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Abstract

Drug-induced liver injury is an important clinical problem and
a challenge for drug development. Whereas progress in
understanding rare and unpredictable (idiosyncratic) drug
hepatotoxicity is severely hampered by the lack of relevant
animal models, enormous insight has been gained in the area
of predictable hepatotoxins, in particular acetaminophen-
induced liver injury, from a broad range of experimental
models. Importantly, mechanisms of toxicity obtained with
certain experimental systems, such as in vivo mouse models,
primary mouse hepatocytes, and metabolically competent
cell lines, are being confirmed in translational studies in
patients and in primary human hepatocytes. Despite this
progress, suboptimal models are still being used and experi-
mental data can be confusing, leading to controversial
conclusions. Therefore, this review attempts to discuss
mechanisms of drug hepatotoxicity using the most studied
drug acetaminophen as an example. We compare the various
experimental models that are used to investigate mechan-
isms of acetaminophen hepatotoxicity, discuss controversial
topics in the mechanisms, and assess how these experi-
mental findings can be translated to the clinic. The success
with acetaminophen in demonstrating the clinical relevance
of experimental findings could serve as an example for the
study of other drug toxicities.

E 2014 The Second Affiliated Hospital of Chongqing Medical
University. Published by XIA & HE Publishing Ltd. All rights
reserved.

Introduction

Drug-induced liver injury (DILI) is a significant clinical problem
worldwide. Fundamentally, DILI can be divided into two
categories: idiosyncratic and predictive DILI. Idiosyncratic
DILI is mainly caused by therapeutic doses of drugs in
susceptible patients after days or months of treatment.1 It
generally affects only ,1 in 10,000 patients taking the drug
and the symptoms can range from mild, transient liver injury
and dysfunction to acute liver failure.2 The epidemiology and
disease patterns of many idiosyncratic hepatotoxic drugs have
been described; although the involvement of innate and
adaptive immune mechanisms is thought to be critical in most
cases, the actual mechanisms of liver injury remain largely
unclear.3 The limited progress in the understanding of the
pathogenesis of idiosyncratic DILI comes from the lack of
relevant animal models and the rarity of the disease, which
makes it difficult to study it in the first place. In addition,
genome-wide association studies in a large cohort of DILI
cases have failed to identify general risk factors for idiosyn-
cratic DILI.4 These findings suggest that genetic determinants
of DILI risk may be drug specific.4

In contrast, predictive DILI occurs mainly after intentional
or accidental overdose of a drug. The most clinically relevant
drug in this category is acetaminophen (APAP, paracetamol).
In the US, APAP overdose is responsible for 78,000 emer-
gency room visits and about 500 deaths per year.5 In
addition, APAP hepatotoxicity is the most frequent cause of
acute liver failure of any etiology, accounting for approxi-
mately 50% of all cases.6 Unlike idiosyncratic DILI, APAP
hepatotoxicity can be modeled in rodents, primary hepato-
cytes and in certain cell lines. An increasing number of
translational studies demonstrate that these animal models
are valuable tools to investigate the mechanisms of toxicity
and to identify potential therapeutic targets.7 However,
despite the unique situation of having relevant in vivo and
in vitro experimental systems available, there are still many
controversies that hamper progress in understanding the
mechanisms of APAP hepatotoxicity and, consequently, the
reliable identification of clinically relevant therapeutic targets.
This review will address these controversial topics, including
intracellular signaling mechanisms of toxicity, mode of cell
death, and the role of sterile inflammation from animal
models to the most recent clinical findings.

Acetaminophen: Intracellular mechanisms of toxicity

Many drugs cause hepatotoxicity by forming reactive meta-
bolites, which either initiate cell toxicity mechanisms directly
or, through formation of protein adducts (haptens), can
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trigger immune-mediated toxicity.8,9 For APAP, it is well
established that the cell death mechanisms are initiated by
the formation of the presumed reactive metabolite N-acetyl-
p-benzoquinone imine (NAPQI), which is generated mainly by
the cytochrome P450 enzymes Cyp2e1 and 1a2 in mice and
humans.10,11 Although NAPQI can be readily detoxified by
conjugation with glutathione (GSH), the availability of GSH is
limited in case of an overdose.12 The resulting depletion of
GSH enables reactions of NAPQI with protein sulfhydryl
groups of cysteine, causing the binding of APAP to cellular
proteins.12 Originally, it was thought that the protein adducts
formed could directly trigger cell death, but no critical protein
target could be identified.13 In contrast, it was recognized
that the binding to mitochondrial proteins after APAP over-
dose correlated with toxicity,14 suggesting that mitochondria
could be a critical target. This observation was in agreement
with the impaired mitochondrial respiration and increased
mitochondrial oxidant stress observed after APAP overdose in
mice (Fig. 1).15,16 The enhanced superoxide formation leads
to generation of the potent oxidant peroxynitrite in mitochon-
dria.17 This oxidant stress, together with the uptake of
lysosomal iron,18 causes the formation of the mitochondrial
membrane permeability transition (MPT) pore, which is
responsible for the collapse of the membrane potential and
cessation of ATP synthesis.19–21 The critical role of this
oxidant stress for mitochondrial dysfunction and cell necrosis
has been shown by the protective effects of delayed treat-
ment with GSH or N-acetylcysteine (NAC)22–24 and the
aggravation of injury in mice with reduced MnSod (Sod2)
activity in mitochondria.25,26

Although the importance of the mitochondrial oxidant
stress is well established,27 there is a discrepancy between

early GSH depletion and mitochondrial dysfunction with some
oxidant stress and the delayed necrosis.28 This led to the
hypothesis that the initial oxidant stress is insufficient to
trigger the MPT and a ‘‘second hit’’ is needed to amplify this
oxidant stress. This second hit appears to be the mitogen-
activated protein (MAP) kinase c-jun-N-terminal kinase (JNK)
(Fig. 1), which is activated (phosphorylated) in the cytosol
very early during APAP toxicity in mice.29 P-JNK then
translocates to the mitochondria and triggers the MPT by
amplifying the mitochondrial oxidant stress.29,30 The effect of
P-JNK on the mitochondria is mediated by interaction with the
mitochondrial protein Sab (SH3 domain-binding protein that
preferentially associates with Btk), which is located in the
outer membrane.31 Knock-down of Sab attenuated JNK
activation and prevented APAP-induced liver injury, suggest-
ing that Sab is a critical link between JNK activation and
mitochondrial dysfunction.31 The critical role of JNK in the
pathophysiology of APAP-induced liver injury has been
documented by the protective effect of a JNK inhibitor and
by gene knock-down experiments.32 However, JNK does not
seem to be directly activated by the early events of APAP
toxicity. Instead, a number of upstream kinases have been
identified, all of which can be activated directly or indirectly
by the early oxidant stress generated during APAP-induced
mitochondrial dysfunction. These kinases include apoptosis
signal-regulating kinase 1 (ASK1),33 glycogen synthase
kinase-3beta (GSK-3b),34 mixed-lineage kinase 3 (MLK
3),35 receptor interacting protein kinase (RIP) 136 and
RIP3.37 However, several phosphatases that counteract JNK
activation have been shown to protect against APAP toxicity,
including MAP kinase phosphatase 1 (Mkp-1) and protein
tyrosine phosphatase 1B.38,39 Thus, the amplification of the

Fig. 1. Experimental models to study acetaminophen (APAP) hepatotoxicity. The most common models used to study APAP hepatotoxicity are mice, rats, primary
mouse and human hepatocytes (PMH and PHH, respectively), and hepatoma cell lines. However, the mechanisms of injury and mode of cell death differ. In mouse models
and in humans, APAP-induced liver injury involves mitochondrial damage, oxidative stress, c-jun N-terminal kinase (JNK) activation, and nuclear DNA fragmentation. The
mode of cell death in these models is oncotic necrosis. However, rats develop little or no oxidative stress and thus no injury, while hepatoma cells may develop injury but
through different mechanisms than mouse or human hepatocytes. In the latter case, the mode of cell death is almost always apoptosis. The results suggest that mice and
PHH are the best available models for the study of APAP toxicity.
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mitochondrial oxidant stress involves a complex and redun-
dant network of kinases and phosphatases. However, the
JNK-dependent and independent kinase network may not
only be involved in pro-death signaling pathways but can also
promote survival mechanisms such as promoting autophagy,
as discussed later.40

A consequence of the mitochondrial dysfunction is nuclear
DNA damage (Fig. 1). Genomic DNA fragmentation as a
hallmark of APAP toxicity in mice and mouse hepatocytes has
been recognized for some time.41,42 DNA fragments can be
internucleosomal fragments of approximately 180 base pairs
and multiples thereof, as detected by DNA ladder.41 This
implicates a role for endonucleases in this process rather than
oxidant stress.17 The nuclear translocation of endonuclease G
and apoptosis inducing factor (AIF) from the mitochondria
correlates with the nuclear DNA fragmentation.43,44

Endonuclease G and AIF, which are mitochondrial intermem-
brane proteins, are released initially by mitochondrial outer
membrane permeabilization through a Bcl2-associated X
protein (bax) pore and later, after the MPT and mitochondrial
matrix swelling, by rupture of the outer membrane.45 The
DNA damage can activate DNA repair processes including
poly(ADP-ribose) polymerase (PARP), which may accelerate
cell death by excessive consumption of nicotinamide-adenine
dinucleotide (NAD). Although APAP-induced DNA damage
activates PARP and depletes NAD, the absence of the enzyme
actually enhanced the injury, indicating that activation of DNA
repair is beneficial.46 Thus, DNA damage caused by mito-
chondria-derived endonuclease and others contribute to cell
necrosis, and attempts to repair the damage limit the injury
and support recovery.

Damaged mitochondria are critical for the pathophysiology
of APAP-induced cell death. Endogenous defense systems
(autophagy) can remove damaged cell organelles and mod-
ified protein by enveloping them with membranes (autopha-
gosomes) and fusing these structures with lysosomes.47

Autophagy is activated after APAP overdose.48 Inhibition of
autophagy attenuates liver injury, suggesting that autophagy
is an adaptive mechanism to stress and limits injury.48 In
addition to classical autophagymechanisms, newly recognized
mitochondrial spheroids can also contribute to the removal of
damaged mitochondria.49 However, these processes are only
effective in the outer area of risk.47 Additional effects, such as
drp1 translocation to mitochondria that promotes mitochon-
drial fission, appear to enhance cell death.37 The role of
mitochondria biogenesis remains unclear because the protec-
tion against APAP-induced liver damage by peroxisome
proliferator-activated receptor gamma coactivator (PGC)-
1alpha,was caused by the activation of nuclear factor-like 2
(Nrf-2)-dependent antioxidant genes.50 Thus, adaptive
mechanisms to drug-induced cellular stress are clearly affect-
ing liver injury and could be potential drug targets.

The vast majority of APAP-induced liver injury studies focus
on hepatocytes. However, non-parenchymal cells may also
play a role. In addition to resident and newly recruited
inflammatory cells, which will be discussed later, sinusoidal
endothelial cells (SECs) can be affected by an APAP over-
dose.51 Direct morphological evidence of SEC damage and
indirect evidence of SEC dysfunction (hemorrhage) have been
reported.52–54 Nitrotyrosine staining in SECs precedes staining
of hepatocytes, suggesting that SEC damage may be inde-
pendent of parenchymal cell injury.55 Isolated SECs exposed
to APAP from specific mouse strains show substantial GSH
depletion56 and lactoferrin protects SECs from APAP-induced

injury in specific mouse strains.57 The strain-dependent SEC
injury correlates with Cyp2E1 levels in these SECs.57 In
addition, severe SEC injury in susceptible strains leads to
extensive congestion and microvascular dysfunction and also
impacts parenchymal cell injury.52,56,57

All of the discussed mechanisms of APAP-induced liver
injury were investigated using a number of different in vivo
and in vitro models. Selecting the most appropriate experi-
mental model, which closely resembles the human patho-
physiology, is critical for the clinical relevance of the
mechanisms derived from these models.

In vivo models of drug hepatotoxicity

The most frequently used preclinical species for drug
hepatotoxicity are rats and mice. Testing new drugs in rats
is still required for standard safety evaluations by regula-
tory agencies. In the case of APAP-induced DILI, the rat is
clearly a poor model.12 Rats can metabolize APAP to form a
reactive metabolite and cause GSH depletion and protein
adducts formation, even in mitochondria.58 However, they
do not develop mitochondrial oxidant stress or JNK activa-
tion and consequently develop very little if any liver injury
(Fig. 1).58 It remains unclear at this point if the lack of
progression in rat liver is due to the delay in protein
adducts formation, or if as of yet unidentified specific
protein targets are not hit by NAPQI. Although there is
the potential to learn more about the initiating events, the
mechanisms of injury in rats and the severity of injury do
not reflect the human pathophysiology. Nevertheless, large
numbers of studies are still being published that test the
hepatoprotective potential of natural products using the rat
model (reviewed59). In addition to using an insensitive
animal model for their drug hepatotoxicity studies, another
caveat of most of these investigations is that the plant
extracts are largely uncharacterized and the potential effect
as a P450 inhibitor of one or more of the chemicals in the
extract is rarely tested.

The mouse model of APAP hepatotoxicity was established
in the 1970s.12 Based on the early mechanistic understand-
ing, NAC was developed as an antidote against APAP over-
dose.60 More recently, the use of gene knock-out or
transgenic mice has helped to further popularize the mouse
model for investigation of DILI. Most of the mechanistic
insight into the pathophysiology has been gained from
experiments with the murine system. Fortunately, many
fundamental mechanisms of APAP hepatotoxicity in the
mouse have been confirmed in patients with APAP overdose61

and in human hepatocytes.62,63 In addition, the severity of
the overall liver injury is very similar between mice and
humans.61 However, the injury process progresses much
faster in mice than in humans, with peak alanine amino-
transferase (ALT) values, as indicator of liver cell death,
between 12 and 24 h in the mouse64 and 36–48 h in humans
after overdose.65 The reason for this delay in humans does
not appear to be reduced drug metabolism and reactive
metabolite formation but may be related to delayed mito-
chondrial protein binding and delayed JNK activation.63 Thus,
the mouse model of APAP hepatotoxicity is superior to other
animal models and most closely resembles the human
pathophysiology in terms of liver injury and recovery. In the
future, large animal models may be needed to better mimic
the acute liver failure observed in humans.66
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In vitro models of APAP-induced hepatocyte cell death

In vitro models are indispensable tools to identify drug
toxicity and assess molecular mechanisms. Many of the
mechanistic details described in previous paragraphs were
investigated in freshly isolated mouse hepatocytes. However,
in addition to the obvious advantages of an isolated cell
preparation, there are limitations that need to be con-
sidered.67 Among others, primary hepatocytes lack non-
parenchymal cells, they are exposed to artificial media during
isolation and culture, and they are generally cultured under
hyperoxic conditions (room air oxygen levels).67 This may
lead to numerous gene expression changes, enhanced
oxidant stress, and many other potential modifications.67,68

Loss of cytochrome P450 enzyme activity over time in
primary cells in culture is one of the most critical gene
expression changes in studies of drug toxicity.69 This will
affect the sensitivity to drugs such as APAP. Recent advances
in sandwich culture techniques and 3D culture ameliorate
some of these problems,67 but this improvement comes with
a price. These additional manipulations are more cumber-
some and time consuming and likely increase the cost of the
experiments. Nevertheless, studies with primary cultured
hepatocytes can provide new mechanistic understanding
if the limitations are considered and the data are verified
in vivo.

In contrast to primary hepatocytes, many established
hepatocyte cell lines are readily available. An advantage of
these cells is that they proliferate easily, can be cryopre-
served and thawed out without much loss of functionality, are
easy to work with, and are available in large quantities.
However, most of these immortalized cell lines, including the
most popular hepatoma cell lines (e.g. HepG2, Hep3B, Huh7)
have a drastically modified gene expression profile and lack,
among other critical proteins, essential drug metabolizing
enzymes and transporters (Fig. 1).70,71 The caveat of work-
ing with these types of cells is that they still respond to
cellular stress such as APAP exposure with changes in gene or
protein expression.72 However, the relevance to human
pathophysiology is questionable because the nature of the
stress is different than a cell that has the capacity to generate
a reactive metabolite. This discrepancy is most clearly
demonstrated by the fact that APAP causes apoptotic cell
death in hepatoma cell lines73 but necrosis in primary
hepatocytes.19,28,42,63 If these hepatoma cells are trans-
fected with a specific cytochrome P450, e.g. CYP2E1, some of
the sensitivity can be restored.74

HepaRG cells are hepatoma cells isolated and differen-
tiated from a patient with hepatocellular carcinoma that are
metabolically competent, i.e. express a large number of drug
metabolizing enzymes, including P450 enzymes, and trans-
porter similar to primary hepatocytes.70 Although there are
some limitations of these cells, such as being derived from a
single donor and differentiating into both hepatocytes and
biliary epithelial cells, the fact that they are metabolically
competent hepatoma cells with unlimited availability is a
major advantage over most other hepatoma cell lines.70

Consequently, upon exposure to APAP, HepaRG cells develop
cell necrosis with many mechanistic characteristics similar to
mouse hepatocytes but with a time line closely resembling
that of human overdose patients.62

Primary human hepatocytes (PHH) are the most relevant
in vitro model for studying human pathophysiology. However,
availability is limited and it can be prohibitively expensive.

Cryopreservation of cells can make them more easily avail-
able, but in general, cryopreserved cells are of lower
quality.While these cryopreserved cells may be suitable for
drug metabolism studies, they are not useful for many other
types of experiments. This is especially important for drug
toxicity studies. Freshly isolated cultured human cells are
clearly superior as they reflect closely the gene expression
pattern of the liver in vivo. Recent studies with APAP
hepatotoxicity documented the very close correlation
between the time line of toxicity (onset and peak of cell
death) in PHH and onset and peak of ALT elevation as an
indicator of liver injury in overdose patients.63,65 However,
the overall sequence of events leading to cell death after
APAP in PHH is very similar to mouse hepatocytes, including
GSH depletion, cytosolic and mitochondrial protein adducts
formation, JNK activation and translocation to mitochondria,
mitochondrial dysfunction, and collapse of the mitochondrial
membrane potential preceding cell death (Fig. 1).63

Importantly, APAP induces necrotic cell death in PHH similar
to mouse hepatocytes.63 Overall, like the translational work
with overdose patient, these studies with PHH confirm that
the mouse model of APAP hepatotoxicity is the most relevant
animal model for studying these mechanisms.

Despite using clinically relevant experimental models,
some topics remain controversial. This is almost always an
issue of experimental design and interpretation of experi-
mental data.

Mechanisms of drug-induced cell death: Apoptosis
versus necrosis

The mode of cell death during APAP hepatotoxicity is con-
troversial. Although the vast majority of animal studies have
concluded that the injury is caused by necrosis, an increasing
number of reports suggest that apoptotic cell death plays a
significant role. The key problem is that there are very few
specific parameters for apoptosis, and even those can be
misinterpreted. For example, frequently used parameters
such as mitochondrial cytochrome c release, increased bax
protein expression and bax translocation to the mitochondria,
BH3 interacting domain death agonist (bid) cleavage, DNA
strand breaks (terminal deoxynucleotidyltransferase dUTP
nick end labeling (TUNEL) assay), and DNA laddering (inter-
nucleosomal DNA cleavage) are all observed during apoptosis
and necrosis, not allowing any distinction between these forms
of cell death.75

One of the more specific features of apoptosis is the
activation of caspases, including the initiator caspase-8 and
the executioner caspase-3.76 An extensive increase in
caspase activity in combination with processing of procas-
pases to the active fragments can be easily detected during
hepatic apoptosis.77 Consequently, caspase inhibitors are
highly effective in preventing apoptosis in the liver.77 In
contrast, during APAP-induced liver injury, no increase in
caspase-3 activity is detectable, and caspase inhibitors offer
no protection.78 A caveat of the use of pancaspase inhibitors
is the fact that they generally require the solvent dimethyl
sulfoxide (DMSO), a potent inhibitor of P450 enzymes,79 and
higher doses of caspase inhibitors may inhibit other proteases
through off-target effects.80

DNA fragmentation is observed during apoptotic and
necrotic cell death. Predominantly small fragments are
formed during apoptosis, and larger fragments are generated
during APAP-induced necrosis.81 The characteristic smaller
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DNA fragments during apoptosis (multiples of 180–185 base-
pairs) are formed by caspase-activated DNase (CAD).76 In
contrast, DNA fragmentation during APAP-induced cell death
is caused by mitochondria-derived endonuclease G and AIF,
as discussed above.43,44 One of the most frequently used
assays to visualize DNA strand breaks is the TUNEL assay.
Because the assay detects DNA strand breaks, apoptotic and
necrotic cells will stain positive. However, the staining
patterns are different, with mainly nuclear staining in
apoptotic cells and both nuclear and cytosolic staining in
necrotic cells.75 The cytosolic staining is likely caused by the
release of large DNA fragments due to karyorrhexis and
karyolysis, which are still recognized by the terminal deoxy-
nucleotidyltransferase.

In patients, nuclear DNA fragments were detectable in
plasma after APAP overdose.61 However, similar to the mouse
model, extensive procaspase-3 protein levels were observed
in blood of patients with APAP-induced liver injury but not in
patients without liver injury.61 In support of these findings, no
caspase-3 enzyme activity was measured in any APAP over-
dose patient.61 In addition, the caspase-cleaved cytokeratin-
18 fragment was either not detectable or represented only a
minor fraction (,15%) of the total full-length cytokeratin-18
released into the blood in these patients.82 Together these
results in patients and, as discussed in the previous para-
graph, in PHH support the hypothesis that, similar to mice
and mouse hepatocytes, the primary mode of cell death in
APAP hepatotoxicity in humans is necrosis.

As the example of APAP-induced liver injury demon-
strates, a clear distinction between apoptotic and necrotic
cell death cannot be achieved by assessing a single para-
meter. Use of a combination of parameters, e.g., caspase
activation, cell morphology, and DNA fragmentation, is
mandatory for solid conclusions. In addition, the use of
positive controls will give insight into how much parameters
change with a certain percentage of apoptosis and allowmore
confident conclusions regarding the mode of cell death.
Knowledge of the type of cell death is not only important
because of the intracellular signaling pathways involved, but
also because it determines the degree of inflammation that
occurs in response to the tissue damage.

Pathophysiological implications of sterile
inflammation

Extensive cell necrosis causes the release of cell contents, as
indicated by the massive increase of liver enzymes in serum.
In recent years, it has been recognized that many of these
cellular components can activate various pattern recognition
receptors, such as toll like receptors (TLRs).83,84 These
damage-associated molecular patterns (DAMPs) released by
cells include high mobility group box 1 (HMGB1) protein,
nuclear DNA fragments, mitochondrial DNA (mtDNA), heat
shock proteins, hyaluronic acid, and many more.83,84 DAMPs
can activate TLRs on macrophages (e.g. DNA binds to TLR9,
HMGB1and heat shock proteins work through TLR4) to induce
the transcription of pro-inflammatory cytokines and activate
the inflammasome, which can trigger the cleavage of pro-
forms of certain interleukins (IL) and other cytokines (e.g.
pro-IL-1b, and pro-IL-18). Extensive cytokine formation and
release recruits neutrophils and monocytes into the liver with
the potential to aggravate the initial injury. This general
scheme of a sterile inflammatory response has been inves-
tigated in the mouse model of APAP-induced liver injury in

vivo. During APAP hepatotoxicity, HMGB1, DNA fragments,
heat shock proteins, and others are detectable in plas-
ma,61,85,86 as are the formation of cytokines53 and the
recruitment of first neutrophils53,87 and later monocytes.88

Thus, there is no doubt that the severe cell necrosis induces
an extensive sterile inflammatory response in mice. However,
it is controversial whether neutrophils and macrophages
actually enhance the injury or contribute to the repair and
recovery of the damaged liver by removing cell debris.
Although a few studies have suggested direct involvement
of neutrophils, most studies do not find evidence for
neutrophil cytotoxicity aggravating APAP-induced liver injury
(reviewed84). Importantly, liver neutrophils are not activated
during the injury phase, and deficiency of key neutrophil
adhesion molecules has no effect on APAP toxicity.89 In
addition, release of acetylated HMGB1 as indicator of macro-
phage activation is delayed in mice and occurs at the end of
the injury phase.85 Taken together, these findings suggest
that neutrophils, in addition to monocytes, are recruited into
the liver in preparation for regeneration.84,88 Cytokines
generated during the sterile inflammatory response may
modulate intracellular events and promote injury by inducing
inducible nitric oxide synthase and enhancing peroxynitrite
formation.90

In APAP overdose patients, DAMPs such as nuclear DNA
fragments, mtDNA, and HMGB1 are extensively released into
the plasma with a time course similar to ALT and aspartate
aminotransferase (AST).61,82 Interestingly, serum levels of
these DAMPs are better predictors of poor outcome (liver
failure and death) than ALT or AST.82,91 Certain cytokines,
including IL-6, IL-8, and monocyte chemoattractant protein
1, are substantially elevated during APAP toxicity.92 However,
neutrophils are not activated in patients during the peak of
liver injury.93 Neutrophil activation correlates with declining
ALT levels, i.e. with the recovery phase during APAP overdose
in patients.93 These findings suggest that no direct neutrophil
cytotoxicity is involved in the human pathophysiology.
Similarly, hepatic macrophages derived from resident
Kupffer cells and recruited monocytes contribute to the tissue
repair process during APAP-induced acute liver failure rather
than aggravate the injury.94 In addition to removing necrotic
tissue, the lost liver cells need to be replaced by proliferation
of surviving cells.

Regeneration

Liver regeneration is an intricate and well-orchestrated
process. The remnant liver will proliferate to reestablish the
original architecture and function after surgical or toxicologi-
cal insult.95,96 In some cases, the remaining hepatocytes will
proliferate in a hyperplastic manner to restore the functional
liver mass, while in others, liver progenitor cells will
participate to generate new hepatocytes.96–98 Generally, the
production of tumor necrosis factor (TNF) a and IL-6 by non-
parenchymal cells will prime the hepatocytes for proliferation,
and cooperative signals from vascular endothelial growth
factors (VEGF), epidermal growth factors (EGF), hepatocyte
growth factors (HGF), and cytokines will stimulate hepato-
cytes to overcome cell-cycle checkpoints to proliferate and
regain the normal liver size. This is followed by termination of
regeneration, which is primarily mediated by TGF-b and
renewed quiescence.95,97

Considerable progress has been made in our understand-
ing of the central mediators of liver regeneration. TNF
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receptor knockout mice exhibit exaggerated injury and
impaired regenerative responses after APAP, which can be
explained by delayed mitogenic cytokine signaling.99 In mice,
APAP time-dependently induces IL-6 levels in serum and
liver.23,100,101 IL-6 knockout mice are more susceptible to
APAP challenge101 and display a delayed injury resolution due
to impaired liver regeneration.102 In addition, APAP triggers a
significant upregulation of VEGF in mice,103 while pharmaco-
logical inhibition of VEGF resulted in similar injury but
decreased recovery.103 Administering human recombinant
VEGF mitigates the injury after APAP and facilitates regen-
eration in mice.104 Indirectly, scavenging peroxynitrite by
glutathione treatment also enhances regeneration in mice
after APAP.100

More recent data have provided insights about additional
players in liver regeneration after APAP. The Wnt/b-catenin
pathway is emerging as a central player in the regulation of
liver development, growth, and regeneration;105 and its
importance in APAP-induced hepatotoxicity has been
explored. Biphasic increases of b-catenin expression are
observed in mice, and b-catenin knockout mice have reduced
liver regeneration.106 Interestingly, the evaluation of human
liver biopsy samples has indicated that b-catenin activation is
strongly associated with patients who undergo spontaneous
regeneration without liver transplantation.106 Similarly,
increased serum alpha-fetoprotein, a sign of hepatic regen-
eration,107 correlates with a favorable outcome in APAP
overdose patients.108,109 From studies like these, a better
understanding of liver regeneration may lead to improved
prognostic indicators that can supplement existing criteria to
determine candidates for liver transplantation among APAP
overdose patients.

Conclusions

APAP-induced liver injury is the most frequently encountered
drug hepatotoxicity and cause of acute liver failure in the
United States. In addition, APAP is the most used experi-
mental model to generate DILI. During the last decade, there
has been substantial progress in understanding the intracel-
lular mechanisms of cell death, sterile inflammation, and
recovery after APAP overdose. The most relevant models that
have fueled this new knowledge are in vivo mouse models,
primary mouse and human hepatocytes, and certain meta-
bolically competent hepatoma cell lines (e.g. HepaRG)
(Fig. 1). Additional models, such as humanized mice, are in
development and could expand the experimental tool box.
Importantly, translational studies with patients provide sup-
port for the clinical relevance of many experimental models.
It can be expected that this increased insight into toxicity
mechanisms in experimental models and in humans will lead
to improved therapeutic interventions and better strategies
to detect potential relevant hepatotoxic drugs in development.
Furthermore, the success with APAP from understanding
experimental systems to the human pathophysiology could
serve as an example for making relevant progress in other
areas of drug hepatotoxicity.
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