

Hypothalamus Necrosis or 
hemorrhage

Anticoagulants, brisk variations in blood 
pressure, high dose of vasopressors
Coagulopathy, severe hypoxia, 
hyperglycemia

Decreased  
CRH/AVP  
synthesis/release

Treatment with corticosteroids, 
psychoactive drugs
Increased brain levels of 
proinflammatory cytokines (mainly TNF 
and IL-1)
Hypercortisolemia

Pituitary gland Necrosis or 
hemorrhage

Anticoagulants, brisk variations in blood 
pressure, high dose of vasopressors
Coagulopathy, severe hypoxia, 
hyperglycemia

Decreased ACTH 
synthesis/release

Treatment with corticosteroids, 
psychoactive drugs, anti-
infective drugs, megestrol acetate 
medroxyprogesterone
Increased blood levels of 
proinflammatory cytokines (mainly TNF 
and IL-1)
Coagulopathy, severe hypoxia, 
hypercortisolemia

Adrenals Necrosis or 
hemorrhage

Anticoagulants, brisk variations in blood 
pressure, high dose of vasopressors
Coagulopathy, severe hypoxia

Decreased 
steroidogenesis

Depletion of lipid 
droplets

Cholesterol-lowering drugs

Decreased 
expression of 
scavenger  
receptor B1

Proinflammatory mediators

Enzymes inhibition Aminoglutethimide, ketoconazole, 
fluconazole, etomidate, 
dexmedetomidine
Proinflammatory mediators

Decreased  
sensitivity of  
ACTH receptors

Circulating and adrenals 
proinflammatory mediators (e.g., 
corticostatins)

Tissue 
resistances

Decreased cortisol 
delivery to tissues

Proinflammatory mediators, liver failure, 
severe denutrition

Accelerated glucose 
clearance

Phenobarbital, phenytoin, rifampin

Decreased binding 
capacity and affinity 
of glucocorticoid 
receptor

Proinflammatory mediators

HPA, hypothalamic–pituitary–adrenal.
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Altered CRH/ACTH Synthesis
Hypothalamic/pituitary stimulation by cytokines, particularly 
IL-1, induced a biphasic response with initial proportional 
increase followed by progressive decline in anterior pituitary 
ACTH concentrations (39, 40). Sepsis is associated in animals 
(41, 42) and in humans (20) with marked overexpression of the 
inducible isoform of NO synthase (iNOS) in hypothalamic nuclei 
that is partly triggered by TNF and IL-1. Subsequent abundant 
release of NO may cause apoptosis of neurons and glial cells in 

the neighborhood. In both rodents and humans, sepsis decreased 
ACTH synthesis, though its secretagogues remained unaltered 
(43). Then, the suppression in ACTH synthesis following sepsis 
may be mediated by NO (11).

ACTH synthesis can also be inhibited by various treatments 
(44). Opioids are the main component of patients’ sedation regi-
men in ICU worldwide. In animals, depending on dose, timing, 
and duration, opioids have been shown to variably stimulate 
or inhibit the CRH/ACTH axis, whereas in humans, they pre-
dominantly inhibited it (45). In animals, sepsis is associated with 
early marked increase in ACTH levels that returned to baseline 
values around 72  h (46). Clinical studies have found ACTH 
levels to be significantly lower in critically ill patients (47, 48) 
and particularly in septic shock (48) than in controls. However, 
altered ACTH synthesis in response to metyrapone was observed 
in roughly half of septic shock, and very occasionally in patients 
without sepsis (48).

Altered Steroidogenesis
The adrenals storage of cortisol is very limited. Therefore, 
adequate response to stress relies almost entirely on cortisol 
synthesis. The normal HPA axis response to sepsis remains 
unknown. Cortisol production rate is increased in critically ill 
patients (47). The main finding in this study was an average 50% 
reduction in cortisol clearance from plasma, mainly resulting 
from a loss in cortisol inactivation through suppressed liver 
and renal cortisol to cortisone shuttle. About half of septic-
shock patients have decreased cortisol synthesis (48). Following 
administration of metyrapone, 60% of septic shock had 11β 
deoxycortisol concentrations <7  μg/dl, suggesting decreased 
cortisol synthesis. The alteration may occur at various steps 
in the cortisol synthesis chain. First, histological examination 
of the adrenal cortex of both animals and humans with sepsis 
found marked depletion in lipid droplets, suggesting deficiency 
in esterified cholesterol storage (49). This loss in lipid droplets 
is likely mediated by annexin A1 and formyl peptide recep-
tors (50). In normal conditions, both increased plasma ACTH 
concentrations and depletion in adrenal cholesterol stores 
upregulate adrenals scavenger receptor B1 (SRB1), an HDL 
receptor, which captures esterified cholesterol from blood (51). 
SRB1-mediated cholesterol uptake is considered an essential 
protective mechanism against endotoxin (52). Then, sepsis-
induced deficiency, in SRB1 expression by the adrenal cortex, 
was associated with increased mortality (53). Second, a number 
of environmental factors may inhibit adrenal steroidogenesis 
(54). Steroidogenesis may be inhibited at various enzymatic 
steps by drugs, including P-450 aromatase, hydroxysteroid 
dehydrogenase, or mitochondrial cytochrome P-450-dependent 
enzymes (44). In critically ill patients, etomidate, which inhibits 
the last enzymatic step in cortisol synthesis, increased the risk 
of adrenal insufficiency, 4–6 h (OR 19.98; 95% CI 3.95–101.11) 
and 12  h (OR 2.37; 95% CI 1.61–3.47) post-dosing (55). This 
effect was associated with organ dysfunction, but the ultimate 
effects on mortality remained unclear. Finally, inflammatory 
mediators, such as corticostatins, may bind to ACTH receptors 
in the adrenal cortex, thus preventing ACTH stimulation of 
cortisol synthesis (56).
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Tissues Resistance to Glucocorticoids
A number of factors may prevent cortisol bioactivity in tissues. 
First, cortisol clearance may be accelerated, particularly follow-
ing administration of various drugs, for example, psychoactive 
drugs (barbiturates, phenytoin) or antibiotics (rifampicin) (52). 
Second, sepsis is often associated with marked reduction in 
corticosteroid-binding globulin (CBG) and albumin (48, 57). 
On the one hand, the reduction in cortisol carriers increased free 
cortisol concentrations in plasma. On the other hand, cortisol 
bound to CBG is specifically released at the level of inflamed 
tissues, via neutrophils elastase-dependent mechanisms (58, 59). 
Thus, the net effect of sepsis-associated reduced CBG and albu-
min levels is reduced cortisol delivery to local sites of inflam-
mation. Third, at tissue levels, T-helper 2 cell-derived cytokines, 
for example, IL-2 or IL-4, may inactivate cortisol to cortisone by 
upregulating the 11β-hydroxysteroid dehydrogenase (11β-HSD) 
type 2 enzyme (60). Finally, downregulation of the glucocorticoid 
receptor (GR)-α is a well-known complication of sepsis (61). 
The decrease in GR binding and affinity may be at least partly 
related to exaggerated release of NO in tissues (62). Sepsis may 
also cause alteration in the translocation of the GR-α (63). 
The loss in the dimerization of the GR-α caused resistance to 
glucocorticoids and lethality in septic animals (64).

CORTiCOSTeROiDS FOR SePSiS 
AnD SePTiC SHOCK

Corticosteroids have been used for more than 60  years in the 
management of patients with severe infections. There is a strong 
rationale (as described earlier) for exogenous administration of 
glucocorticoids in sepsis. Nevertheless, their use in practice 
still remains controversial. There is a general agreement that 
corticosteroids improve sepsis-associated comorbidities, such 
as shock, organ dysfunction, and length of hospital stay. Their 
effects on survival and on the risk of secondary infections are 
controversial.

Corticosteroids improve 
Cardiovascular Function
Corticosteroids contribute to restoring effective blood volume, 
notably via sodium and water retention by binding to mineralo-
corticoid receptors in the kidney. They also contribute to restoring 
systemic vascular resistance. First, increase in sodium and water 
content in a vessel’s interstitium results in increased stiffness of 
the vessel wall. Second, corticosteroids enhance vascular contrac-
tile (65) and blood pressure (66) responses to α-1 agonists. This 
effect occurs within minutes following corticosteroid adminis-
tration and is likely a non-genomic effect via modulation of the 
α-1 agonists’ receptors second messenger (65) and ATP-sensitive 
potassium channels (67). The endothelial GR is crucial for pre-
venting prolonged activation of NO and NF-κB, following sepsis 
(68). Thus, prolonged improvement in vascular responsiveness to 
corticosteroids is likely a genomic transrepressive effect. Patients 
with septic shock and blunted response to 250 μg ACTH bolus, 
i.e., increase in total cortisol of <9 μg/dl, have more depressed 
systemic vascular resistance and a greater effect of hydrocortisone 

bolus on blood pressure response to norepinephrine than patients 
with intact HPA axis (65). Corticosteroids also improved micro-
circulation and tissue perfusion in septic shock (69). This effect 
may be mediated by upregulation of endothelial NO synthase via 
activation of the mitogen-activated protein kinase and protein 
Akt pathway (70).

A recent systematic review found 12 trials (n = 1561 patient) 
and reported the effects of corticosteroids on shock reversal 
(weaned off vasopressor therapy) by 1 week (71). In this review, 
the relative risk (RR) of having shock reversed by day 7 was 1.31 
(95% CI 1.14–1.51; P value = 0.0001, random effects model), in 
favor of corticosteroids.

Corticosteroids Decrease Organ Failure
There is strong evidence that corticosteroids attenuate inflam-
mation in various organs in sepsis. For example, they have been 
shown to dramatically decrease NF-κB activity in peripheral 
immune cells (72) or in the lung (73). Corticosteroids have been 
shown to inhibit iNOS activation in the renal cortex, preventing 
hypoxic injuries and restoring an adequate oxygen delivery to 
oxygen balance (74). They also improve glomerular function 
(75), free water clearance, and sodium renal excretion (76). 
Corticosteroids may attenuate sepsis-associated brain inflam-
mation particularly by preventing the breakdown of the BBB 
(77, 78). A total of eight trials (n = 1132 patients) (71) reported 
a dramatic reduction in the number and degree of severity of 
failing organs, with a mean reduction in the SOFA score  –  a 
measure of organ dysfunction (79) – of −1.53 (−2.04 to −1.03; 
P value <  0.00001), in favor of corticosteroids. Corticosteroids 
also reduced ICU length of stay by −1.68 days (−3.27 to −0.09; 
P value  =  0.04) and −2.19  days (95% CI −3.93 to −0.46; 
P value = 0.01), in ICU survivors (71).

Corticosteroid Tolerance
Secondary Infections
Corticosteroids shift the recruitment of T cells from T-helper type 
1 to T-helper type 2 and thus to favor the production of anti-
inflammatory cytokines. Data from 19 trials (n = 2567 patients) 
found that the RR for superinfection was 1.02 (0.87–1.20; 
P value = 0.81) (71). Corticosteroids may blunt febrile response 
to infection and alter leukocyte count and most inflammatory 
biomarkers. Thus, it may become difficult to recognize secondary 
infections in corticosteroid-treated patients. In practice, physi-
cians should systematically screen on a daily basis any potential 
source of infection and draw samples for bacterial culture.

Metabolic Complications
Corticosteroids induce hyperglycemia by stimulating neoglu-
cogenesis, glycogenolysis, and by insulin resistance in skeletal 
muscles and adipocytes. In septic shock, corticosteroids are 
associated with hyperglycemia (P value < 0.00001) and hyper-
natremia (P value <  0.00001) (71). As compared with bolus 
administration, continuous infusion of corticosteroids may ease 
the control of glycemia in sepsis (79). However, preventing 
hyperglycemia by intensive insulin therapy did not improve 
morbidity or mortality (80).
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Acquired Neuromyopathy
Myopathy is a common complication of prolonged or acute expo-
sure to corticosteroids, particularly high doses of fluorinated 
derivatives (e.g., dexamethasone). They induce myonecrosis, 
diffuse atrophy of fibers, cumulated sarcoplasmic glycogen vesi-
cles, myofibril disorganization, and selective depletion of thick 
myosin filaments (81, 82). Upregulation of the calpain pathway 
suggests that altered calcium metabolism and/or increased 
proteolysis may contribute to corticosteroid muscle toxicity 
(82). The risk of myopathy associated with corticosteroids may 
be potentiated by hyperglycemia, hypoxia, or non-depolarizing 
neuromuscular drugs.

Other Complications
In theory, corticosteroids may be associated with psychotic disor-
ders or gastroduodenal bleeding. In practice, data from 19 trials 
(n = 2382) found that the RR of gastroduodenal bleeding was of 
1.24 (95% CI 0.92–1.67; P value = 0.15) (71). ICU studies variably 
found that exposure to systemic corticosteroids increased (83) or 
not (84) the risk of transition to delirium. Corticosteroid wean-
ing may be associated with psychiatric manifestations, including 
depressive state and apathy.

Corticosteroids’ effects on Survival
Most experiments, in both small and large animals, based on 
endotoxin challenges or live bacteria-induced sepsis, found 
survival benefit from various doses and durations of corticos-
teroids (85). At least 33 trials have evaluated corticosteroids for 
severe infection with or without septic shock (71). Data from 
27 trials (n = 3176 patients) found a RR of dying at 28 days of 
0.87 (0.76–1.00, P value = 0.05). The survival benefit was more 
remarkable (P value  =  0.01) in 22 trials of prolonged (>96  h) 
treatment with a moderate (<400  mg daily of hydrocortisone 
or equivalent) dose of corticosteroids. In this Cochrane review, 

meta-regression found a significant dose effect of corticosteroids, 
i.e., the lower the dose, the lower the RR of dying. This review 
also suggested that septic shock, ARDS, or community-acquired 
pneumonia were more likely to draw a survival benefit. Finally, 
data from eight trials (n  =  583 patients), reporting subgroups 
based on the response to 250 μg ACTH test, found a RR of dying 
of 0.88 (0.88–1.02, P value =  0.09), in favor of corticosteroids. 
Depending on trial selection and definition of outcomes, dif-
ferent meta-analyses variably found (86), or did not find (87, 
88), survival benefit from corticosteroids. Current international 
guidelines recommend restricting the use of hydrocortisone to 
vasopressor-dependent septic shock (89).

COnCLUSiOn

There are numerous experimental and clinical data establishing 
the paramount importance of an appropriate activation of the 
HPA axis to respond to severe infection. Similarly, experiments 
in animals and clinical observations strongly support the role of 
an inadequate HPA axis response in the physiopathology and 
outcome of sepsis. In most animal studies, corticosteroid admin-
istration consistently protected against lethal sepsis. In contrast, 
clinical trials in sepsis found much less consistency in survival 
benefits from corticosteroids, though most trials demonstrated 
faster resolution in shock and organ dysfunction. Thus, physi-
cians should consider corticosteroids mainly in septic shock who 
do not respond rapidly to fluid therapy and vasopressors. Trials 
also consistently found that corticosteroids should be given at 
doses of 200 mg of hydrocortisone equivalent per day for at least 
3 days at full dose.
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