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Pan-cancer analyses and
molecular subtypes based
on the cancer-associated
fibroblast landscape and tumor
microenvironment infiltration
characterization reveal clinical
outcome and immunotherapy
response in epithelial
ovarian cancer

Ruoyao Zou1, Qidi Jiang1, Tianqiang Jin2, Mo Chen1,
Liangqing Yao1* and Hongda Ding2*

1Department of Gynecologic Oncology, Obstetrics and Gynecology Hospital of Fudan University,
Shanghai, China, 2Department of General Surgery, ShengJing Hospital of China Medical University,
Shenyang, China
Background: Cancer-associated fibroblasts (CAFs) are essential components

of the tumor microenvironment (TME). These cells play a supportive role

throughout cancer progression. Their ability to modulate the immune system

has also been noted. However, there has been limited investigation of CAFs in

the TME of epithelial ovarian cancer (EOC).

Methods: We comprehensively evaluated the CAF landscape and its

association with gene alterations, clinical features, prognostic value, and

immune cell infiltration at the pan-cancer level using multi-omic data from

The Cancer Genome Atlas (TCGA). The CAF contents were characterized by

CAF scores based on the expression levels of seven CAF markers using the R

package “GSVA.” Next, we identified the molecular subtypes defined by CAF

markers and constructed a CAF riskscore system using principal component

analysis in the EOC cohort. The correlation between CAF riskscore and TME

cell infiltration was investigated. The ability of the CAF riskscore to predict

prognosis and immunotherapy response was also examined.

Results: CAF components were involved in multiple immune-related

processes, including transforming growth factor (TGF)-b signaling, IL2-STAT

signaling, inflammatory responses, and Interleukin (IL) 2-signal transducer and

activator of transcription (STAT) signaling. Considering the positive correlation

between CAF scores and macrophages, neutrophils, and mast cells, CAFs may

exert immunosuppressive effects in both pan-cancer and ovarian cancer
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cohorts, which may explain accelerated tumor progression and poor

outcomes. Notably, two distinct CAF molecular subtypes were defined in the

EOC cohort. Low CAF riskscores were characterized by favorable overall

survival (OS) and higher efficacy of immunotherapy. Furthermore, 24 key

genes were identified in CAF subtypes. These genes were significantly

upregulated in EOC and showed a strong correlation with CAF markers.

Conclusions: Identifying CAF subtypes provides insights into EOC

heterogeneity. The CAF riskscore system can predict prognosis and select

patients who may benefit from immunotherapy. The mechanism of

interactions between key genes, CAF markers, and associated cancer-

promoting effects needs to be further elucidated.
KEYWORDS

cancer-associated fibroblast, epithelial ovarian cancer, tumor microenvironment,
prognosis, immunotherapy
Introduction

Epithelial ovarian cancer (EOC) is the fifth leading cause of

cancer-related deaths in women and is the most lethal

gynecological malignancy (1). Globally, the incidence of EOC

is increasing annually, with approximately 310,000 newly

diagnosed cases and 210,000 deaths (2). Up to 75% of patients

are diagnosed at an advanced stage, manifesting with extensive

intra-abdominal metastases. The 5-year survival rate is only

15%–25%, even after optimal surgical reduction with standard

treatment using platinum/paclitaxel (3). Moreover, EOC is

characterized by a high degree of heterogeneity, which makes

it challenging to effectively characterize and optimize treatment,

especially for high-grade serous ovarian cancer. Extensive

heterogeneity also contributes to persistent drug resistance and

poor oncological outcomes (4, 5). Hence, identifying EOC

molecular subtypes is crucial for guiding personalized therapy.

The tumor microenvironment (TME) has received much

attention as a critical element in tumor evolution. This highly

complex system contains many components, including tumor

cells, infiltrating immune cells, stromal cells, endothelial cells,

lipid cells, extracellular matrix (ECM), and various signaling

molecules (6). Cancer-associated fibroblasts (CAFs) play a

significant role in the TME as stromal components that affect

tumor behavior (7). By the production of growth factors and

cytokines, remodeling ECM, and promoting angiogenesis, these

cells facilitate malignant cell invasion and migration; they may

also contribute to therapeutic resistance and tumor recurrence

(8–10). Recent studies highlighted the emerging role of CAFs in

immune regulation, since they modulate immune cell

recruitment in the TME and mediate immune evasion (11, 12).
02
CAFs are typically derived from local resident fibroblasts

that undergo myofibroblast differentiation during wound

healing and tumor development (13). The conversion of other

cell types, such as mature adipocytes, endothelial cells, and

mesenchymal stem cells, into CAFs explains their phenotypic

heterogeneity and functional diversity (14–16). Currently,

phenotypically distinct CAF subtypes have been identified.

Preclinical and early clinical research on immunotherapy

targeting CAFs has focused on various tumor types, but little

has been done regarding EOC (17–21). Therefore, determining

the molecular characteristics of CAFs and understanding therole

of CAF isoforms in the TMEmay help clarify EOC heterogeneity

and enhance the development of immunotherapeutic regimens.

The present study comprehensively evaluated the clinical

and genomic characteristics of CAF components in 33 solid

tumors. We stratified 480 patients with EOC into two distinct

subtypes based on the expression levels of seven CAF markers.

Subtype-specific survival and immune infiltration differences

were also determined. Furthermore, a scoring system was

developed to quantitatively evaluate the CAF landscape for

patients with EOC, which will permit accurate prediction of

patient outcomes and responses to immunotherapy.
Materials and methods

Dataset sources

The Cancer Genome Atlas (TCGA) cancer samples from 33

types were included in the pan-cancer study. RNA sequencing

(RNA-seq) data and clinical information from TCGA and
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Genotype-Tissue Expression (GTEx) were downloaded from the

UCSC Xena database (http://xenabrowsernet/datapages/). A

s i n g l e - c e l l RNA- s e q d a t a s e t o f o v a r i a n c an c e r

(OV_GSE118828) was obtained from the tumor Immune

Single Cell Hub (TISCH) database (22). The GSE40595 dataset

from the GEO database provides gene expression profiles of 31

cancer stromal samples and eight normal ovarian stromal

samples from patients with high-grade serous ovarian cancer

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? acc=

GSE40595). The EOC samples used for clustering were

obtained from TCGA_OV (RNA-seq FPKM dataset) and the

GSE63885 dataset (https://www.ncbi.nlm. nih.gov/gds/?

term=GSE63885).
Molecular markers

To quantify the relative abundance of fibroblasts in pan-

cancer samples and identity CAF subpopulations in EOC, we

adopted seven classical CAF molecular markers, including

platelet-derived growth factor receptor alpha (PDGFRA),

platelet-derived growth factor receptor-beta (PDGFRB), a-
smooth muscle actin (ACTA2, a-SMA), thy-1 cell surface

antigen (THY1), podoplanin (PDPN), fibroblast activation

protein (FAP), and collagen 1A1 (COL1A1). These seven

markers were combined to identify triple-negative breast

cancer (TNBC) samples with different levels of CAF

infiltration (23).
Genetic alteration analysis

Gene set cancer analysis (GSCA), a comprehensive database

of cancer genomics, was used to analyze genetic alterations in

CAF markers, including copy number variation (CNV), single-

nucleotide variation (SNV), and methylation (http://bioinfo.life.

hust.edu.cn/GSCA/#/) (24).
Clinical relevance and prognostic
analysis of the cancer-associated
fibroblast score

The CAF score was calculated by the single-sample gene set

enrichment analysis (ssGSEA) function of R package “GSVA”

across all samples within each cancer type (including 9,784 from

tumor tissue, (Table S1). We compared CAF scores for 33 cancer

types and evaluated their correlations with tumor stage and

prognosis. Using the surv cutoff function in the “Survminer” R

package, we calculated the optimal cutoff value and divided

samples from each tumor type into low- and high-CAF score

groups based on the calculated cutoff value.
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Functional and pathway enrichment
analysis

The R package “GSVA” was used to perform gene set

variation analysis (GSVA) enrichment to explore the relevance

of CAF score to Hallmark pathways in the pan-cancer and

TCGA_OV cohorts. Relevant gene sets were downloaded from

the MSigDB database (http://software.broadinstitute.org/gsea/

msigdb/index.jsp).
Tumor microenvironment and immune
infiltrating analysis

For each TCGA patient, we calculated the immuneScore,

stromalScore, and tumor purity using the “ESTIMATE”

algorithm and assessed the correlation with the CAF score

using Spearman’s correlation analysis. To determine the

ESTIMATEScore, we summed the immuneScore and

stromalScore, which reflect the relative abundances of

immune and stromal components, respectively. A higher

ESTIMATEScore indicates poorer tumor purity (25). Data

on immune cell infi l tration in TCGA cohorts were

obtained from the Immune Cell Abundance Identifier

(ImmuCellAI) database (http://bioinfo.life.hust.edu.cn/

ImmuCellAI#!/) and the TIMER2 database (http://timer.

cistrome.org/). Then, the relative proportion of 22 TME

immune cells in the EOC cohort was evaluated using the

“CIBERSORT” algorithm.
Consensus clustering for cancer-
associated fibroblast subtypes in
epithelial ovarian cancer samples

The EOC samples were analyzed by hierarchical

agglomerative clustering using consensus clustering algorithm

according to the expression of seven CAF markers. The EOC

cohort contained the complete TCGA_OV (379 tumor samples,

377 with survival data) and GSE63885 (101 tumor samples, 75

with survival data) clinical datasets. Batch effects were

eliminated using the “limma” and “sva” R packages. The

associated clinical information is shown in Table S2. The

“ConsensusClusterPlus” R package was used to perform

cluster analysis and to identify two CAF subtypes (clusters A

and B). The algorithm was repeated 1,000 times to ensure that

the classification was stable. We also compared the associations

between subtypes, tumor grade, tumor stage, and prognosis to

examine the role of the two CAF subtypes in clinical practice.

Additionally, GSVA was performed to compare the relevant

Hallmark and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways in the CAF subtypes.
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Differentially expressed genes related to
cancer-associated fibroblast subtypes

A total of 613 differentially expressed genes (DEGs) in the

two CAF subtypes were identified using the R package “limma”

with |log2foldchange| >0.5 and adjusted p-values <0.05 (26). The

“clusterProfiler” R package was used to investigate the potential

function of CAF-related DEGs via KEGG enrichment analysis

and Gene Ontology (GO) annotation (27). Differences were

considered statistically significant at p < 0.05.
Differentially expressed gene clustering
and construction of the cancer-
associated fibroblast riskscore

We performed a univariate Cox regression analysis to

identify DEGs that were associated with overall survival (OS)

(p < 0.05). Based on these prognostic DEG expression values,

consensus clustering was performed to categorize the patients

into two genomic clusters (gene clusters A and B). We then

conducted principal component analysis (PCA) to calculate the

CAF riskscore. Principal component (PC) 1 and PC2 were

selected as the feature scores. The score of each EOC sample

was calculated using the formula: CAF riskscore = ∑(PC1i +

PC2i), where i represents the expression of each prognostic

feature gene (28). Patients were divided into low- and high-

CAF riskscore groups based on the optimal cutoff value. To

assess the impact of riskscore on prognosis, we performed

survival analysis and Cox regression analysis of the

EOC cohort.
Immunophenoscore analysis

To predict the sensitivity of immunotherapy, we downloaded

immunophenoscore (IPS) data for EOC patients from the The

Cancer Immunome Atlas (TCIA) database (https://tcia.at/). IPS

scores were positively associated with immunogenicity. Higher

scores represent better outcomes after treatment with immune

checkpoint inhibitors (29). We compared the IPS values between

the high- and low-riskscore groups to evaluate immunotherapy

decisions. Finally, the Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm was applied to investigate immune evasion in

the EOC cohort (30).
Statistical analyses

R (version 4.1.1) was used for all statistical analyses.

Differences between two groups were analyzed using Wilcoxon

tests or t-tests. Kaplan–Meier survival analysis and log-rank tests

were performed using the “survival” and “survminer” R packages
Frontiers in Immunology 04
to evaluate the survival divergence of different subtypes and

riskscore groups. We computed the 95% confidence interval

(CI) and hazard ratio (HR) using a Cox regression model.

Correlation coefficients were determined using Spearman’s

correlation analysis. Statistical significance was set at p < 0.05.
Results

The expression of seven cancer-
associated fibroblast markers in
ovarian cancer

Initially, we investigated the OV_GSE118828 dataset to

explore which OV cell subpopulations of these marker genes

are predominantly expressed. We found that the expression of

PDGFRA, THY1, PDPN, FAP, and COL1A1 was the highest in

fibroblasts compared to that of other cell subpopulations. The

expression of PDGFRB and ACTA2 expression was highest in

myofibroblasts, followed by fibroblasts (Figure 1A). In addition,

we observed that these seven genes were significantly

upregulated in cancer stroma compared with that of normal

ovarian stroma in high-grade serous OV, indicating their

competence as CAF-specific markers in OV and their critical

function in tumor stroma (Figure 1B).

A protein–protein interaction (PPI) network was

constructed to assess the associations among these seven CAF

marker-related proteins using the search tool for the retrieval of

interacting genes/proteins (STRING) online database (https://

cn.string-db.org/, Figure S1A). The correlation between the

mRNA expression levels of CAF markers based on TCGA

pan-cancer data and TCGA_OV cohort was also examined,

both of which showed a strong positive correlation (Figures

S1B, S1C).
Genomic alterations of
cancer-associated fibroblast markers at
the pan-cancer level

We next obtained details of CNVs for the seven CAF

markers. The CNV distribution showed that heterozygous

amplification and heterozygous deletion were the main CNV

types in pan-cancers (Figure 2A). Correlation analysis indicated

that the CNV of PDPN was positively correlated with its mRNA

level in 10 of the 33 tumor types, especially in low-grade glioma

(LGG; r = 0.57) and cholangiocarcinoma (CHOL; r = 0.44). The

CNV of PDGFRA was positively correlated with its mRNA levels

in glioblastoma multiforme (GBM) (r = 0.43). However, there

was a negative correlation for COL1A1 in five of the 33 tumor

types (Figure 2B). SNV was also analyzed to determine the

variation frequency and type for each TCGA cancer subtype.

Our analysis revealed that most genetic aberrations were
frontiersin.org
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B
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FIGURE 1

The expression of seven CAF markers in OV. (A) The distribution of seven CAF markers in OV cell subpopulations through the TISCH database
(OV_GSE118828 dataset). (B) Seven CAF markers were upregulated in ovarian cancer stroma compared with normal ovarian stroma (GSE40595
dataset).
B

C D

A

FIGURE 2

The CNV distribution and methylation levels of seven CAF markers in pan-cancer. (A) Pie charts illustrating the proportion of multiple CNV types
for each marker across each cancer type. The color represents different CNV types. Hete Amp, heterozygous amplification; Hete Del,
heterozygous deletion; Homo Amp, homozygous amplification; Homo Del, homozygous deletion; None, no CNV. (B) The correlation between
CNV and mRNA expression for each marker in the selected cancer types. (C) Marker gene methylation status between tumor and normal
samples in the selected cancer types. The red and blue dots represent increased and decreased methylation in tumors compared to normal
tissues, respectively. The darker the color, the larger the methylation difference. (D) Correlation between methylation and mRNA expression for
each marker in the selected cancer types. The red and blue dots represent positive and negative correlations, respectively. Gray dots indicate no
significant correlation. Darker colors indicate stronger correlations. The dot size represents statistical significance (larger dot sizes indicate
increased statistical significance).
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missense mutations. The SNV frequency for these CAF markers

was 100% (850 of 850 tumors). Of these, PDGFRA had the

highest mutation rate (34%) among CAF markers. In skin

cutaneous melanoma (SKCM), COL1A1 mutations were the

most prevalent (71%; Figure S2).

Next, we explored CAF marker gene methylation to identify

epigenetic regulation in pan-cancer. Our results revealed a

highly heterogeneous methylation status in different tumors.

Hypermethylated genes were more frequently observed than

hypomethylated genes in bladder urothelial carcinoma (BLCA),

breast invasive carcinoma (BRCA), colon adenocarcinoma

(COAD), kidney renal papillary cell carcinoma (KIRP),

prostate adenocarcinoma (PRAD), and uterine corpus

endometrioid carcinoma (UCEC). In contrast, hypomethylated

genes were more common in lung squamous cell carcinoma

(LUSC) and head and neck squamous cell carcinoma (HNSC).

Most cancers presented PDGFRA, PDGFRB, PDPN, ACTA2,

and FAP hypermethylation compared to normal samples.

However, most cancers showed THY1 and COL1A1

hypomethylation compared to normal samples (Figure 2C).

The methylation levels of CAF markers were generally

negatively correlated with their mRNA levels (Figure 2D).

These results indicate that the CNV distribution, SNV

alterations, and methylation status of CAF markers mediate

abnormal marker gene expression.
The expression levels and prognostic
significance of the cancer-associated
fibroblast score

A comparison of CAF scores for the 33 tumor types in TCGA

cohorts showed that pancreatic adenocarcinoma (PAAD) had the

highest CAF score, while acute myeloid leukemia (LAML) had the

lowest score and OV had a moderate score (Figure 3A)

Additionally, we examined the relevance of CAF score with

tumor stage and found a significant correlation between CAF

score and tumor stage in nine cancer types. CAF scores were

generally higher in advanced tumor stages (stage IV or III) in

patients with BLCA, BRCA, esophageal cancer (ESCA), kidney

renal clear cell carcinoma (KIRC), KIRP, OV, gastric

adenocarcinoma (STAD), thyroid carcinoma (THCA), and

uterine carcinosarcoma (UCS) but were lower in early tumor

stages (stage II or I) (Figure 3B). Intriguingly, CAF scores in ESCA

and STAD were higher in stage II than that in stage I but

decreased in stage II compared to stage I in patients with KIRC

and THCA. The CAF scores did not differ between stage I and II

in patients with the remaining tumor types. We also observed no

differences in CAF scores between stage III and IV in pan-cancer.

To evaluate the prognostic value of the CAF score in various

tumor types, we conducted a Kaplan–Meier analysis.We observed

that high CAF scores were correlated with poor OS in 21 tumor

types, including adrenocortical carcinoma (ACC), BLCA, COAD,
Frontiers in Immunology 06
GBM, kidney chromophobe (KICH), KIRC, KIRP, LGG, LUSC,

mesothelioma (MESO), OV, PAAD, sarcoma (SARC), SKCM,

STAD, testicular germ cell tumor (TGCT), THCA, thymoma

(THYM), UCEC, UCS, and uveal melanoma (UVM; Figure 4).
Functional enrichment analyses of the
cancer-associated fibroblast score

We performed GSVA from the HALLMARK pathway

database to determine how pathways within the CAF

landscape are involved in pan-cancer. The results showed that

the CAF scores were positively linked to pathways such as

epithelial–mesenchymal transition, TGF-b signaling, IL2-

STAT signaling, hypoxia, inflammatory response, and IL6-

JAK-STAT3 signaling (Figure 5A). In TCGA_OV cohort, CAF

enrichment analysis showed enrichment similar to that of pan-

cancer analysis (Figure 5B). These tumor-related pathways,

particularly immune-related pathways, might lead to poor

survival in patients with malignancy.
Association of the cancer-associated
fibroblast score with the tumor
microenvironment

We investigated the relationship between the CAF score and

the TME and found a significant positive correlation between

CAF scores and stromalScores in all 33 tumor types,

demonstrating that CAF scores calculated using CAF markers

may influence stromal cell infiltration and contribute to stromal

function. Furthermore, CAF scores were positively correlated

with immuneScores in most tumor types except for MESO, UCS,

THYM, TGCT, and lymphoid neoplasm diffuse large B-cell

lymphoma (DLBC), indicating that elevated CAF scores may

facilitate immune cell infiltration and modulate immune

responses. In addition, CAF scores were negatively and

positively correlated with tumor purity and ESTIMATEScores,

respectively, in pan-cancer, excluding LAML. Since low purity

indicates a poor prognosis for cancer, the above findings are

consistent with our survival prediction results that high CAF

scores correspond to poor prognosis (31) (Figure 6A). The

scatter plot in Figure 6B highlights the association between

CAF scores and the TME in TCGA_OV cohort.
Association of the cancer-associated
fibroblast score with immune cell
infiltration in the tumor
microenvironment

To assess the role of the CAF score in predicting immune cell

infiltration, we explored the association between CAF scores and
frontiersin.org
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immune cells in the TME. Using data from the ImmuCellAI

database, we found that the CAF scores were significantly

positively correlated with macrophages, monocytes, and induced

T regulatory cells (iTregs) and negatively correlated with CD8 T

cells, CD4-naive cells, B cells, and natural T regulatory cells

(nTregs) (Figure 7A). In addition, our CAF score and CAFs

showed a significant positive correlation according to the
Frontiers in Immunology 07
TIMER2 database, which confirmed that scoring reflects CAF

features. Meanwhile, the CAF scores were positively correlated

with macrophages, myeloid-derived suppressor cells (MDSCs),

neutrophils, and mast cells (MCs). In contrast, CAF scores were

negatively correlated with plasma B cells and Th1 CD4 T cells

(Figure 7B, Table S3). These results indicate that CAFs may act in

an immunosuppressive manner. Previous studies showed that in
B C D

E F G

H I J

A

FIGURE 3

The differential distribution of CAF score. (A) The CAF score distribution in pan-cancer. (B) The differential distribution of CAF score in various
tumor stages in pan-cancer. Only significant results were shown. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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tumors with immune checkpoint gene overexpression, immune

checkpoint blockade could effectively enhance the antitumor effect

of T cells and help the immune system identify and eliminate

cancer cells (32). Accordingly, we investigated the correlation

between CAF scores and immune checkpoints in TCGA_OV

cohort and found that CAF scores were significantly positively

correlated with programmed cell death protein 1 (PD-1),
Frontiers in Immunology 08
programmed cell death-ligand 1 (PD-L1), cytotoxic T

lymphocyte-associated antigen-4 (CTLA-4) , T-cel l

immunoreceptor with immunoglobulin and immunoreceptor

tyrosine-based inhibition motif domains (TIGIT), and

lymphocyte activation gene 3 (LAG-3) (Figure 7C). These

results suggested that tumor immune escape may be involved in

CAF-mediated tumorigenesis in OV.
B C D E

F G H I J

K L M N O

P Q R S T

U

A

FIGURE 4

Survival analysis between CAF score group and overall survival in pan-cancer. Only significant results were shown.
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Identification of cancer-associated
fibroblast subtypes in the epithelial
ovarian cancer cohort

To determine the characteristics of CAF molecular subtypes

in tumorigenesis, we performed further analysis on 480 patients

from two eligible EOC cohorts. With the two datasets integrated,

PCA evaluated the batch effect before and after the conversion

and found it to be remarkably reduced after conversion

(Figures 8A, B). The network map shown in Figure 8C

provides a comprehensive landscape of the interactions among

CAF markers in EOC patients and the prognostic value for each

marker. Survival analysis showed that the high expression of

these markers corresponded to poor prognosis in patients with

EOC (Figures 8D–J, p < 0.05).

We categorized the entire cohort based on the expression

profiles of the seven CAF markers. Cluster analysis showed that

k = 2 was the best cutoff for dividing the entire cohort into cluster

A (n = 301) and cluster B (n = 179) (Figure 9A). PCA revealed a

remarkable transcriptome difference between the two CAF

subtypes (Figure 9B). Kaplan–Meier analysis showed that

patients in cluster A had longer OS than that in patients in

cluster B (p = 0.022; Figure 9C). The relationship between the

expression of CAF markers and clinical characteristics of two

CAF subtypes was visualized (Figure 9D). Furthermore, GSVA

enrichment analysis was conducted to examine functional and

biological differences between subtypes. HALLMARK analysis

showed that cluster B was significantly enriched in epithelial

mesenchymal transition, TGF-b signaling, TGF-b signaling via

Nuclear factor-k-gene binding (NF-kB), inflammatory response,

and IL6-JAK-STAT3 signaling, whereas cluster A was mainly
Frontiers in Immunology 09
enriched in DNA repair (Figure 9E). KEGG analysis showed that

cluster B was enriched in immune-related pathways, such as

complement and coagu la t ion cascades , l eukocyte

transendothelial migration, and chemokine signaling pathways,

whereas cluster A was mainly related to mismatch repair and

nucleotide excision repair (Figure 9F, Table S4).
Characteristics of the tumor
microenvironment cell infiltration in
cancer-associated fibroblast subtypes

We then explored the composition of the TME-infiltrating

cells among the two subtypes. The infiltration of memory B cells,

T-follicular helper cells, T regulatory cells (Tregs), activated

natural killer (NK) cells, and activated dendritic cells (DCs)

was remarkably higher in cluster A than that in cluster B, while

the infiltration of memory resting CD4 T cells, M2 macrophages,

and neutrophils was significantly lower in cluster A than that in

cluster B (Figure 10A).
Identification of gene subtypes based on
prognostic differentially expressed genes

We identified 613 CAF subtype-related DEGs, visualized by

volcano plots (Figure 10B). Functional enrichment analysis was

performed to understand the potential behavior of DEGs in EOC

(Table S5). GO annotation showed that the DEGs were involved

in ECM organization, collagen-containing ECM, and ECM

structural constituent (Figure 10C). KEGG analysis revealed
BA

FIGURE 5

GSVA of CAF score. (A) The top 50 HALLMARK pathways in pan-cancer. (B) The top 50 HALLMARK pathways in TCGA_OV cohort. The red and
blue colors represent positive and negative correlations, respectively. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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enrichment in the PI3K-Akt signaling pathway, ECM–receptor

interaction, and immune-related pathways such as the TGF-b
signaling pathway, leukocyte transendothelial migration,

cytokine–cytokine receptor interaction, NF-kB signaling

pathway, and IL-17 signaling pathway (Figures 10D, E).

Univariate Cox regression analysis showed that 118 DEGs

were associated with OS. We screened these genes (Table S6)

and observed that two genomic subtypes (gene clusters A and B)

were separated based on the expression of these prognostic genes

(Figure 11A). Kaplan–Meier analysis suggested that patients

with gene cluster B had worse OS than those with gene cluster

A (p = 0.005; Figure 11B). The two gene subtypes showed

significant differences in the expression of the seven CAF
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markers, which was consistent with the results for the CAF

subtypes (Figure 11C). Figure 11D depicts a heat map that

illustrates DEG expression in different CAF clusters and gene

clusters. To quantify the CAF landscape, we established a scoring

system based on these prognostic DEGs using PCA. We defined

this score as the CAF riskscore. A Sankey diagram was used to

illustrate the distribution of the survival differences among the

distinct clusters, gene clusters, and two CAF riskscore groups

(Figure 11E). Next, we explored the relationship between the

CAF riskscore and CAF clusters as well as CAF gene clusters.

The CAF riskscore was significantly higher in cluster B than that

in cluster A. Similar results were observed for the two genetic

subtypes (Figures 11F, G).
B

A

FIGURE 6

Association of CAF score with the TME. (A) Heatmap showed the correlation between CAF score and stromalScore, ESTIMATEScore,
immuneScore, and tumor purity score in pan-cancer. (B) The correlation between CAF score and stromalScore, ESTIMATEScore, immuneScore,
and tumor purity score in TCGA_OV cohort. The correlation coefficients were calculated by Spearman correlation analysis. The red and blue
colors represent positive and negative correlations, respectively. The darker the color, the stronger the correlation. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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Clinicopathological and prognostic
characteristics of the cancer-associated
fibroblast riskscore in the epithelial
ovarian cancer cohort

To investigate the impact of CAF riskscore on clinical

characteristics, we explored the correlation between CAF

riskscore, tumor stage, and survival status. Patients in the

stage III–IV subgroup had significantly higher CAF

riskscores than patients in the stage I–II subgroup. Moreover,

patients in the high-riskscore group tended to have more

advanced diseases (Figures 12A, B). The CAF riskscores were

significantly higher in patients who died than those in patients

who survived. A larger proportion of tumor-related deaths

occurred in patients with a high riskscore (Figures 12C, D).

Furthermore, the OS of the high-riskscore group was worse

than that of the low-riskscore group (p < 0.001, Figure 12E).

Based on the data from TCGA_OV cohort, multivariate

Cox regression revealed that the presence of residual

tumors and high CAF riskscore were independent risk

factors (HR = 2.285, p = 0.000407; and HR = 1.438,

p =0.025, respectively; Figure 12F).
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Relationship between the cancer-
associated fibroblast riskscore and the
tumor microenvironment cell infiltration

Figure S3 and Table S7 based on GSVA showed that there

was also a significant positive correlation between CAF riskscore

and epithelial–mesenchymal transition, TGF-b signaling, IL2-

STAT signaling, hypoxia, inflammatory response, and IL6-JAK-

STAT3 signaling pathways. Subsequently, we examined the

correlation between the CAF riskscore and the abundance of

immune cells. We found that in the EOC cohort, the CAF

riskscores were positively correlated with the infiltration of

resting memory CD4 T cells, M0 macrophages, and resting

DCs. The CAF riskscores were negatively correlated with the

infiltration of memory B cells, T-follicular helper cells, Tregs,

monocytes, M1 macrophages, and activated DCs (Figure 13A).

To examine whether the CAF riskscore could predict

immunotherapy outcomes, we analyzed the association

between the CAF riskscore and IPS in EOC. The results

showed that IPS-CTLA4-/PD-L1-, IPS-CTLA4-/PD-L1+, IPS-

CTLA4+/PD-L1-, and IPS-CTLA4+/PD-L1+ were significantly

higher in the low-riskscore group than that in the high-riskscore
B

C

A

FIGURE 7

Association of CAF score with immune cell infiltration. (A) Association of CAF score with immune cell infiltration in pan-cancer based on
ImmuCellAI (The red and blue colors represent positive and negative correlations, respectively) and (B) TIMER2 database. (C) Association of CAF
scores with immune checkpoints in TCGA_OV cohort. The correlation coefficients were calculated by Spearman correlation analysis. The red
and green colors represent positive and negative correlations, respectively. The darker the color, the stronger the correlation. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.
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group, indicating that patients in the low-riskscore group would

likely achieve a better response to immunotherapy (Figures 13B–

E). The TIDE value was significantly higher in the high-riskscore

group than that in the low-riskscore group, indicating that the

high-riskscore group had a greater potential for immune evasion

and lower responses to immunotherapy (Figure 13F).
Identification of key genes with
differential expression in epithelial
ovarian cancer samples

We integrated tumor samples from TCGA database with

normal ovarian samples from the GTEx database and analyzed

the difference in expression levels of these prognostic DEGs among

the two groups. Then, we obtained 24 key genes that were

significantly upregulated in EOC (Figure 14A). Meanwhile,

immunohistochemical results acquired from the Human Protein

Atlas (HPA) database showed that DEG expression was relatively

stronger in the tumor group compared to that in the normal ovary
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group (Figure 14B). Most genes exhibited significantly strong

correlations with CAF markers, except for anterior gradient

protein 2 (AGR2), forkhead box A2 (FOXA2), and SAM pointed

domain-containing ETS transcription factor (SPDEF), which had a

significant negative correlation (Figure 14C).
Discussion

The TME is a multicellular system characterized by complex

tumor–stroma interactions. CAFs have recently been recognized

as essential components of the cancer stroma. These cells are

widely distributed in human solid tumors and play a significant

role in cancer pathogenesis (33). PDGFRA, PDGFRB, ACTA2,

THY1, PDPN, FAP, and COL1A1 were previously considered

CAF markers. However, these cell surface markers are not

exclusively expressed by CAFs. For example, ACTA2 also

serves as a general marker for vascular muscle cells and

pericytes. Thus, the selective expression patterns of these

markers could be used to characterize the phenotypic
B C

D E F G
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FIGURE 8

Survival analysis of seven CAF markers in the EOC cohort. (A) Before the removal of batch effects through principal component analysis, the
differences between samples obtained from two datasets are illustrated. (B) After the removal of batch effects, the differences among samples
obtained from two datasets are reduced. (C) Interactions and interconnection among CAF markers in EOC. The connecting lines represent their
interactions, and the thickness of the lines indicates the strength of the association. The pink and blue lines represent positive and negative
correlations, respectively. The green and purple dots in the circle indicate favorable and risk factors, respectively. (D–J) Survival analysis
between seven CAF markers and overall survival in EOC patients.
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heterogeneity and functional diversity of activated CAFs within

the specific TME (7, 34–38). Furthermore, the combination of

these markers may enhance the differentiation of CAF

subgroups, and different CAF subgroups have specific

prognostic significance and exert different roles in efficacy. An
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analysis of ACTA2, FAPa, PDGFRA, PDGFRB, CD26, and
PDPN revea led the coex i s tence of mul t ip le CAF

subpopulations in murine TNBC (39). Based on the expression

of FAP, CD29, ACTA2, PDGFRA, and PDPN, four CAF

subpopulations were detected in metastatic breast cancer
B

C
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A

FIGURE 9

The biological characteristics between two CAF subtypes in the EOC cohort. (A) Two clusters (k = 2) were identified by consistent clustering. (B)
The transcriptomes of the two CAF subtypes differed significantly. (C) Kaplan–Meier curves of overall survival between cluster A and B. (D) The
heat map depicted the relationship between the expression of CAF markers and clinical characteristics of two CAF subtypes. (E) HALLMARK
pathways between two CAF subtypes. (F) KEGG pathways between two CAF subtypes. The red and blue colors represent pathways that are
active and inhibitory, respectively.
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axillary lymph nodes and these subpopulations contribute to

metastasis through distinct mechanisms (17). The human

PDAC-derived CAF subtype B population may be associated

with poor prognosis, whereas subtype C CAFs appear to be

associated with good clinical prognosis (40). Additionally, CAF-

S1 in human BC is a key player in immunosuppression, as this

subtype enhances the differentiation, recruitment, and activation

of Tregs. In contrast, CAF-S4 does not exhibit these properties

(41). Nonetheless, studies investigating CAF subgroups in EOC

remain limited (42). In this study, we performed a

comprehensive and systematic characterization of CAF

markers in pan-cancer and identified CAF subgroups in EOC.

Our results elucidate the tumor-promoting profile of CAFs,

identify multiple potential CAF-related mechanisms in the

TME, confirm their critical role in immune infiltration, and

provide a basis for developing innovative therapies targeting

specific CAF subgroups in EOC.

Genetic alterations lead to aberrant gene expression and

cancer progression (43). CNVs are an important form of genetic

structural variation and are crucial for cancer diagnosis,

prevention, and treatment. Furthermore, CNV-induced gene

mutations may lead to immune escape (44, 45). In our study,
Frontiers in Immunology 14
we observed a high CNV frequency in CAF markers and a

correlation between CNV and marker expression, suggesting

that CNV may affect CAF function and contribute to

tumorigenesis . Previous studies detected PDGFRA

amplification in GBM, consistent with our findings (46).

Among the epigenetic modifications in mammalian genomes,

DNA methylation plays a fundamental role in regulating gene

expression and tumorigenesis. Tumors are usually accompanied

by oncogene hypomethylation and tumor-suppressor gene

hypermethylation (47, 48). Hypomethylation in our study

corresponds to abnormally high CAF marker expression in

most tumors (except for FAP in THCA and TGCT), which

indicates that CAF markers underlie a tumor-promoting

behav io r and may be po t en t i a l n ew ta rge t s f o r

epigenetic regulation.

By interacting with several signaling pathways, such as TGF-

b, NF-kB, IL6-JAK-STAT3, and PI3K-Akt signaling pathways,

CAFs contribute to TME formation and maintenance. TGF-b
signaling has been implicated as a mediator of immune contexts

within the TME, with its ability to influence the ECM structure,

which excludes immune cells and possibly generates

immunotherapy resistance (49). Recent studies emphasize the
B

C D E

A

FIGURE 10

The TME cell infiltration of CAF subtype and biological characteristics of CAF subtype-related DEGs. (A) The abundance of the 22 TME
infiltration cell subsets in two CAF subtypes based on the CIBERSORT algorithm. (B) Volcano map showing CAF subtype-related DEGs. Pink and
red colors represent upregulated and downregulated, respectively. (C) GO enrichment analysis of DEGs. (D) KEGG enrichment analysis of DEGs.
The size of the bubbles represents the amount of gene enrichment. The depth of color represents the FDR value. (E) Circle diagram showing
the relationship between DEGs and pathways in KEGG.
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FIGURE 11

The biological characteristics of CAF gene cluster and construction of CAF riskscore system. (A) Two gene clusters (k = 2) were identified by
consistent clustering based on prognostic DEGs. (B) Kaplan–Meier curves of overall survival between gene clusters A and B. (C) Differences in
the expression of seven CAF markers among the two gene clusters. (D) The heat map was drawn to visualize the expression of prognostic DEGs
in distinct CAF clusters and gene clusters. (E) Sankey diagram illustrating the distribution of survival outcomes among the distinct clusters, gene
clusters, and CAF riskscore groups. (F) Differences in CAF riskscore among two clusters in EOC cohorts. (G) Differences in CAF riskscore among
two gene clusters in EOC cohorts.
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role of NF-kB signaling in mediating interactions between

cancer cells and stroma. In various tumor types, continuous

NF-kB signaling pathway activation in CAFs facilitates tumor

progression and triggers inhibitory immune cell infiltration by

secreting IL6, IL8, and other inflammatory molecules (33, 50).

The JAK/STAT3 and PI3K/AKT signaling pathways could be
Frontiers in Immunology 16
considered potential targets for combating CAF-induced

chemotherapy resistance in gastric cancer (51, 52).

Additionally, a complex crosstalk exists between CAFs and

immune cells. Tumor-associated macrophages are the most

prominent immune cells in the vicinity of CAF aggregation,

suggesting an intimate interplay between the two cell types (12).
B
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FIGURE 12

Clinicopathological and prognostic characteristics of CAF riskscore. (A) Correction between CAF riskscore and tumor stage. (B) Proportions of
tumor stage in high- and low-riskscore groups. (C) Correction between CAF riskscore and survival status. (D) Proportions of survival status in
high- and low-riskscore groups. (E) Kaplan–Meier curves of overall survival between high- and low-riskscore groups. (F) Forest map of CAF
riskscore and clinicopathological parameters in TCGA_OV cohort.
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Reactive oxygen species and pro-inflammatory cytokines are

produced by M1 macrophages to kill tumor cells (53), while M2

macrophages facilitate tumor growth and inhibit tumor

immunity by secreting anti-inflammatory cytokines (54, 55).

Activated CAFs promote the adhesion of monocytes

(macrophage precursors) and their transformation into M2

macrophages via multiple regulatory pathways, thereby

inhibiting immune responses in the TME (56, 57).

Cardiotrophin-like cytokine factor 1 (CLCF1) derived from

CAFs induces N2 neutrophil polarization to facilitate

hepatocellular carcinoma (HCC) progression (58). In HCC,

IL6 secreted by CAFs inhibits T-cell activity and induces

immune tolerance by triggering the JAK-STAT3 pathway in

tumor-associated neutrophils (59). CAF-secreted IL6 is also

responsible for the generation and activation of MDSCs, which

weakens the antitumor immune response and promotes HCC

progression (60, 61). Recent research in esophageal squamous

cell carcinoma demonstrated that CAF-derived exosome-packed

microRNA-21 via activating STAT3 signaling promoted the

generation of monocyte-MDSCs, thereby causing resistance to

cisplatin (62). Cooperation between MCs and CAFs is an

influential microenvironmental driver of prostate cancer

progression that results in the transformation of benign

epithelial cells into early malignant cells (63). In HCC, CAFs

induce indoleamine 2,3-dioxygenase(IDO)-producing

regulatory DCs to acquire a tolerogenic phenotype through
Frontiers in Immunology 17
IL6-mediated STAT3 activation (64). Furthermore, CAFs

significantly inhibit NK cell function by reducing their

proliferation rates, cytotoxic capacity, and stimulatory receptor

expression (65). As demonstrated in our study, the CAF score

was highly correlated with multiple immune pathways and

immunosuppressive cells, which is in agreement with previous

research. The effects of CAFs on immune cells in the TME

suggest that they induce immune evasion by tumor cells and

exert immunosuppressive effects in pan-cancer and OV cohorts.

Next, we categorized the EOC samples into two distinct CAF

molecular subtypes and constructed a CAF riskscore system. We

found that a higher CAF riskscore was associated with cluster B,

which corresponded to a worse prognosis and advanced stage. In

contrast, a lower CAF riskscore was associated with cluster A

and corresponded to a better prognosis and predicted early-stage

disease. We then performed an enrichment analysis among the

subtypes to explore the reasons for these differences. Cluster B

was significantly enriched in immune-related pathways, whereas

cluster A was mainly associated with DNA repair-related

pathways. The TME immune infiltration analysis showed that

memory resting CD4 T cells, M2 macrophages, neutrophils, and

resting DCs had a higher probability of infiltration in cluster B

and high-riskscore groups. Increasing evidence has shown that

intratumoral CD4 T cells upregulate various inhibitory immune

checkpoint proteins such as PD-1, CTLA-4, T-cell

immunoglobulin and mucin domain-containing protein 3
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FIGURE 13

Relationship between the CAF riskscore and immunity. (A) The correction between the CAF riskscore and the 22 TME infiltration cells based on
the CIBERSORT algorithm. (B–E) The relationship between IPS and CAF riskscore groups in EOC patients. The IPS-CTLA4-/PD-L1- (B), IPS-
CTLA4-/PD-L1+ (C), IPS-CTLA4+/PD-L1- (D), and IPS-CTLA4+/PD-L1+ (E) were higher in the low-riskscore group than in the high-riskscore
group (all p < 0.05). (F) The TIDE prediction value was significantly higher in the high-riskscore group than that in the low-riskscore group.
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(TIM-3), and LAG-3, which contribute to negative immune

responses against tumors (66). As a result of their

immunosuppressive properties, tumor cells within this group

may escape the immune system. In addition, memory B cells,

activated NK cells, activated DCs, and M1 macrophages

infiltrated more frequently in cluster A and the low-riskscore

group. It is reported that B-cell enrichment is associated with a

better response to PD-1 blockade in soft tissue sarcoma and is

the most predictive prognostic indicator for prolonged survival

(67–69). Since this group was associated with immune activation

characteristics, we hypothesize that patients in this group would

benefit from immunotherapy. We subsequently found that the

low-risk subgroup was more immunogenic than the high-risk

subgroup, indicating that patients in this group may be more

sensitive to immune checkpoint inhibitors and may have better

clinical outcomes, which is consistent with our predictions.

Eventually, we identified prognostic DEGs associated with

CAF subtypes and determined 24 key genes that were

upregulated in EOC with certain correlations to CAF markers.

Some of these genes, such as colony-stimulating factor 1 receptor
Frontiers in Immunology 18
(CSF1R), snail (SNAI1), and uncoordinated-5 homolog B

(UNC5B), influence CAF function. However, limited

information is available on EOC (70–72).

Our study has some limitations. First, more samples from

independent cohorts are required to validate the accuracy and

predictability of the CAF riskscore system that we applied to

EOC. In addition, the role of CAFs in the EOC immune system

and their potential as immunotherapy targets for intervention

need further investigation. Finally, additional experiments are

necessary to explore the biological behavior of these key genes

and the exact mechanisms associated with CAFs in EOC.
Conclusions

In the present study, we determined that CAFs are critical

for tumor immune evasion and outcomes at the pan-cancer level

and in the OV cohort by comprehensively stratifying and

quantifying the CAF landscape. CAF subtypes contribute to a

better understanding of EOC heterogeneity. The CAF riskscore
B

CA

FIGURE 14

The preliminary screened key genes in EOC. (A) The 24 key genes were significantly upregulated in EOC samples compared to normal ovarian
samples (The statistical differences were compared by t-test). (B) Immunohistochemical staining for indicated key genes in EOC tissues and
normal ovarian tissues (Human Protein Atlas database). (C) Correlation analysis of 24 key genes with seven CAF markers.
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system we developed could be used to predict prognosis and

provide new insights into the potential of CAF status as an

immunotherapeutic approach for EOC.
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Glossary

ACC Adrenocortical carcinoma

ACTA2 Smooth muscle actin 2

AGR2 Anterior gradient protein 2

BLCA Bladder Urothelial Carcinoma

BRCA Breast invasive carcinoma

CAFs Cancer associated fibroblasts

CESC Cervical squamous cell carcinoma and endocervical adenocarcinoma

CHOL Cholangiocarcinoma

CI Confidence interval

CNV Copy number variation

COAD Colon adenocarcinoma

COL1A1 https://pubmed.ncbi.nlm.nih.gov/29906404/Collagen 1A1

CSF1R Colony-stimulating factor 1 receptor

DCs Dendritic cells

DEGs Differentially expressed genes

DLBC Lymphoid Neoplasm Diffuse Large B-cell Lymphoma

ECM Extracellular matrix

EOC Epithelial ovarian cancer

ESCA Esophageal carcinoma

FAP Fibroblast activation protein

FDR False Discovery Rate

FOXA2 Forkhead box A2

GBM Glioblastoma multiforme

GEO Gene Expression Omnibus data base

GO Gene ontolog

GSCA Gene Set Cancer Analysis

GSVA Gene set variation analysis

GTEx Genotype-Tissue Expression

HCC Hepatocellular carcinoma

HNSC Head and Neck squamous cell carcinoma

HR Hazards ratio

IL2-
STAT

Interleukin 2-Signal transducer and activator of transcription

IPS Immunophenoscores

iTreg induced Treg

KEGG Kyoto encyclopedia of genes agenomes

KICH Kidney Chromophobe

KIRC Kidney renal clear cell carcinoma

KIRP Kidney renal papillary cell carcinoma

LAML Acute Myeloid Leukemia

LGG Lower Grade Glioma

LIHC Liver hepatocellular carcinoma

LUAD Lung adenocarcinoma

LUSC Lung squamous cell carcinoma

MCs Mast cells

MDSCs Myeloid-derived suppressor cells

MESO Mesothelioma

NF-kB Nuclear factor-k-gene binding

(Continued)
Continued

NK Natural killer

nTreg natural Treg

OS Overall survival

OV Ovarian cancer

PAAD Pancreatic adenocarcinoma

PCA Principal component analysis

PCPG Pheochromocytoma and Paraganglioma

PDGFRA Platelet-derived growth factor receptor alpha

PDGFRB Platelet-derived growth factor receptor-beta

PDPN Podoplanin

PPI Protein-protein interaction

PRAD Prostate adenocarcinom

READ Rectum adenocarcinoma

SARC Sarcoma

SKCM Skin Cutaneous Melanoma

SNAI1 Snail

SNV Single nucleotide variation

SPDEF SAM pointed domain-containing ETS transcription factor

ssGSEA Single-sample gene set enrichment analysis

STAD Stomach adenocarcinoma

STRING Search tool for the retrieval of interacting genes/proteins

TCGA The Cancer Genome Atlas

TCIA The Cancer Immunome Atlas

TGCT Testicular Germ Cell tumours

TGF-b Transforming growth factor-b

THCA Thyroid carcinoma

THY1 https://pubmed.ncbi.nlm.nih.gov/20599951/Thy-1 cell surface
antigen

THYM Thymoma

TIDE Tumor Immune Dysfunction and Exclusion

TISCH tumour Immune Single Cell Hub

TME tumour microenvironment

Tregs T regulatory cells

UCEC Uterine Corpus Endometrial Carcinoma

UCS Uterine Carcinosarcoma

UCSC University of California Santa Cruz

UNC5B Uncoordinated-5 homolog B

UVM Uveal Melanoma

https://pubmed.ncbi.nlm.nih.gov/29906404/
https://pubmed.ncbi.nlm.nih.gov/20599951/
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