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Tuberculosis (TB) remains a major global threat and diagnosis of active TB ((ATB) both
extra-pulmonary (EPTB), pulmonary (PTB)) and latent TB (LTBI) infection remains
challenging, particularly in high-burden countries which still rely heavily on conventional
methods. Although molecular diagnostic methods are available, e.g., Cepheid GeneXpert,
they are not universally available in all high TB burden countries. There is intense focus on
immune biomarkers for use in TB diagnosis, which could provide alternative low-cost,
rapid diagnostic solutions. In our previous gene expression studies, we identified
peripheral blood leukocyte (PBL) mRNA biomarkers in a non-human primate TB
aerosol-challenge model. Here, we describe a study to further validate select mRNA
biomarkers from this prior study in new cohorts of patients and controls, as a prerequisite
for further development. Whole blood mRNA was purified from ATB patients recruited in
the UK and India, LTBI and two groups of controls from the UK (i) a low TB incidence
region (CNTRLA) and (ii) individuals variably-domiciled in the UK and Asia ((CNTRLB), the
latter TB high incidence regions). Seventy-two mRNA biomarker gene targets were
analyzed by qPCR using the Roche Lightcycler 480 qPCR platform and data analyzed
using GeneSpring™ 14.9 bioinformatics software. Differential expression of fifty-three
biomarkers was confirmed between MTB infected, LTBI groups and controls, seventeen
of which were significant using analysis of variance (ANOVA): CALCOCO2, CD52, GBP1,
GBP2, GBP5, HLA-B, IFIT3, IFITM3, IRF1, LOC400759 (GBP1P1), NCF1C, PF4V1,
SAMD9L, S100A11, TAF10, TAPBP, and TRIM25. These were analyzed using receiver
operating characteristic (ROC) curve analysis. Single biomarkers and biomarker
combinations were further assessed using simple arithmetic algorithms. Minimal
combination biomarker panels were delineated for primary diagnosis of ATB (both PTB
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and EPTB), LTBI and identifying LTBI individuals at high risk of progression which showed
good performance characteristics. These were assessed for suitability for progression
against the standards for new TB diagnostic tests delineated in the published World
Health Organization (WHO) technology product profiles (TPPs).
Keywords: tuberculosis, biomarker, qPCR, validation, diagnosis, immune
INTRODUCTION

Mycobacterium tuberculosis (MTB), the causative agent of
tuberculosis (TB) is the leading cause of infectious disease
worldwide (1, 2), accounting for the deaths of approximately
1.3 million people each year (3). The United Kingdom (UK) has
seen an increase in TB since the late 1980s, with rates higher than
the rest of Europe (4), and there are currently around 6000 new
cases each year (5). In 2016, 73.6% of confirmed TB cases in the
UK were foreign-born, with India and Pakistan the most
frequent countries of origin (6, 7). For India in the same
period the estimated incidence of TB was approximately 2.8
million people per year, accounting for about a quarter of the
world’s TB cases (8–10) and resulting in considerable mortality
(11). Optimal patient care requires early detection, intervention
with antibiotic therapy and judicious ongoing management of
infectious individuals (8, 12–14). If untreated, each person with
pulmonary ATB will infect others at a high rate, on average
between 5 and 15 close contacts every year (15).

It is estimated that one quarter of the world’s population are
latently infected with MTB (LTBI); approximately 2.3 billion
individuals (2). This is an enormous reservoir of people at risk of
both spreading TB and developing future disease (16–22). A key
priority in TB diagnosis is to predict which of those individuals
with LTBI [i.e., with a positive purified protein derivative (PPD)
or interferon g release assay (IGRA)] are in fact still harboring TB
bacilli after exposure and are likely to progress to active disease,
compared to those who have been exposed and mounted a
successful immune response, but cleared the bacilli and are not
likely progress to active disease (7, 9, 19, 23–25). Although
diagnosis of ATB has been the keystone of the public health
response to TB in many countries, including the UK, decreasing
the infection reservoir through detection and preventative
therapy of LTBI is also essential in achieving disease reduction
targets (21, 22, 26–31). There is currently no gold standard
method for diagnosing LTBI (32, 33). Identification of
individuals with LTBI or incipient ATB (iATB), who are at
risk of progression to active disease, but are still relatively
asymptomatic is a priority to prevent progression to active
disease and to limit disease spread to uninfected individuals (9,
34–36). The LTBI group comprises a heterogeneous group of
individuals displaying an immune reaction to PPD
mycobacterial antigens (37–39). This represents a spectrum of
individuals from those who have completely cleared TB bacilli
after exposure or infection, to individuals who are harboring
actively replicating, live bacteria in the relative absence of clinical
symptoms (incipient active TB (iATB)). These latter individuals
are potential reservoirs of infection (40–42) and can spread
org 2
disease. This is a major problem for control of disease
dissemination and LTBI is a key source of infection in high
income countries. People with LTBI will often go undiagnosed
(14, 40) and are at high risk of progression to active disease. It is
predicted that approximately 5% to 10% of individuals with LTBI
will progress to ATB during their lifetime (7, 23, 31). The risk of
progression from latent to active TB is particularly high among
children under the age of 5 years and among people with
compromised immunity (1).

As treatment entails risks and costs (43), preventive treatment
of LTBI infection should be selectively targeted to the population
groups at highest risk for progression to ATB disease, who would
benefit most from treatment (9, 34, 44). If caught early enough
treatment can be implemented which is less rigorous and results
in less severe disease/long term organ damage and fewer relapses
(16, 22, 40). Isoniazid monotherapy for 6 months is the primary
recommended treatment for LTBI in both adults and children in
countries with high and low TB incidence, in contrast to the
more intensive combined treatment/DOTS for ATB (13). Non-
compliance with anti-mycobacterial therapies contribute to
difficulties in disease eradication (25, 45, 46). The treatment for
TB is lengthy and patient compliance to long-term drug
treatment is varied, with patients often stopping therapy when
their symptoms cease (1, 47–50). Failure to complete the
treatment regimen promotes the development of multi drug
resistance (25, 51–54) and contributes to ongoing barriers for
disease eradication (14, 55–57).

The current WHO guidelines for diagnosis and management
of TB are outlined as part of their End-TB strategy (2, 58), the
primary pillar being diagnosis, as stated in the report “Early
diagnosis of TB including universal drug-susceptibility testing,
and systematic screening of contacts and high-risk groups”. The
report further states that “TB is the 10th leading cause of death
worldwide, and since 2007 it has been the leading cause of death
from a single infectious agent, ranking above HIV/AIDS. Most of
these deaths could be prevented with early diagnosis and
appropriate treatment”. The current WHO-endorsed platform
for diagnosis of sputum positive TB is the Cepheid GeneXpert,
although comprehensive diagnosis still relies on a combination
of this with other traditional methods, e.g., chest X-ray and
mycobacterial culture from sputum (12). GeneXpert has been
widely implemented in many countries globally and has had a
positive impact on TB diagnosis and patient management (59–
64). However, some high-burden countries like India have
reported operational issues with the platform and associated
hardware and consumables costs (65, 66) and it not universally
available in all high burden countries (34, 67). Its use in India is
being recommended for diagnosis of pediatric TB (64, 65).
March 2021 | Volume 11 | Article 612564
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Opportunities for other diagnostic tests to bridge gaps in the
current testing portfolio are still evident but will require
investment (34, 67, 68). Many TB patients, particularly with
EPTB and also LTBI/iATB do not have MTB positive sputum,
are consequently harder to diagnose and can further contribute
to TB under-diagnosis (12, 21, 33, 69, 70).

Despite considerable investment in research and development
for new diagnostics and therapeutics, TB control and eradication
has proved challenging (34, 71). Development of rapid, simple
and cost-effective diagnostic tests for ATB, particularly EPTB
and LTBI are imperative for TB control (72–80). A simple, rapid
and cost-effective alternative, which could perhaps be run on a
variety of already embedded laboratory platforms and which
could diagnose all sub-types of disease is an attractive
proposition. Indirect, non-pathogen directed assays employing
host immune biomarkers have become the focus of much
interest in bridging gaps in the diagnostic portfolio (77, 79–
81). These may play an important role in improving primary
diagnosis for EPTB (82–88) and LTBI (82, 89–92), assisting
clinicians in informing anti-TB treatments and to determine/
monitor the response to treatment (14, 83, 87, 91, 93–101).
According to Scriba and co-workers a biomarker-based test
would reduce incidence by 20% and could reduce over-
diagnosis and treatment using methods like IGRA (102), which
are poor predictors of disease progression, with pooled positive
predictive values of less than 3%.

Numerous studies and reviews have been published
evaluating the current status of biomarkers with potential for
active, latent and incipient TB diagnosis, many derived from
work profiling the host peripheral blood, immune cell
transcriptional response (85, 86, 102–106) (82, 90, 93, 94, 96,
101, 107–113). In one of the initial studies Berry and co-workers
identified a complex 393 gene panel which could identify
individuals with active TB compared with controls and a 86
gene signature which discriminated active TB from other
inflammatory and infectious diseases (107). The same group
then went on to identify panels which could distinguish
pulmonary TB, pulmonary sarcoidosis, pneumonia and lung
cancer (114). This field of research has subsequently become a
focus of intense interest and these and a number of other groups
have identified various discriminatory signatures for the various
forms and stages of TB; ATB, EPTB, LTBI and incipient TB and
also for exposure in household contacts, risk of progression to
active disease and response to therapy (82, 96, 108–113, 115–
136). Some of these have subsequently been reviewed or further
validated in comparative cohort studies by other workers in the
field (88–90, 110, 126, 136–139). Of the previously published
blood transcriptional biomarker panels for active pulmonary
tuberculosis reviewed recently by Turner et al. (137), four panels
achieved the highest diagnostic accuracy and two met the
minimum but not optimum WHO target product profiles
(TPP) requirements for a triage test (74, 140); Sweeney et al.
[Sweeney3 (120)], Roe et al. [Roe3 and BATF2 (119, 121)] (78)
and Kaforou et al. [Kaforou25 (132)]. In a similar study by Gupta
et al. (89), eight panels showed promise for discrimination of
incipient TB with receiver operating characteristic curves
Frontiers in Immunology | www.frontiersin.org 3
ranging from 0·70 to 0·77. These predominantly reflected genes
from interferon and tumor necrosis factor-inducible gene
expression modules. There is still a need to define biomarker
panels which will fulfill the WHO TPP optimal requirements for
a triage test and for a confirmatory test.

We have previously shown differential expression of PBL gene
mRNAs in response to MTB infection in a Macaca fascicularis
model of TB (141). These non-human primate models are
considered to most closely reflect the disease seen in humans
(142, 143) and are widely used, particularly for vaccine
development (144–146). Microarray hybridization analyses of
macaque peripheral blood mRNAs to human whole genome
arrays revealed many temporally expressed, gene expression
changes, in response to MTB challenge. A selection of
significant, differentially regulated immune mRNA biomarkers
was identified, which were shared with previously published
human data sets (Patent WO2015170108A1). Here we
investigate 72 of the most highly-significant biomarkers by
quantitative, real-time PCR (qPCR) in two new cohorts of TB
patients and controls from the UK and India. This study was
conducted to validate previous findings from the NHP model
and confirm biomarker suitability for ongoing diagnostic test
development for both ATB (both EPTB and PTB) and LTBI. We
discuss the performance of these biomarkers, both singly and in
combination with reference to WHO target product profiles and
their suitability for inclusion in low complexity qPCR assays. We
also present initial observations on the utility of some
biomarkers/biomarker configurations to identify LTBI
individuals at high risk of progression to ATB and which may
differentiate different sub-types of TB, i.e., pulmonary (PTB) and
extra-pulmonary (EPTB).
MATERIALS AND METHODS

Study Participants and Sample Collection
All participants recruited to the study were aged ≥18 years old.
Patients with PTB and EPTB were recruited at two of India's
medical institutes of national importance (1) The All India
Institute of Medical Sciences (AIIMS), New Delhi and (2) The
Jawaharlal Institute of Postgraduate Medical Education &
Research (JIPMER), Puducherry, located in regions of high TB
incidence [designated groups IPTB (n = 47) and IEPTB (n = 42)].
Patients with PTB were also recruited at Guy’s and St Thomas’
and Royal Free London NHS Foundation Trusts, London UK
(low TB incidence site; designated group UKPTB (n = 63)).
Individuals with suspected LTBI (n = 103) and matched negative
controls [CNTRLB ( n = 102)] were recruited from individuals
variably-domiciled in the UK and Asia, resident in the greater
London area as part of the UK PREDICT TB study, i.e (4, 42)., by
Public Health England Centre for Infections, 61 Colindale
Avenue London and University College, London UK. This was
a prospective cohort study, recruiting participants from 54
centers in London, Birmingham, and Leicester, at high risk for
latent tuberculosis infection (i.e., recent contact with someone
with active tuberculosis [contacts] or a migrant who had arrived
March 2021 | Volume 11 | Article 612564
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in the UK in the past 5 years from-or who frequently travelled to-
a country with a high burden of tuberculosis [migrants]).
Exclusion criteria included prevalent cases of tuberculosis.
Individuals with suspected LTBI were identified using the
standard Mantoux tuberculin skin test ((TST) i.e., skin-test
positive) and/or positivity for one or more of the interferon g
release assay tests (IGRA)—QuantiFERON® TB Gold In-Tube
((QFG) QIAGEN GmbH, Hilden, Germany) and T-SPOT®.TB
((TSPOT) Oxford Immunotec Ltd, Oxford, UK). CNTRLB were
identified as negative using these test combinations. All patient
sample details are given in Supplementary Table S1 (inside file:
Supplementary Table 1.1), the number of samples obtained per
study site given in Supplementary Table S1 (inside file:
Supplementary Table 1.2). Several individuals from the LTBI
group were found to have progressed to active disease during
study follow up [see Supplementary Table S1 (inside file:
Supplementary Table 1.3)]. LTBI were analyzed either as a
combined group (LTBI, n = 103) or stratified into non-
progressors to active TB (LTBI_NPR, n = 95) or progressors to
active TB (LTBI_PR, n = 8) for all ongoing analyses. Other
negative controls (CNTRLA, n = 20) were recruited at PHE,
Porton Down, Salisbury, UK (Study Number 12/WA/0303).

All patients recruited to the study at partner sites in India
were recruited under an approval from the JIPMER Institute
Ethics committee (Human studies), AIIMS Institute Ethics
committee and PHE, UK (India Study Number JIP/IEC/2015/
11/522, UK Study Number PHE0186). The experiments were
carried out in accordance with the approved guidelines of the
collaborating institutions. Whole blood samples were collected
by venipuncture at a single time point in PAXgene™

(PreAnalytiX, SWZ) or Tempus™ Blood RNA tubes (Applied
Biosystems, UK) and stored at −80°C until further processing.

Total RNA Extraction and cDNA Synthesis
Total RNA was extracted from the blood samples of study
participants using either the PAXgene Blood RNA or Tempus
Spin RNA extraction kits, in accordance with the manufacturer’s
instructions. The PAXgene Blood RNA kit (QIAGEN) was used
to extract total RNA from all UK group samples and the Tempus
Spin RNA Isolation Kit (Applied Bio systems) was used to extract
total RNA from all Indian group samples. Although two different
RNA extraction methods were used, there are no conflicting
reports as to the likely impact of these on the accuracy of
downstream qPCR gene target determination (118–123).
Differences are reported as relating mainly to miRNAs and not
mRNAs (as quantified in this study). To minimize experimental
technical variation between samples, mRNA targets were
normalized to the average of three internal house-keeping
control genes prior to data export and downstream analysis, to
minimize any potential sources of technical variation. The
concentration and purity of mRNAs were then assessed using
a Nanodrop ND-1000 spectrophotometer (Thermo Scientific,
EUA). mRNA integrity was further assessed using the Agilent
2100 Bioanalyzer (Agilent Technologies). Purified RNA was
immediately processed for complementary DNA (cDNA)
conversion using Transcriptor First Strand cDNA synthesis Kit
(Roche) as per the instructions provided by the manufacturer.
Frontiers in Immunology | www.frontiersin.org 4
The cDNA was then immediately analyzed using qPCR or stored
at −20°C until use.

Roche Real-Time Ready qPCR Assays
Seventy-two test genes of significance were selected for qPCR
validation from our previous studies (141). Details and function
of all target genes are given in Supplementary Table S1 (inside
file: Supplementary Table 1.4). A summary of the overlap with
select previously published gene panels is given in
Supplementary Table S2 (inside files: Supplementary Tables
2.1 to 2.8) (genes overlapping with those analyzed in this study
highlighted in red text). Glucose-6-phosphate dehydrogenase
(G6PD), phosphoglycerate kinase 1 (PGK1) and ribosomal
protein L13a (RPL13A) were selected for inclusion as controls
from available default control gene options in the Roche Real-
Time ready (RTR) assay design center, which showed consistent,
invariant expression across control and test groups in the
previously published NHP data set.

Expression levels of all human test and control genes were
determined using pre-designed or bespoke RTR assays, designed
using the RTR assay design configurator (configuration numbers
10059401, 100059386 and 10059377) and arrayed in 384 well
format. All qPCR assays were performed in duplicate on the
Roche LightCycler 480 (LC480) using TaqMan PCR Probe
Master Mix (Roche) and according to the manufacturer’s
instructions, using the following cycling conditions (i) preheat
for 1 cycle at 95°C for 10 minutes (ii) amplification for 45 cycles:
95°C for 10 s, 60°C for 30 s, 72°C for 1 s (ii) cooling to 40°C for 10 s.
Data were normalized to the average of the three control
genes prior to export using the LC480 software. Normalized
data (DCt values) were then exported in .txt file format prior to
further analysis.
Data Analysis and Visualization of qPCR
Outputs Using GeneSpring 14.9™
Normalized data exported from the Roche LC480 were imported
into Microsoft Excel. The mean of two duplicate data points was
calculated using the Average (�X) function. Averaged data was
then imported into GeneSpring 14.9™ (GX14.9) for further
statistical and differential gene expression analyses, using
baseline transformation to the median of all samples (without
further normalization). All data were then assessed for quality
and filtered by error, where the % coefficient of variance (%CV)
was >200 (maximizing the number of entities exhibiting
expression differences across all samples and removing those
with poor or no signals). Statistically significant features were
identified using either one-way analysis of variance (ANOVA)
analysis using Benjamini-Hochberg false discovery rate (BH
FDR, at a corrected p-value cutoff p < 0.05) across all groups,
or t-tests for comparisons between individual groups (also using
BH FDR and a cutoff p < 0.05). All further analyses and graphical
depiction of data outputs were conducted using other functions
in GX14.9 using default settings, e.g., scatter plot, regression and
unbiased hierarchical cluster analyses (either Euclidean (EUC) or
Pearson’s centered (PC) distance metrics using Ward’s linkage
rule and the cluster entities setting). Other data analyses were
March 2021 | Volume 11 | Article 612564
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conducted using various functions in “R”, Microsoft Excel or
Sigmaplot 12.0 (Systat Software Inc.).

Receiver Operating Characteristic/Area
Under the Curve and Performance Analysis
Receiver Operating Characteristic/area under the curve (ROC/
AUC) analyses were performed using normalized, exported
mean LC480 qPCR DCt values. ROC curves were plotted using
“R” × 64 3.4.0 Software using the ROCR package or the ROC
analysis tool of Sigmaplot 12.0. The accuracy and performance of
each candidate single biomarker was measured by calculating
area under the curve (AUC) values. Cutoff values were predicted
by measuring the optimal accuracy of the curve, from which the
sensitivity and specificity of each biomarker/biomarker panel test
were determined. Optimal cutoffs were selected to obtain best
sensitivity and specificity and to compare biomarker
performance. Combined panels of biomarkers were also
assessed to determine whether these could show improved
discrimination between control and infected TB groups over
single biomarkers. Simple algorithms consisting of biomarkers
combined additively were assessed by ROC analysis and the
diagnostic performance further assessed using sensitivity,
specificity, cutoff values, likelihood ratios and positive (PPV)
and negative (NPV) predictive value calculations. Select
biomarker panel configurations were also evaluated to WHO
TPP requirements for triage minimum and optimum and
confirmatory test minimum requirements using the Sigmaplot
12.0 ROCR/ROC analysis functions. Outputs were depicted
graphically using either Sigmaplot 12.0 or GraphPad 8.0.

Receiver Operating Characteristic/Area
Under the Curve and Performance
Analysis for Optimal Biomarker Panels on
Previously Published Data Sets
Previously published data sets from Singhania et al. [GSE107991,
GSE107992, GSE107993, GSE107994 (109)], Leong et al.
[GSE101705 (110)], Turner et al. [E-MTAB-8290 (137)], and
Zak et al. [GSE79362 (111)] studies were downloaded and
normalized numeric expression values for the relevant panel
gene entities extracted. These were analyzed for ROC/AUC and
overall performance to WHO TPP requirements for select,
significant composite gene biomarker panels from this study as
described above (section 2.5).
RESULTS

Quality Assessment of Normalized Data
Signals and Cluster Analysis
Normalized, exported mean Roche Lightcycler qPCR DCt values
were imported into GX14.9 and assessed for signal quality. Fifty-
three of seventy-two gene entities remained after filtering by
error (%CV >200). Samples were assigned to their specific
control and disease groups, i.e., (i) low TB incidence region
UK control (CNTRLA) (ii) low TB incidence region UK control
from the PREDICT TB study (CNTRLB) (iii) low TB incidence
Frontiers in Immunology | www.frontiersin.org 5
region UK LTBI from the PREDICT TB study (LTBI), variously
stratified according to progression (LTBI_PR) or non-
progression (LTBI_NPR) to ATB (iv) low TB incidence region
UK TB (UKPTB) (v) high TB incidence region India extra-
pulmonary TB (IEPTB) (vi) high TB incidence region India
pulmonary TB (IPTB).

An unbiased EUC cluster analysis was then performed on
filtered data, the results are given in Figure 1. Two clear main
clusters of entity expression could be seen using this analysis;
clusters 1 and 2, with associated sub-clusters. Overall, there
was an observed pattern of increasing differential regulation
of biomarkers in the TB disease groups compared with
the control groups, from LTBI through IEPTB, UKPTB and
IPTB. The composition of biomarkers varied slightly in the
comparisons between groups, although there was also some
overlap of entity expression between groups. Gene entities
in cluster 1 appeared to delineate groups associated with
generalized presumed exposure and/or infection with MTB.
Cluster 2 and associated sub-cluster gene entities exhibited
variable expression between exposed or infected groups,
clusters 2i and 2j featured entities which associated more
strongly with ATB. CD52 (cluster 2h) appears more generically
differentially expressed across the groups, but slightly down-
regulated in LTBI.

Cluster 1 includes only eight entities, some of which are
interferon regulated, e.g., IFIT3 and GBP1, others include entities
associated with MHC class I antigen processing, e.g., HLA-B and
TAPBP and associated with neutrophil and/or other innate
immune cell activity, e.g., IFITM3, S100A11 and NCF1C; (i) in
cluster 1a, IFIT3 is only associated with the ATB disease groups
(ii) cluster 1b the entities associate mainly with the high
incidence control (CNTRLB) and ATB groups, although HLA-
B also appears expressed in the low incidence (CNTRLA) group
and (iii) cluster 1c, the entities associate with the LTBI, IEPTB,
UKPTB and IPTB groups (Figure 1).

Cluster 2 featured immune-related entities which were
differentially regulated between sub-groups, (i) cluster 2a with
the CNTRLB group, (ii) clusters 2b, 2d, and 2j with the IPTB
group, (iii) cluster 2c with the UKPTB group, (iv) cluster 2e
predominantly with the UKPTB group, (v) cluster 2f weakly with
the CNTRLB, UKPTB and IPTB groups and (vi) cluster 2g with
the CNTRLB and more weakly with the IPTB group, (vii) cluster
2h associated across all groups but more weakly with the LTBI
and IPTB groups, (viii) cluster 2i with the IEPTB, UKPTB and
IPTB groups and (ix) cluster 2j with the CNTRLB, LTBI, UKPTB
and IPTB groups (i.e., all test groups except the IEPTB group).
Thus, good differential expression of gene entities was observed
between the low TB incidence controls (CNTRLA) and the other
groups, i.e., those with ATB from low TB (UKPTB) and high TB
incidence regions (IEPTB and IPTB).
Analysis of Normalized qPCR Data Using
Analysis of Variance
To determine the best performing biomarkers for onward
progression from those displaying a positive signal post-
filtration, Analysis of Variance (ANOVA) was performed
March 2021 | Volume 11 | Article 612564
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across all groups using BH FDR (corrected p value < 0.05) and
using the Student–Newman–Keuls differences in means (SNK),
post-hoc test. Seventeen of the fifty-three gene entities from the
%CV filtered data set were found to be statistically significant
and differentially regulated across the groups using this analysis;
including CD52, GBP1, GBP2, GBP5, HLA-B, IFIT3, IFITM3,
IRF1, LOC400759 (GBP1P1), NCF1C, PF4V1, S100A11,
SAMD9L, STAT1, TAF10, TAPBP, and TRIM25 (17-plex
signature). The number of entities that were discriminatory
between groups from the ANOVA SNK analysis are
summarized in Supplementary Table S1 (inside file:
Supplementary Table 1.5) and Supplementary Information
S1, Figure 1.1.
Cluster and Scatterplot Analysis of
Significant Differentially Regulated Entities
To further investigate group-specific changes in the seventeen,
statistically significant differentially regulated biomarkers, PC
unbiased cluster analysis was performed a cross the control,
stratified LTBI (LTBI_NPR and LTBI_PR) and other ATB
disease groups (Supplementary Information S2, Figure 2.1
and ANOVA p- and fold change values in Supplementary
Table S3 (inside files: Table 3.1 with pairwise, p values from the
SNK post hoc test table given in Table 3.2). individual line plots
(average expression +/− standard error) for each of these entities
Frontiers in Immunology | www.frontiersin.org 6
are given in Supplementary Information S1, Figures 1.2
to 1.18.

Two distinct clusters were observed, each of which could be
divided into four sub-clusters, which further delineate differential
expression of the key biomarkers between the control and TB-
exposed or infected groups. In addition, clear differences in
expression could be seen between the LTBI progressors and
non-progressors for a number of these gene biomarkers (boxed
in red).

The 17-plex signature was further analyzed in greater detail
using scatter plot analysis (Figure 2), for the LTBI_NPR and
LTBI_PR groups. Seven of these biomarkers showed clear
differential expression between the two groups ( Supplementary
Information S2, Figure 2.1, with fold change differences given in
Supplementary Table S3 (inside file: Table 3.3). IFITM3,
S100A11, GBP1, GBP5, STAT1 and LOC400759 (GBP1P1),
were upregulated in the LTBI-PR group and HLA-B, TAPBP,
NCF1C, PF4V1, CD52 and IRF1 were downregulated. Regression
analysis using the 17-plex signature gave a best fit line R2 value of
0.735 (Figure 2A), however using the six upregulated biomarkers
plus HLA-B (7-plex signature) alone, the R2 value increased to
0.828 (Figure 2B). Addition of any other differentially markers to
the panel did not provide any further improvement to the R2

value. These showed therefore good potential for identifying “high
risk” pre-progressor LTBI patients at an early stage of disease for
preventative interventions.
FIGURE 1 | Cluster analysis on all fifty-three significant, filtered entities on group averaged data CNTRLA - low TB incidence region UK control group CNTRLB - low
TB incidence region UK control group from the PREDICT TB study group LTBI - low TB incidence region LTBI from the PREDICT TB study group IEPTB - high TB
incidence region extra-pulmonary TB group UKPTB - low TB incidence region UK TB group IPTB - high TB incidence region Indian pulmonary TB group.
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Analysis of Control and LTBI Groups Using
7plex Cumulative Average Expression
Inherent variability in biomarker expression was observed
between individuals within all the groups (depicted in heatmap
format in Supplementary Information 4, Figure 4.1) and
particularly control group CNTRLB. Some individuals within
this group have high positivity for select key biomarkers. Using
the normalized numeric DCt values for the 7-plex signature, we
assessed whether these markers could provide a means for
stratifying individuals in the control, LTBI_NPR and LTBI_PR
Frontiers in Immunology | www.frontiersin.org 7
groups into high, medium and low risk categories, using a
simple arithmetic cumulative index (Supplementary Table S3
(inside file: Table 3.4). ROC curve analyses were not conducted
due to an imbalance in the number of individuals in the
control and LTBI_NPR groups, relative to the LTBI_PR group
(n = 8) Supplementary Table S3 (inside files: Table 3.1 with
pairwise, group t-test p values given in Table 3.2). Individuals
in these groups were ranked according to their cumulative
average expression values (CAE) for the 7-plex signature, then
cutoff points set at (i) equal to and greater than the mean ( > �X)
B

A

FIGURE 2 | (A) Scatter graph depiction of the seventeen statistically significant entities in LTBI non-progressor and LTBI progressor groups, with associated linear
regression (R2) significance analysis (B) Scatter graph depiction of the seven preferred, differentially expressed entities in LTBI non-progressor and LTBI progressor
groups, with associated linear regression (R2) significance analysis.
March 2021 | Volume 11 | Article 612564
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(ii) equal to and greater than the mean plus one standard
deviation (�X + SD) or (ii) equal to and greater than the mean
plus two standard deviations (�X + 2SD). Three LTBI_NPR, two
LTBI_PR, four CNTRLB (including patients 1053, 2439 and
1864 highlighted in Supplementary Information 4, Figure 4.1)
had cumulative values over �X + 2SD. No CNTRLA individuals
had cumulative values over �X + 2SD. Ten LTBI_NPR, one
LTBI_PR, ten CNTRLB and no CNTRLA individuals had
cumulative values between �X + 2SD and �X + SD. Twenty-nine
LTBI_NPR, 1 LTBI_PR, 16 CNTRLB and 6 CNTRLA individuals
had cumulative values greater than �X, but less than �X + SD.
These results would suggest that both the CNTRLB and LTBI
groups are heterogeneous. The CNTRLB group may be a mixture
of true negative, exposed uninfected and LTBI infected and the
LTBI group a mixture of exposed (currently) uninfected and
exposed (currently) infected. Those in the upper ranges for the
CAE in both groups are potentially at higher risk of progression
to ATB. However, further work needs to be done to assess the
performance of this 7-plex panel for stratification purposes, with
a greater number of patients and controls to follow up.

These results suggest that the TST and IGRA tests used to
define these groups may have incorrectly assigned some
individuals in the CNTRLB and LTBI groups. There were near
equivalent numbers in each stratified category and the groups
look similar in ranked distribution. This information further
suggests use of individual or low-complexity gene biomarker
panels will be unlikely to be sufficient for stratification of LTBI
and high-risk control groups, due to inherent variabilities in
expression between individuals, which may lead to omissions in
identifying “true” infected individuals. A more complex multi-
biomarker approach will be required to give requisite
test sensitivity.

Determination of Single Biomarker
Receiver Operating Characteristic Profiles
Pairwise comparisons for all seventeen significant differentially-
expressed single biomarkers were conducted across all infected
and control groups [Supplementary Table S3 (inside files: Table
3.5, 3.5A for controls vs ATB, 3.5B for controls vs LTBI and
Table 3.5C for controls&LTBI vs ATB)], ranked according to
specificity). The accuracy of single biomarker discriminatory
performance across the main active TB disease groups is
summarized in Supplementary Table S1 (inside file:
Supplementary Table 1.6) and between the LTBI_PR and
LTBI_NPR groups in Supplementary Table S1 (inside file:
Supplementary Table 1.7). Many of these single biomarkers
gave AUC values above 0.9, the cutoff considered to be an
indicator of very high accuracy (up-regulated in the test group,
highlighted in bold black text and dark grey fill). Others gave
AUC values above 0.8, considered to be an indicator of high
accuracy (highlighted in normal text and medium gray fill).
Many others gave AUC values above 0.7, the cutoff considered to
be an indicator of moderate accuracy (highlighted in normal text
and light grey fill). Some gene biomarkers gave AUC curve values
below a cutoff of 0.3 indicating an inverse relationship of the
markers between the control and test groups ((i.e., down-
Frontiers in Immunology | www.frontiersin.org 8
regulated in the test group) highlighted in white italic text and
very dark grey fill). From these analyses, many of the significant
gene biomarkers were observed to show good performance
between disease and control groups. The best performing
across all groups were GBP1, GBP2, IFIT3 and SAMD9L (up-
regulated) and TAF10 (down-regulated). Several others with
more moderate or group-specific performance were also
considered viable candidates for ongoing diagnostic algorithm
development. IFITM3 showed the best performance in
delineating the LTBI group from both groups of controls and
IRF1, TAPBP, and TRIM25 may highlight subtle differences in
expression between the two LTBI groups.

Performance/accuracy and discrimination between control
and disease groups were assessed for likelihood ratios (LR) and
positive/negative predictive values (PPV/NPV), using defined
qPCR thresholds. Cutoff values which discriminated all ATB
from controls were selected at a fixed sensitivity of 80% for PPV
and NPV calculations. The accuracy and discriminatory
performance between control and disease groups was very
good for many biomarkers. Using predicted cutoff values at
80% sensitivity, the LR+ values approached 10 and LR- were
correspondingly low. GBP1 attained a specificity of 91.8% at 80%
sensitivity and good PPV/NPV (92.42% and 78.87% respectively)
when discriminating all ATB from all controls, IFIT3 also
showed good performance with a specificity of 90.98% at 80%
sensitivity (PPV/NPV; 90.98% and 78.57% respectively). These
results suggest both biomarkers would be very good diagnostic
candidates for ATB.

GBP1 and IFIT3 showed less impressive performances for
LTBI. GBP1 attained a specificity of 61.68% at 80% sensitivity
and PPV/NPV (72.53% and 68.84% respectively) and IFIT3
37.38% specificity at 80% sensitivity (PPV/NPV; 69.69% and
57.14% respectively). The best performing marker for
discrimination of LTBI from all controls was IFITM3, with a
specificity of 64.49% at 80% sensitivity and PPV/NPV (74.19%
and 72.06% respectively). These results emphasize again the
difficulties in discriminating LTBI from controls, compared
with the superior performance of select biomarkers for the
ATB group and suggest that the use of individual gene
biomarkers would be unlikely to be sufficient for primary
disease diagnosis, due to somewhat lower NPV values. This
may lead to omissions in identifying infected individuals, due
to the likelihood of false negatives and to some lesser extent false
positives with individual biomarkers. It was decided therefore to
investigate a multi-biomarker panel approach for on-going
diagnostic development.

Determination of Biomarker Panel Receiver
Operating Characteristic Profiles and
Determination of Diagnostic Algorithms for
Diagnostic Test Development
To improve the overall sensitivity and performance, various
combinations of gene biomarkers were trialed to determine the
optimal configuration to distinguish the various TB disease
groups (LTBI (both LTBI_NPR and LTBI_PR), IEPTB,
UKPTB, and IPTB) from the control groups (CNTRLA and
March 2021 | Volume 11 | Article 612564
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CNTRLB), with a view to identifying diagnostic panels. qPCR
values were combined or subtracted additively according to
empirically designed algorithms, then tested using pairwise
ROC curve analyses. Illustrations of the best performing
combinations are given in full in Supplementary Table S3
(inside files: Table 3.6, 3.6A for controls vs ATB, 3.6B for
controls vs LTBI and Table 3.6C for controls&LTBI vs ATB).
These are summarized in Table 1 across the main active TB
disease groups and Table 2 across the LTBI_PR and LTBI_NPR
groups respectively.

The gene combinations which gave most consistent high
accuracy discrimination between all control and ATB groups
were GBP1+IFIT3 (ROC/AUC = 0.945, Figure 3A and depicted
in scatterplot format in Figure 4A). Inclusion of SAMD9L
(GBP1+IFIT3+SAMD9L) reduced the AUC value slightly
(ROC/AUC = 0.944, Figure 3B and Figure 4B), but increased
the specificity and PPV and NPV values, suggesting combining
these three biomarkers may give the best overall test
performance. This latter 3-plex gene combination also worked
reasonably well for discrimination of Control&LTBI vs ATB
groups (Supplementary Table S3 (inside file: Table 3.6C). The
distribution of individuals above the defined cutoffs for each of
Frontiers in Immunology | www.frontiersin.org 9
these two combinations seen in Figures 4A, B show the high
accuracy discrimination across all three ATB groups, compared
with the CNTRLA group. The UKPTB group shows a greater
range of positive and negative results above and below the cutoff
value (−0.46) and may be more heterogeneous. At this cutoff only
three IPTB patients and one IEPTB appear as false negatives.
More moderate accuracy discrimination was observed between
the LTBI and both control groups at the same cutoff (AUC =
0.79). Similar results were shown for GBP1+IFIT3+SAMD9L
(Figure 4B). As discussed above the combination of GBP1+
IFITM3 improved the ability to discriminate LTBI from
combined controls but not from ATB (Figures 3C and 4C).

Other combination panels of gene biomarkers were trialed to
determine the optimal configurations distinguishing LTBI
(LTBI_NPR and LTBI_PR) from control groups (see Table 2
and Supplementary Table S3 (inside file: Table 3.6B)). GBP1 +
IFITM3 showed high accuracy for discrimination of the LTBI
groups from the CNTRLA group (AUC = 0.96) and more
moderately when including the CNTRLB group (AUC =
0.809), (Figures 3C and 4C). GBP1+IFIT3 showed best
performance for discriminating LTBI from ATB (Table 2) with
an AUC of 0.865. Small differences were detected between non-
TABLE 1 | Summary of AUC ROC values for control and ATB group pairwise comparisons using simple, composite arithmetic algorithms.

Group/Algorithm Biomarker ROC Curve Value

GBP1+GBP2 +IFIT3+SAMD9L
+TAPBP

GBP1+ GBP2+IFIT3
+SAMD9L

GBP1+ IFIT3
+SAMD9L

GBP1+GBP2
+IFIT3

GBP1
+IFIT3

CNTRLA vs IEPTB 0.969 0.981 0.981 0.985 0.981

CNTRLA vs UKPTB 0.945 0.952 0.937 0.962 0.956

CNTRLA vs IPTB 0.977 0.970 0.977 0.982 0.980

CNTRLB vs IEPTB 0.911 0.951 0.958 0.951 0.957

CNTRLB vs UKPTB 0.870 0.906 0.915 0.907 0.916

CNTRLB vs IPTB 0.938 0.949 0.959 0.947 0.956

CNTRLA vs All ACTIVE TB 0.962 0.968 0.961 0.982 0.970
CNTRLB vs All ACTIVE TB 0.902 0.932 0.940 0.931 0.940

CNTRLA&CNTRLB vs All ACTIVE
TB

0.911 0.938 0.944 0.939 0.945
March 20
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TABLE 2 | Summary of AUC ROC values for control, latent and combined ATB group pairwise comparisons using simple, composite arithmetic algorithms.

Group/Algorithm ROC/AUC Values for Group Pairwise Comparisons using Composite
Biomarker Panel Gene Algorithms

GBP1+ IFITM3 GBP1 + IFIT3 GBP1+ IFIT3 + IFITM3 GBP1+IFITM3+ S100A11

CNTRLA vs LTBI-NPR 0.960 0.853 0.966 0.987

CNTRLA vs LTBI-PR 0.981 0.806 0.975 0.987

CNTRLA vs LTBI 0.961 0.849 0.967 0.994

CNTRLB vs LTBI-NPR 0.777 0.7815 0.776 0.590

CNTRLB vs LTBI-PR 0.799 0.734 0.793 0.592

CNTRLB vs LTBI 0.779 0.778 0.777 0.590

CNTRLA&CNTRLB vs LTBI 0.809 0.790 0.808 0.655

CNTRLA&CNTRLB vs LTBI-NPR 0.807 0.793 0.807 0.655

CNTRLA&CNTRLB vs LTBI-PR 0.829 0.746 0.823 0.658

LTBI-NPR vs IPTB 0.792 0.909 0.814 0.830

LTBI -PR vs IPTB 0.753 0.838 0.79 0.795

LTBI VS ALL ACTIVE TB 0.629 0.865 0.685 0.711
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progressor and progressor groups. Additionally, the combination
of GBP1 + IFIT3 + IFITM3 achieved an ROC/AUC = 0.808,
showing this combination could also be used for discrimination
of LTBI and ATB. The ability to discriminate ATB from controls
with or without LTBI was shown for all three panel combinations
(shown in boxplot format in Figures 5A–C).

Diagnostic accuracy was further assessed using fixed
sensitivities and/or specificities for the WHO TPPs (74, 140)
for triage or confirmatory tests (given in Supplementary Table
S3 (inside file: Table 3.7) — TB triage test; minimum ≥ 90%
sensitivity and 70% specificity, TB optimal test; ≥ 95% sensitivity
and 80% specificity, TB confirmatory test; ≥ 98% specificity and
65% sensitivity), with a side by side comparison of the panels’
performance given in Supplementary Table S3 (inside file:
Table 3.8). The combination of GBP1+IFIT3 met the
minimum and optimal triage and the confirmatory test
requirements for all pairwise comparisons using CNTRLA
alone, but not with CNTRLB alone or when CNTRLB was
combined with CNTRLA, with the exception of the EPTB
group. GBP1+IFIT3+SAMD9L met the minimum and optimal
triage and the confirmatory test requirements for all pairwise
comparisons using CNTRLA alone, except the UKPTB group.
However, it showed good performance for the CNTRLB and
CNTRLA&B combinations vs all ATB for the confirmatory
test performance.

Determination of Biomarker Panel
Receiver Operating Characteristic Profiles
and Performance of the Optimal
Biomarker Panels on Previously Published
Data Sets
The performance of the panels on previously published data sets
was then conducted [Supplementary Table S4, (inside Table:
4.1)]. Overall the performance of the panels was good, with high
ROC/AUC values, however the results were variable. Most of the
panels met either the minimal triage or confirmatory test
requirements, except for the GSE107993 (Singhania_Leicester
LTBI non-progressor study set), GSE79362 and E-MTAB-8290
data sets, where there was no minimal requirement positivity
observed. Several of the preferred biomarker combinations met
the minimum triage requirements for many of the study sets,
including GSE107994 (Singhania_Leicester LTBI progressor
study set). GBP1+GBP2+IFIT3+SAMD9L also met the
confirmatory test minimum for controls vs ATB. The 7plex
signature met the minimum and optimum triage and
confirmatory test requirements for controls vs ATB and LTBI
vs ATB and the minimum requirements for controls vs LTBI
progressors. The GSE107992 data set showed good performance
for most of the panels, except the optimal triage requirement for
GBP1 + IFIT3, GBP1 + IFIT3+ SAMD9L and GBP1 + GBP2 +
IFIT3 + SAMD9L +TAPBP.
DISCUSSION

Here we describe Roche LightCycler 480 qPCR validation of
differentially-regulated whole blood PBL mRNA gene
Frontiers in Immunology | www.frontiersin.org 10
biomarkers, previously identified in an NHP model of
pulmonary TB (141), in 2 cohorts of patients with active TB
(ATB) and a cohort of patients with latent TB (LTBI), compared
with two groups of controls (CNTRLA and CNTRLB).
Determination of candidate biomarker expression was
conducted across ATB patient groups with pulmonary TB
(UKPTB and IPTB), extra-pulmonary TB (IEPTB) and latent
TB (LTBI_NPR and NPR_PR). Fifty-three of seventy-two
biomarkers showed differential gene expression signals between
disease groups and controls after quality filtration (%CV >200),
on this platform. Seventeen highly significant markers were
identified from this filtered data set using ANOVA;
CALCOCO2, CD52, GBP1, GBP2, GBP5, HLA-B, IFIT3,
IFITM3, IRF1, LOC400759 (GBP1P1), NCF1C, PF4V1,
SAMD9L, S100A11, TAF10, TAPBP, and TRIM25 were
further analyzed. The results showed a predominance of
interferon-regulated gene entities, i.e., IRF1, STAT1, IFIT3,
IFITM3, GBP1, LOC400759 (GBP1P1), GBP2, GBP5, and
TRIM25 along with other entities associated with immune
function. Using unbiased cluster analysis, the significant
markers showed differential expression profiles across the
control and study groups and increasing patterns of expression
in active disease groups. Involvement of interferons and
dysregulation of interferon-regulated genes in TB has been
documented extensively elsewhere (101, 105, 107, 147–151),
and our study further confirms these observations. Some
inferences as to the underlying biology of biased expression
across the groups could be made (a fuller description of gene
biological function and group specific expression is given in
Supplementary Table S1 (inside file: Supplementary Table 1.4
and Supplementary Information S4). Gene expression patterns
may suggest some phased expression of interferon-regulated
genes associated with different stages of disease.

ROC analyses revealed the single best performing biomarkers
for discriminating both ATB and LTBI groups. Individual best
performing biomarkers were then assessed for performance in
combination using simple algorithms with the aim of developing
minimal, multiplex biomarker panels for diagnosis. Various
combinations were trialed empirically, with smaller two and
three multiplexes giving good performance characteristics. The
panels have shown good sensitivity, specificity and PPV/NPV.
Combinations of GBP1, IFIT3, IFITM3 and SAMD9L using
simple arithmetic algorithms looked promising for diagnosis of
most ATB presentations. They may also be useful for diagnosis of
LTBI and identification of individuals at high risk of progression.

The key diagnostic panel for all types of ATB was determined
to be GBP1 and IFIT3, which gave the best performance both
individually and in combination (combined AUC = 0.95). The
combination of GBP1+IFIT3 could also discriminate LTBI
samples from controls with a fairly good degree of accuracy
(combined AUC = 0.79), but with reduced resolution compared
with the preferred combination of GBP1 + IFITM3 (combined
AUC = 0.809). The combination of GBP1 and IFIT3 met both
the minimum and optimum TTP profile criteria for both the
triage and confirmatory test when single and combined ATB
groups were compared with the CNTRLA group. When the
CNTRLB group was used as comparator this combination met
March 2021 | Volume 11 | Article 612564
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the minimum triage test criteria only for the UKPTB, IPTB and
IEPTB groups and the combined ATB group. It met the
minimum criteria for the confirmatory test for the IEPTB and
IPTB, but not the UKPTB or combined ATB groups. When the
CNTRLA and CNTRLB groups were combined and the ATB
groups then compared, this combination met the minimum
triage criteria for all single ATB groups and the combined
ATB group, but the optimal criteria for the triage test for the
IEPTB group and the minimum confirmatory test for the IEPTB
and IPTB groups only. When the CNTRLA, CNTRLB and LTBI
groups were combined and compared with the single and
combined ATB groups, this biomarker combination met the
minimum criteria for the triage test only. These results
demonstrated the potential for this minimum biomarker set to
be used as both a triage and confirmatory test; however, its
Frontiers in Immunology | www.frontiersin.org 11
performance is influenced by the comparator group used. The
results show clear differences between the control groups, again
suggesting the CNTRLB group is a biased comparator, due to the
likely presence of TB positive individuals. If these tests were used
in an unbiased fashion, a proportion of the samples in the
CNTRLB and LTBI groups would flag up as positive above the
assigned threshold test cutoffs and be identified for potential
follow up. This biomarker combination was not useful for
discrimination of any combination of control or LTBI groups.

Inclusion of SAMD9L (GBP1+IFIT3 +SAMD9L) achieved a
reduced AUC value of 0.94 but improved sensitivity and positive
and negative predictive values (PPV & NPV), suggesting that this
combination could give overall best performance (i.e., reducing
the number of false negatives). This combination met many of
the minimum and optimum TTP profile criteria for both the
B CA

FIGURE 3 | (A) ROC Curve analysis of all individual TB disease groups compared to the CNTRLA group and combined CNTRL&LTBI vs ATB groups, using the
GBP1+IFIT3 algorithm (B) ROC Curve analysis of all individual TB disease groups compared to the CNTRLA group and combined CNTRL&LTBI vs ATB groups,
using the GBP1+IFIT3 +SAMD9L algorithm (C) ROC Curve analysis of all individual TB disease groups compared to the CNTRLA group and combined CNTRL&LTBI
vs ATB groups, using the GBP1+IFITM3 algorithm All CNTRLS vs ATB , All CNTRLS vs IPTB , All CNTRLS vs UKPTB , All CNTRL
vs IEPTB , All CNTRL vs LTBI , All CNTRL&LTBI vs ATB .
B CA

FIGURE 4 | Scatter plot representations of data from analyses using the GBP1+IFIT3, GBP1+IFIT3 +SAMD9L and GBP1+IFITM3 algorithms across all control and
TB disease groups including the LTBI non-progressor and progressors (A) GBP1+IFIT3 algorithm using the calculated cut-off value which discriminates ATB from all
combined control groups (-0.046). (B) GBP1+IFIT3 +SAMD9L algorithm using the calculated cut-off value which discriminates ATB from all combined control groups
(-0.036) (C) GBP1+IFITM3 algorithm using the calculated cut-off value which discriminates the LTBI from all combined control groups (0.074).
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triage and confirmatory test, similarly to GBP1 and IFIT3, but its
performance did not compare as favorably for the confirmatory
test, except for all ATB groups vs CNTRLB singly as comparator
and in combination with CNTRLA. Similar results were also
observed with the other combinations, some of which show
improved performance for discriminating between LTBI and
ATB for the minimum triage requirement. It can be seen that the
various biomarker combinations give slightly different results
Frontiers in Immunology | www.frontiersin.org 12
and any resulting developed test could potentially be tailored
according to intended end use, particularly for discrimination
between LTBI and ATB.

GBP1+ IFITM3 met the minimum and optimal performance
criteria for the LTBI_NPR and combined LTBI groups for the
triage test in comparison with CNTRLA, but the minimum
criteria for the LTBI_PR group only. It met the confirmatory
test criteria for the LTBI_PR group, but not for the LTBI_NPR
and combined LTBI groups. These results are likely to be
influenced by differences between LTBI and the two different
control groups, due to heterogeneity in the CNTRLB group,
which may contain mis-assigned LTBI or preclinically infected
individuals, as discussed previously. The GBP1+ IFITM3 panel
distinguishes LTBI from unambiguously uninfected negative
control groups, with good sensitivity and thus be useful as a
rule out test. It may also pick up previously unidentified LTBI
classified negative using the Mantoux or IGRA tests. However,
more complex multiplex assays may be required for high
confidence detection of LTBI and asymptomatic pre-progressor
TB patients at a relatively early, latent stage of disease, due to
high inherent variability between individuals in the control and
LTBI groups and also a relatively low level of biomarker gene
expression in these individuals compared with those in the ATB
groups. Various combinations of GBP1, IFITM3, GBP5, HLA-B,
LOC400759, S100A11 and STAT1 may be useful for LTBI
primary diagnosis and stratification, however this requires
further study.

There have been a significant number of comparative studies
investigating various biomarkers/biomarker panels for MTB
diagnosis (88–91, 97, 110, 137, 138, 152–155). Some of the
biomarkers validated in this study have been identified by
other workers in the field previously as highly useful key
components of other TB-diagnostic panels, e.g., GBP1, GBP2,
LOC400759 (GBP1P1), GBP5, STAT1, IFIT3 & IFITM3 (110,
114, 115), adding confidence to our own observations. The
overall view that this is a valid approach and a productive
pipeline for new diagnostic test development, as evidenced in
published market evaluation reports (60, 75–77, 79, 81, 85, 87,
155–157). However, to date few have been postulated to fulfill the
WHO minimum requirements for progression (89, 110, 137).
GBP1 and IFITM3 have been previously reported as components
of a four-gene signature fromMaertzdorf et al. for discrimination
of TB infected from healthy individuals (123). This panel was
included as part of prior signature evaluation studies by Leong et
al (110, 138). They showed that both complex and relatively
simple biomarker combinations, could be useful diagnostically
and that some of the smaller panels evaluated previously exhibit
good performance characteristics. These would be more
amenable to simple, cost-effective assay development. Turner
and co-workers also evaluated a number of previously published
biomarker signatures to benchmark their diagnostic accuracy
against the WHO TPPs for a tuberculosis triage test and found
none which met the optimum criteria and two which met the
minimum criteria, Roe3 and Sweeney3. These did not meet the
minimum requirement for a confirmatory test (89, 137). Our
study may offer biomarker panels which fulfill the WHO
B

C

A

FIGURE 5 | Bar chart representation of the comparison between the
combined CNTRLA and CNTRLB control groups, the LTBI group, the
combined CNTRLA, CNTRLB and LTBI groups and the combined ATB
groups (A) using the GBP1+IFIT3 algorithm (from Table 2), (B) using the
GBP1+IFIT3+SAMD9L algorithm (from Table 2) (C) using the GBP1+IFITM3
algorithm (from Table 3).
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minimum criteria and triage optimum and confirmatory
minimum requirements, dependent on the control group(s)
used for comparison.

Zak et al. reported GBP1 in a signature for disease risk (111),
where GBP1, STAT1, and TAP1 were considered to be protective
and associated with a good clinical outcome. Sweeney et al. re-
ported a three-gene signature GBP5+DUSP3+KLF2 that can
correctly identify ATB from healthy controls and LTBI at high
risk of progression (120). In comparison to these panels, our
GBP1+ IFIT3 and GBP1+IFIT3 +SAMD9L panels gave similar
results for discrimination of ATB from controls (AUC - 0.95 and
0.94), and for discrimination of ATB from LTBI non-progressors
(AUC - 0.91). Additionally, our GBP1+ IFITM3 panel could
identify LTBI from both combined control groups with an AUC
of 0.81. When just the CNTRLA control group only was used, the
AUC increased to 0.96. The performance of our GBP1+ IFIT3
and GBP1+IFIT3 +SAMD9L panels for ATB also compare
favorably with the Indian-lasso-24 signature published by
Leong [(110) AUC 0.984] and the RISK6 signature published
recently by Penn-Nicholson et al. (AUC 0.936). Our panels
exhibited slightly reduced ROC curve values than the lasso-24
on the same data set, however they are smaller and more
amenable to multiplex assay development.

One observation from the Leong study is the small number of
ATB outlier patient samples which fall outside of the
experimental error and appear as false negatives in the scatter
plots. There appears to be a subgroup of patients which segregate
with the control samples. This is consistent with our own
observations in our study where a proportion of patients in the
ATB groups test negative for most of the biomarkers assayed. It
would be interesting to determine whether these represent a
subgroup of patients displaying a different clinical profile to the
others or symptom status as proposed previously by Blankley
and co-workers (112), e.g., disease severity, defective immune
response/developed anergy. This is worth further investigation
and could perhaps be characterized using other analytical means,
e.g. flow cytometry.

In summary, we have validated a number of TB-associated
whole blood PBL immune gene markers in new cohorts of
patients and controls using qPCR, of which seventeen were
significant. Their utility in primary determination of ATB
(both pulmonary and extra-pulmonary manifestations) and
LTBI has been assessed using ROC curve analysis and
evaluated against the WHO TPP requirements for a triage and
confirmatory test. ATB disease could be detected with a high
degree of accuracy and sensitivity, including EPTB with LTBI
detected at a somewhat reduced level. We have shown that
minimally small configurations of biomarkers show
comparable performance in relation to other studies. They
exhibit the requisite TPP requirements for further evaluation
and development on our data set, however variable performance
was observed with other previously published data sets. This
may be due in part to technical variation with the variety of
assay platforms used, the contribution of which may be
underestimated in contemporary comparison studies. Our
biomarker panels could be easily formulated into a simple
Frontiers in Immunology | www.frontiersin.org 13
multiplex qPCR assay format and used in diagnosis/screening
surveillance for all TB presentations, however further validation
is required. The assays in this study were conducted on the Roche
lightCycler 480, but these could be adapted easily to run on any
qPCR platform as part of a low cost, rapid testing/screening
program. Further work is underway to develop these panels as
clinically useful, utilitarian diagnostic tests.
STUDY LIMITATIONS

A key limitation of the study is the choice of control groups. The
study includes controls, latent TB and TB patients recruited in
the UK, but only TB patients in India. The preferred control
group for the Indian group samples would be region-matched
disease-free individuals and those with other respiratory
conditions/infections. The number of LTBI individuals
progressing to active disease is also relatively small and this
limits the power of the statistical analysis, as they could not be
analyzed as a separate group with the analytical methods used. In
addition, the Indian blood samples were banked in Tempus tubes
while those in the UK were banked into PAXgene tubes, which
may have had an impact on the consistency of RNA extraction
and recovery. Limited demographic information was available on
the patients included in the study. Future studies would be
planned to address these issues and further empower
the analyses.
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