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Andrzej Kaźmierczak 1 , Maria Zdończyk 3,4 , Łukasz Duda 3,4 , Malgorzata Guzik 3,4, Jacek Olszewski 5,
Tadeusz Martynkien 5 , Alicja Bachmatiuk 3 and Ryszard Piramidowicz 1

1 Institute of Microelectronics and Optoelectronics, Warsaw University of Technology, Koszykowa 75,
00-662 Warszawa, Poland; andrzej.kazmierczak@pw.edu.pl (A.K.); ryszard.piramidowicz@pw.edu.pl (R.P.)

2 Department of Optoelectronics, Silesian University of Technology, ul. B. Krzywoustego 2,
44-110 Gliwice, Poland; cuma.tyszkiewicz@polsl.pl (C.T.); pawel.karasinski@polsl.pl (P.K.);
magdalena.zieba@polsl.pl (M.Z.)

3 Lukasiewicz Research Network-PORT Polish Center for Technology Development, Stablowicka 147,
54-066 Wroclaw, Poland; maria.zdonczyk@port.lukasiewicz.gov.pl (M.Z.);
lukasz.duda@port.lukasiewicz.gov.pl (Ł.D.); malgorzata.guzik@port.lukasiewicz.gov.pl (M.G.);
alicja.bachmatiuk@port.lukasiewicz.gov.pl (A.B.)

4 Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
5 Department of Optics and Photonics, Faculty of Fundamental Problems of Technology,

Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland;
jacek.olszewski@pwr.edu.pl (J.O.); tadeusz.martynkien@pwr.edu.pl (T.M.)

* Correspondence: ali.butt@pw.edu.pl

Abstract: In the past few decades, several methods concerning optical thin films have been established
to facilitate the development of integrated optics. This paper provides a brief depiction of different
techniques for implementing optical waveguide thin films that involve chemical, physical, and
refractive index modification methods. Recent advances in these fabrication methods are also been
presented. Most of the methods developed for the realization of the thin-films are quite efficient,
but they are expensive and require sophisticated equipment. The major interest of the scientists is
to develop simple and cost-effective methods for mass production of optical thin films resulting
in the effective commercialization of the waveguide technology. Our research group is focused
on developing a silica-titania optical waveguide platform via the sol-gel dip-coating method and
implementing active and passive optical elements via the wet etching method. We are also exploring
the possibility of using nanoimprint lithography (NIL) for patterning these films so that the fabrication
process is efficient and economical. The recent developments of this platform are discussed. We
believe that silica-titania waveguide technology developed via the sol-gel dip-coating method is
highly attractive and economical, such that it can be commercialized for applications such as sensing
and optical interconnects.

Keywords: sol-gel dip-coating method; chemical vapor deposition; silica-titania waveguide platform;
ion exchange; ion implantation; electron beam evaporation

1. Introduction

The field of integrated optics is evolving rapidly, and the ultimate objective is to
establish small-scale optical circuits comparable to the silicon chips that have transformed
the electronics industry. The benefit of the optical approach is that data can be managed at
much higher speeds [1]. Fiber-optic communication networks [2], commercial telecommu-
nications [3], military communications [4], and computer-to-computer data communication
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links [5] are some of the general spheres where integrated optics provide performance-
boosting advantages [6]. Additional valuable applications are projected in the fields of
optical sensing [7,8], optical signal processing [9], and perhaps optical computing [10].

There are several optical platforms available for the realization of optical intercon-
nects, such as semiconductor waveguides (hereafter represented as WGs) [11–13], dielectric
WGs [14–16], crystalline WGs [17–19], polymer WGs [20], glass optical WGs [21,22], plas-
monic WGs [23–25] and hybrid plasmonic WGs [26–28], among others. One must choose
the right platform for the particular purpose based on the ease of fabrication, practical
applicability, optical losses, and footprint. In the last few decades, several eye-catching tech-
niques have been developed to implement high-quality optical thin films for light-guiding
applications [29]. Thin films are the foundation for innovative technologies in various areas,
including optical devices, environmental applications, telecommunications devices, and
energy storage devices [30]. The morphology and reliability of thin films are critical issues
in all applications. Deposition techniques have a major influence on thin-film morphology.
Physical and chemical deposition methods can be used to deposit high-quality thin films.
A thin film is a thin layer of material with a thickness ranging from a few nm to a few µm.
Thin films, like all materials, are classified as amorphous or polycrystalline based on the
preparation conditions and the quality of the target material.

Glasses are ideal platforms for implementing active, passive, and nonlinear optical
components due to their exceptional chemical and physical characteristics, specifically their
optical attributes, such as wide wavelength operational range and an elevated threshold
for optical damage [31]. Specifically, silica glasses are highly desirable as they complement
the fiber optics entirely and introduce minimal coupling losses and high thermal and
mechanical stability. Furthermore, these glasses have a very low expansion coefficient on
silicon, allowing for the deposition of thick buffer layers, which are a key element on silicon
for WG purposes [21]. The SiO2/Si technology, which allows silica glass-based WGs to
be produced using various methods, is particularly useful. Flame hydrolysis deposition
(FHD) [32,33] and chemical vapor deposition (CVD) [34] offer exceptional thin film quality
and have been widely studied. The sol-gel process offers countless benefits such as avoiding
complicated apparatus, and high-cost fabrication processes are a substitute solution to
these manufacturing methods [35].

Glass WGs display highly attractive properties due to the straightforward technology,
the low propagation losses, and the flexible index matching to glass fibers. It is highly de-
sirable to have low-loss glasses, reliable and enabling low-cost WG fabrication procedures.
An overall requirement is that manufacturing technologies are proficient in high yield,
and have guaranteed duplicability within the quantified tolerances, and fundamentally
low operating costs. Subject to the glass integrated optics, it is conceivable to classify the
most common WG manufacturing techniques according to Figure 1. The fundamental
requirement for light confining is that the guiding layer should have a higher refractive
index than the substrate and cladding [16,17]. As a result, two main approaches can be
practiced implementing the guiding layer, i.e., thin-film deposition and local adjustment of
the bulk material. Various processes, for instance, RF-sputtering and magnetron sputtering,
CVD, plasma-enhanced CVD, FHD, spray pyrolysis deposition, pulsed laser deposition,
and the sol-gel coating are included in the thin layer deposition category. Whereas local
modification of the bulk material can be performed with ion exchange, ion implantation, or
UV-irradiation, the fs-laser writing is also appropriate for the direct inscription of a channel
WG in the substrate.

This review paper is structured in the following manner: In Section 2, optical WG
thin-film deposition methods are discussed, including physical, chemical, and local refrac-
tive index modification. Then, several deposition techniques and the recent advancements
in each method are presented. Our goal is not to give the final verdict on the best depo-
sition technique. Instead, the main purpose is to describe the advantages/disadvantages
associated with each deposition technique. We leave the choice to the readers to decide
which method is suitable for their needs. Indium phosphide (InP), silicon-on-insulator
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(SOI), and silicon nitride (SiN) are three popular PIC technologies that have reached in-
dustrial competence. Fabrication of PICs with these technologies requires sophisticated
and expensive equipment, since it often necessitates gaseous phase WG film deposition
(using, for example, the LPCVD process), stringent lithography (using E-beam or deep
VU techniques), and plasma etching (RIE or ICP). This makes it hard for smaller research
institutes, colleges, or SMEs to apply these technologies directly. Section 3 presents the
highlights of the silica-titania (SiO2-TiO2) platform developed via the sol-gel dip-coating
method. This platform is highly attractive due to its excellent optical, physical and chemical
properties. Moreover, the production cost of high-quality thin-films is quite low. Our
research group has been working on developing this platform for several years and the pos-
sibility of patterning these thin films via nanoimprint lithography (NIL) is being explored.
The current achievements in this topic are documented along with the previous literature
review. Finally, this platform’s future goals and challenges are presented in Section 4,
followed by a brief conclusion in Section 5.
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2. Optical Waveguide Layers Fabrication Methods

Waveguiding depends on the adequate refractive index contrast between the guiding
layer and the substrate/upper cladding [36]. Several techniques have been developed to
produce optical thin films with a refractive index higher than the substrate. As a result, the
light can be guided with the help of total internal reflection. According to the requirement,
the WG layer is etched to obtain different WG types such as rib [37], ridge [38], and
slot WG [39]. To avoid the etching process after the layer deposition, another method is
developed, which provides the local modification of the refractive index of the substrate.
This section discusses the most widely used WG fabrication methods with recent advances.
Each method has distinct benefits and drawbacks, and no specific method can be believed
to be better. The choice of a particular WG fabrication technique depends on the desired
application and the available resources.

2.1. Thin-Film Deposition Techniques

Several physical and chemical deposition methods have been used to manufacture
nanostructured thin films over the last two decades [29]. Both approaches have some
benefits over traditional techniques and exhibit promising potential for the deposition
process. Thin film technology requires the deposition of new transparent materials on
conducting and non-conducting substrates at low temperatures. A thin film layer is a
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material with a thickness ranging from a fraction of a nanometer to a micrometer [40].
Physical vapor deposition (PVD), chemical vapor deposition (CVD), and refractive index
modification techniques that allow for the deposition of such layers are considered in
this paper.

2.1.1. Physical Vapor Deposition Techniques (PVD)

Thermal evaporation method [41], electron beam evaporation [42], pulsed laser evapo-
ration [43], molecular beam epitaxy [44], ion plating [45] and activated reactive evapora-
tion [46] are all examples of PVD methods. This deposition process aims to move atoms
from a source to a substrate, where film-forming and growth can happen independently.
However, there are some disadvantages, such as the need for a tightly controlled vacuum
environment and expensive instrumentation. PVD is a vaporization coating technique that
requires an atomic-level material transfer. It is a vacuum-based process in which vaporized
material from a source is transferred through a vacuum or low-pressure gas atmosphere to
a substrate, where it condenses.

A. Vacuum

Electron beam (E-beam) evaporation is a type of PVD in which a charged tungsten
filament emits an E-beam that bombards a target anode in a vacuum and allows atoms
from the target to transition to the gaseous state. The atoms then solidify, leaving a thin
anode material layer on everything in the vacuum chamber. E-beam deposition achieves
a high deposition rate (0.1 µm/min to 100 µm/min) at low substrate temperatures while
optimizing material utilization [29]. In addition, the deposition process allows for flexible
tailoring of film structure and morphology, as well as the other desired material properties
like dense coating, high thermal performance, low contamination, high durability, and high
throughput [42].

The deposition chamber is pumped down to ~10−5 Torr pressure. Ingots or a com-
pressed solid are utilized as the materials to be evaporated. The E-beam can be produced
by thermionic emission, field electron emission, or the anodic arc method using electron
guns. The E-beam is fast-tracked to high kinetic energy and is directed towards the target
material. The electrons’ kinetic energy is converted to thermal energy, which increases the
surface temperature of the materials, causing evaporation and deposition on the substrate.
The temperature of the electrons is usually approximately 3000 ◦C, and they are accelerated
towards the target material by a 100 kV DC voltage source. The deposition rate is deter-
mined by the starting material and the strength of the E-beam. The vapor pressure must
be around 10 mTorr for adequate deposition rates. Several materials are practically hard
to evaporate by thermal evaporation [47]. E-beam evaporation must be used instead to
evaporate refractory metals.

In [48], the growth process of metal oxide nanostructures produced by E-beam evap-
oration is demonstrated. The condensed E-beam can simply decompose metal oxide
sources that have a high melting point, thus forming self-catalytic metal nanodots for the
vapor-liquid-solid (VLS) method. Figure 2 shows the E-beam evaporation model for the
growth of metal oxide nanowire. One benefit of E-Beam Evaporation is the possibility to
rotate various source materials into the electron’s path, allowing many thin films to be
deposited successively without disrupting the vacuum. A wide range of materials are
deposited using E-beam evaporation, which is extensively utilized for optical thin film
applications ranging from laser optics and solar panels to eyeglasses and architectural glass.
It offers the necessary optical, electrical, and mechanical properties. When compared to
other PVD processes, E-beam evaporation has a high material use efficacy, lowering the
manufacturing cost. Various high-quality thin films such as stainless steel [42], copper [49],
silicon [50], silicon nitride [51], and many more [52–55] have been deposited via the E-beam
deposition method.
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Another physical deposition method for the thin-film-coating system is pulsed-laser
deposition (PLD), in which the laser beam is used to ablate the target material for depositing
thin films in a vacuum chamber [56]. Different types of laser sources are used to ablate the
target, such as Nd-YAG laser, KrF (248 nm), and XeCl (308 nm). When a laser beam hits a
target material, it creates a plume that can be deposited on several substrates. The plume
can be composed of ionized species as well as neutral and ground-state atoms. To acquire
metal oxide thin films, oxygen is used in the process. The quality of thin film deposited by
the PLD method is determined by various factors, including the wavelength of the laser,
energy, atmospheric gas pressure, pulse size, and the target-to-substrate distance [57]. As
illustrated recently, PLD has been used to deposit an extremely diverse variety of materials.
The most important use of PLD in the past has been demonstrated in high-temperature
superconducting thin films. The experiment revealing that PLD could be used to deposit
YBa2Cu3O7−x (YBCO) films with zero resistivity at nearly 85 K triggered intensive research
on the high-temperature superconductivity over the last decade, as well as on PLD in
general [58]. For detailed knowledge about the PLD method, please consult [43].

The mechanism of cathodic arc deposition (CAD) has been the subject of extensive
study in recent years [59]. This method has unique properties that can be effectively applied
in both basic and applied physics, especially in implementing functional coatings. Several
works explain the benefits, shortcomings, and current state of understanding about CAD
today [60–62]. A discharge of electricity between two electrodes is utilized to create a
coat in this method. The evaporation mechanism starts with striking a high current, low
voltage arc on the surface of a cathode, which produces a thin, highly energetic emitting
zone known as a cathode spot. The temperature at the cathode spot is exceptionally high
(around 15,000 ◦C), resulting in a jet of vaporized cathode material moving at a high velocity
(~10 km/s). The cathode spot is only active for a brief period before self-extinguishing and
re-igniting in a different region near the previous spot. This behavior causes the visible
motion of the arc. When a reactive gas is released during the evaporation process, it may
cause dissociation, ionization, and excitation when it interacts with the ion flux, resulting
in the formation of a compound film. Industry compatibility, good film adhesion, excellent
stoichiometric control, low temperature, multilayer compact coating, uniform film, and
low voltage are all benefits of this approach. However, it has the drawback of being unable
to deposit complex structures. Several functional layers have been coated via the CAD
method for integrated photonics applications [63–66].

B. Sputtering techniques

Sputtering is a physical vapor deposition procedure with a high film deposition
rate and low-temperature structures, making it a good technique [67,68]. It is fast and
inexpensive to create thin films of alloys, metals, nitrides, carbides, and oxides [69–71]. The
magnetron sputtering technique, which uses a magnetic field to support the process of
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depositing thin films onto a substrate, is the most common procedure for this technique [72].
Via the momentum transfer from the argon (Ar) ions, the particles (atoms and ions) are
discharged. Electrons are confined to the magnetic field lines in magnetron sputtering. The
target is bombarded with a gaseous plasma that keeps electrons and is then guided to grind
down the material and expel them in the shape of neutral particles and a small portion of
ions. An inactive gas such as Ar, or even an active gas, such as nitrogen, is widely used as
sputter gas. The expelled particles would then settle on the substrate and form a thin layer
of the target material.

Magnetron sputtering has many benefits over other methods, including uniformity,
smoothness, and strong adhesion deposition over a very substantial region. The ability
to select substrate and target materials with high melting points and a high deposition
rate enables simple manipulation of deposited layer thickness [73]. However, the reactive
sputtering method has a variety of drawbacks, including target poisoning, low deposition
rates, and arcing that produces imperfections in thin films [74]. In the sputtering techniques,
however, several key factors are employed to adjust the thickness of the manufactured
films. The integrated pulse energy, time of deposition, pressure in the chamber, plasma gas,
target-to-substrate angle, and substrate temperature are all crucial elements in diminishing
dopant redistribution and defect creation during high-temperature processing. There
are several types of high-quality thin films, such as boron carbon nitride [68], aluminum
oxide [75], gallium oxide [76], and others [77], deposited via the magnetron sputtering
technique [67]. For readers interested in the history of the thin-film sputter deposition
process, we recommend consulting the reference [78].

Ion beam sputtering or ion beam deposition (IBD) employs an ion source to create
a narrowly focused ion beam (FIB) aimed at the target material to be sputtered. Both the
cathode and anode are concentrically aligned in the ion source. An electrostatic field is
generated within the ion source when a high voltage field of 2–10 kV is applied, confining
electrons in the center of the source [79]. As Ar gas is pumped into an ion gun, the high
electric field causes the gas to ionize, resulting in plasma within the source region. Then the
ions are fast-tracked from the anode area to the cathode exit aperture, resulting in a parallel
ion beam. The resultant ion beam collides with a target material and sputters it towards
the substrate due to momentum transfer between the ion and the target. The deposition
procedure can be assisted with a second ion gun by bombarding the growing film, which is
commonly known as ion beam assisted deposition (IBAD), which boosts adhesion, density,
stoichiometry control, and low optical absorption at short wavelengths [80,81]. IBD, like
other PVD processes, offers benefits such as deposition rate, homogeneity, composition,
thickness control, adhesion, and material characteristics. IBD, on the other hand, has several
advantages, including the ability to deposit a wide variety of materials regardless of target
thickness or properties, precision deposition stops, clean and low-pressure processing
(0.5 mTorr), and reactive deposition that is not vulnerable to high energy arcs due to
cathode target poisoning.

There is no plasma between the substrate and the target in the IBD process, as there
is in magnetron sputtering. This means that the IBD process may be utilized to deposit
on sensitive materials, lowering the risk of gas molecules in the final product. IBD is
highly suited for applications such as precision optics because of its controllability. The
readers interested in the detailed explanation of the IBD technique are highly encouraged
to read [82].

2.1.2. Chemical Deposition Techniques

In chemical deposition techniques, materials to be deposited are permitted to respond
to different chemicals, thereby permitting reactions to occur in a way that high-quality thin
films are successfully deposited. Chemical deposition techniques involve gas-phase and
liquid-phase deposition methods as discussed in the following section.
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A. Gas-phase

Chemical vapor deposition (CVD) and flame hydrolysis deposition (FHD) techniques
fall in the category of the gas-phase deposition method, which is discussed below:

A.1. CVD techniques
CVD is a deposition process that produces high-performance solid materials, usually

under a vacuum. In this technique, chemical reactions between organometallic or halide
compounds and other gases form the nonvolatile solid thin films that are deposited on
substrates. The key difference between this method and PVD is that the material deposition
on the substrate is multidirectional, while PVD is a line-of-site impingement. CVD is widely
used in microfabrication processes to deposit materials in numerous forms such as epitaxial,
amorphous, monocrystalline, and polycrystalline. Unlike PVD, a definite chemical reaction
between a mixture of gases and the bulk surface of the material occurs in CVD, allowing the
chemical decomposition of some of the components of the gas, establishing a solid coating
on the surface of the substrate. In addition, this enables the structures and properties
of the resulting products to be tuned [83], and several cutting-edge CVD systems and
their alternates, for instance, plasma-enhanced CVD (PECVD) [84] and metal-organic CVD
(MOCVD) [85], have been industrialized. Typically, high-vacuum working environments
are not needed for CVD, enabling a predominant technology for electronics, optoelectronics,
and biomedical applications. There are several reports on high-quality waveguide films
deposited via CVD or its alternates [86–88]. A recently published brief review on CVD [88]
should be studied for more details.

PECVD is a technique for depositing thin films of different materials on substrates at a
lower temperature than traditional CVD. It is a hybrid coating technique in which energetic
electrons trigger CVD processes (100–300 eV) inside the plasma rather than thermal energy,
as in traditional CVD techniques. It is a vacuum-based deposition process that works at
pressures as low as 0.1 Torr, permitting film deposition at substrate temperatures as low
as 350 ◦C. There are several publications on the PECVD technique for the deposition of
fine optical layers [89–91]. Since PECVD needs comparatively low substrate temperatures
and offers high deposition rates, the films can be deposited onto large-area substrates that
cannot survive the high temperatures needed by conventional CVD techniques. Thick
coating >10 µm can be deposited with a different thermal expansion coefficient without
stresses developing during the cooling [92].

MOCVD is a commonly used technique for a wide variety of materials, including
electronic, optoelectronic, piezoelectric, ferroelectric, and multiferroic. Precursors made
up of complex metal-organic ligands of metal ions are treated as a deposition source in
this method. As opposed to PVD methods, one of the major benefits of MOCVD is that the
precursors are held outside the deposition chamber and can thus be refilled continuously
during long deposition runs. Several precursor mixtures with varying amounts of dopants
can also be made quickly and effectively. Furthermore, superconductor film growth has
been achieved at high deposition rates of more than 0.5 µm/min. Additionally, numerous
mixtures of various precursors can be made with varying levels of dopants very quickly
and effectively. Likewise, high deposition rates of more than 0.5 µm/min have been
achieved in superconductor film growth [93]. MOCVD of other materials uses rates of
about 1 µm/h, so such high rates are rare. Since MOCVD precursors can be deposited
over a wide area at high deposition rates, high throughput is possible, which is crucial for
large-scale manufacturing.

A.2. Flame hydrolysis deposition (FHD)
An FHD process is widely used to depose the WG films since it can provide an

elevated deposition rate resulting in minimal optical losses and low-stress thin films [33].
In this deposition process, vapor precursors are added in a flame and experience chemical
reactions to create soot particles which are afterward thermophoretically collected to
form a porous layer on a substrate. To obtain a WG core, the porous soot deposited on
the substrate must form a dense glass. To prevent the mixing of the layers, sintering
temperatures are preferred such that the layers adjacent to the substrate have higher
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viscosities for the given temperatures. These temperatures are, sadly, often sufficient to
allow the dopants to volatilize on the deposit surfaces. Consequently, in the densified
glass layer, dopant concentration gradients and compositional inhomogeneities are formed,
producing substandard optical properties. Such issues can be reduced or eliminated if
the layers can be pre-sintered during deposition. In [32], pre-sintered WG glass films are
created, allowing straight WG losses to diminish from ~0.3 dB/cm to ~0.05 dB/cm. To
minimize layer mixing, sintering temperatures are adjusted so that the layers closest to
the substrate have greater viscosities for a specific temperature. The FHD method offers
the benefits of depositing glass films at high rates with minimal losses and producing
films with low strain. However, the sintering temperatures for these layers are still high
enough to induce the dopants to volatilize at the deposit’s surfaces, which is a concern. As
a result, in the densified glass layer, dopant concentration gradients and compositional
inhomogeneities form, resulting in poor optical characteristics. These issues might be
lessened or eliminated if the layers could be placed pre-sintered during laydown. Several
studies on the formation of low-loss planar WGs utilizing the FHD process have already
been reported [33,94–96].

B. Liquid-phase deposition

Liquid-phase deposition (LPD) is a distinctive soft solution process achieved by un-
complicated techniques. The two most widely used methods are discussed in this section:
spray pyrolysis and the sol-gel method.

B.1. Spray pyrolysis method
Spray pyrolysis is a method for preparing thin and thick films, ceramic coatings, and

powders currently being researched [97]. Unlike many other film deposition techniques, it
represents a very simple and relatively cost-effective processing method, especially con-
cerning equipment costs. In this method, a thin film is deposited by spraying a solution on
a heated surface where the constituents react to form a chemical compound [98]. Chemical
reactants are chosen so that products other than the compounds required are volatile at the
deposition temperature. It provides an incredibly simple technique to prepare films of any
composition. Researchers have used this method to develop high-quality thin films which
can be employed in different optical components [99–102]. Spray pyrolysis, on the other
hand, has the fatal flaw of forming porous and/or hollow-structured particles [103,104]. A
lot of research has gone into solving this problem [105,106]. The impact of salt solubility
and physical properties on the morphology of zirconia particles made from five different
salts was examined, finding that those made from precursor solutions with lower initial
relative solution saturations established solid ZrO2 particles, while others formed hollow
ones [107]. The inclusion of H2O2 in the ZrO2 particle preparation process aided solid
particle production by slowing the breakdown reaction and preventing the development
of the surface crust [108]. By introducing a stable colloidal solution into spray pyrolysis,
multicomponent oxide particles with a spherical and dense shape were formed, in which
the colloidal seed triggered the volume precipitation of droplets by serving as nucleation
seeds [109].

Spray pyrolysis does not necessitate the use of costly substrates or chemicals. Instead,
the process has been used for depositing thick films, porous films, and powder products.
Using this flexible approach, even multilayered films can be effortlessly prepared. In
the glass industry and solar cell production, spray pyrolysis has been used for many
decades [98]. An atomizer, precursor solution, substrate heater, and temperature controller
are all typical components of spray pyrolysis equipment. The schematic illustration of
the spray pyrolysis process is shown in Figure 3a [99]. For the readers interested in a
detailed study of this method, please consult [98]. The magnified image of the spray nozzle
spraying methanol containing a small amount of HCL is shown in Figure 3b [110]. In [99],
a homemade spray pyrolysis technique is used to prepare SnO2 thin films by utilizing
aqueous solutions of SnCl4·5H2O. The FESEM micrograph of SnO2 thin film is shown in
Figure 3c. The deposited thin film shows pores on the surface containing nanoparticles.
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B.2. Sol-gel method
The sol-gel method, which involves a suspension of colloidal particles, was invented

at the dawn of chemistry. The groundbreaking work of Ebelmen (a French chemist) in the
1800s is credited with establishing a sol-gel synthesis of silicon tetra isoamyl oxide from
silicon tetrachloride and isoamyl alcohol [111]. The latter study included the synthesis of
boron amyloxide, boron ethoxide, and boron methoxide using isoamyl alcohol, ethanol,
and methanol, respectively, with boron trichloride [111]. The sol-gel method is a wet
chemical method for creating thin-film coatings. Its key benefits are the overall low cost of
the procedure relative to more conventional processes such as CVD and PVD, as well as
the ability to adapt the composition and properties of thin films to adjust the requirements
of the anticipated application [112].

Thin-film coating methods must fulfill the requirements of complete control of film
thickness to be successfully used in integrated optics. As a result, thickness management is
critical for thin-film development processes in general, and sol-gel is no exception. It has
been indicated that the final thickness is primarily determined by coating speed, angle of
inclination, and sol concentration. Besides, sol viscosity, density, and liquid-vapor surface
tension can also influence the final heat-treated thickness [113]. According to [114], the
coating process must be carried out in a cleanroom environment to acquire sol-gel thin
films of high optical quality. In [115], a three-step sol-gel process was established to make
organic dye-doped thin films with customized porosity for applications in chemical sensing
and optoelectronics. Moreover, sol-gel-derived ceramic films are also presented in [116].
More significant works on the sol-gel method can be found here [117–126]. To understand
the popularity of the sol-gel and other traditional methods, we have plotted the number of
research papers published on the sol-gel method, CVD, and RF-sputtering from the year
1990 to 2021, as shown in Figure 4. The data has been taken from the Scopus database,
which is one of the authentic databases like Web of Science and Google Scholar. From 1990
to 2004, quite intensive research was conducted on CVD while the sol-gel method was
still growing. After 2004, the sol-gel method gained more recognition for the deposition of
high-quality thin films. The RF-sputtering method is also widely used in research but does
not seem to be as prevalent as the other two methods.

2.2. Refractive Index Modification Methods

The refractive index (RI) of a material is a number that describes how the light will
propagate through it. Light travels at different speeds in the materials having different RI,
which can be changed by modifying the density of the material. Here, we have discussed
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three major methods which can be used to locally modify the RI of the material for the
implementation of optical WGs.
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Figure 4. The number of publications related to CVD, RF-sputtering, and sol-gel method, indexed in
the Scopus database. The keywords “sol-gel dip coating method”, “Chemical vapor deposition” and
“RF-sputtering” were used during the search.

2.2.1. Ion Exchange Process

Ion exchange is a primeval method focused on replacing an ion existing in the glass
(typically Na+) with another ion (e.g., Ag+, K+, and Li+) typically provided by a salt
melt [127]. It dates to the first era as a technique for painting glass: it seems that Egyptians
previously utilized it in the sixth century to embellish plates and vessels with a brownish-
yellow color. The Moors used this method to dye the window glass of their palaces in Spain
a few centuries later. In the 1960s, the solidification of the glass surface by ion-exchange
transformed into a routine industrial procedure. Since the early 1970s, the appropriateness
of ion exchange technology for the development of optical WGs in glass has been known
as the groundbreaking works of Izawa and Nakagome [128] and Giallorenzi et al. [129]
demonstrated techniques to benefit from the upsurge in the RI of integrated optics created
by replacing the Na+ with another ion having higher electronic polarizability, for instance,
silver (Ag).

Glass is a well-known optical medium, and glass WGs offer several benefits, notably
inexpensive material costs, compliance with optical fibers, low propagation loss and bire-
fringence, and good stability and durability. Ion exchange as a fabrication method offers
convenience and cost savings because it does not require complex production equipment.
It supports batch processing making it adaptable to a wide range of applications. The
ion exchange method has also been shown to be suitable for the industrial manufacture
of WG components; however, unique fabrication criteria for modules that will be used
in the field must be met. After more than 10 years into ion-exchanged WGs, interest has
steadily evolved, and basic demonstrations of the practicability of single-mode devices and
the process’ adaptability have laid the groundwork for the technology’s prospects, such
as a serious commercial production possibility frontier. Findakly examined the state of
ion-exchanged glass WG available technology [130].

Diverse ion exchanges have been studied, such as Ag, K, Cs, Rb, and Tl ions. These
processes have been widely employed to manufacture graded-index optical planar and
channel WGs [131,132]. They exploited equally ion diffusion from molten salt baths and the
electro-migration of a metal film deposited onto the substrate. For some excellent review
papers on diverse processes and ion exchange models, please consult [133,134]. Several
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research groups fabricated ion-exchange WGs for different purposes such as all-optical-
switching and sensing [135–138]. To attain a symmetrical mode field and thus an optimum
fit to the modal field of input/output fibers, the burial channel WGs are of particular interest.
Simple thermal annealing after ion exchange can be beneficial, but the best outcomes
are gained through field-assisted processes [139]. For thermal diffusion and exchange
operations, laboratory equipment can be as basic as an oven with an enclosed chamber
for the salt melt (Figure 5a). The ability to precisely regulate the operating temperature
is critical for process repeatability. Machinery is slightly more complex for field-assisted
processes using molten salts, since electrical contacts must be formed to the anode and
cathode sides of the substrate, and these must be kept in electrical isolation (Figure 5b).
Many examples of process configurations can be found in the WG manufacturing literature;
a more extensive explanation of equipment for field-assisted ion exchange can be found
in [140].
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2.2.2. Ion Implantation

Ion implantation has shown to be an effective method for manufacturing optical WGs
in different substrates [141,142]. In the instance of light ions being inserted, the physical
density of the substrate is decreased by the damage instigated by nuclear collisions during
implantation. As a result, the region with a RI lower than the substrate can function as
an optical barrier that allows the light confinement in a thin layer between the surface of
the substrate and the optical barrier. However, this optical confinement can be somewhat
weak, and the alleged tunneling effect may occur, resulting in the energy leakage of the
propagating light. To diminish light leakage to the substrate through the optical barrier,
multiple-energy implants are frequently employed to extend the barrier width [143]. Heavy
ions, on the other hand, may upsurge the physical density and polarizability of the substrate,
which raises the RI of the implanted region bounded by the region with a lower RI, resulting
in a typical optical WG. The exact precision of implantation depth and the number of doped
ions employed are two main benefits of employing ion implantation. The implantation
depth is proportional to the acceleration voltage, which is generally 10–100 keV, while
the ion current may be used to measure the number of ions (called the dosage). The ion
implantation process is complicated, and the readers who seek in-depth knowledge on this
topic are referred to [144].

In [145], a new type of optical WG is fabricated by Ge ion implant in the silicon
layer on the SOI platform, which can be possibly removed by laser annealing. In [142],
the planar and ridge optical WGs have formed in rutile TiO2 crystal by He+ ion implant
merged with micro-fabrication technologies. Planar optical WGs are manufactured by
high-energy (2.8 MeV) He+-ion implantation with a dosage of 3 × 1016 ions/cm2 and
triple low-energy (450, 500, 550) keV He+—ion implantation at room temperature with all
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fluences of 2 × 1016 ions/cm2. Jiao et al. demonstrated the optical channel WG in x-cut
KTiOAsO4 crystal produced by photo masking and following direct O+ ion implantation
at an energy of 3.0 MeV and fluence of 5 × 1013 ions/cm2. The propagation losses of the
WG are 1.2 dB/cm, which displays satisfactory guiding characteristics [146]. Schematic
illustration of the channel WG manufacturing procedure via ion-implantation is shown in
Figure 6.
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2.2.3. Femtosecond-Laser Writing

Integrated optics can be more readily miniaturized and incorporated with micro-
electronics resulting in accurate and exceedingly integrated systems, contrary to many
optical fiber technologies. In 1996, femtosecond (fs) laser writing was first established and
had been thoroughly investigated ever since [147]. Due to its ability to swiftly and flexibly
direct the inscription of the complex structures with satisfactory accuracy, fs-laser WG
writing in the glass is an encouraging method for integrated optics [148]. Photolithography
and FIB micromachining, on the other hand, are slower. In addition, materials, including
glasses [149,150], crystals [19,151], and polymers [152,153], WG structures can now be
written on directly. Compared to the most popular techniques for the development of
WG, fs-laser writing has the advantages of quick production, versatility in WG design,
high three-dimensional accuracy, and easy integration of the resulting WG structures with
optical fiber E-beam lithography and PECVD.

It is interesting to develop integrated photonics WG sensors that do not involve any
etching or complex fabrication procedures. For that reason, the WG should be written near
the surface of the substrate. In most previous studies [154–156], the WGs were embedded
inside the glass substrate via fs-laser writing. However, there are still a few reported studies
on the laser-written WGs near the surface of the substrate [157–159]. This situation is mostly
due to the ablation of glass that happens near the surface while focusing. Writing near-
surface WGs is inspired by the desire to allow light to interact with the ambient medium
to create integrated sensors in glass chips. Fast fabrication, flexibility in WG design, high
spatial precision (i.e., limited by beam quality, wavelength, and polarization), and simple
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integration of the manufactured WGs with fiberized modules are all advantages of fs-laser
direct writing over the most common methods, EBL and PECVD.

The fs-laser writing scheme displayed in Figure 7a employed in [149] was constructed
with 1047 nm wavelength, 250 fs pulse duration, utilizing a 1.25 numerical aperture infinity-
corrected microscope lens with 100 × amplification and a working distance of 460 µm.
In [19], a direct low-repetition rate fs-pulse laser was employed for the realization of
optical WGs in KTP crystals. In addition, a successful demonstration of a Y-splitter design
was reported. The recorded micrograph of the Y-splitter design is shown in Figure 7b.
Moreover, the E-field confinement of TE and TM-polarized light is also shown in Figure 7c,d,
respectively. TM mode shows better confinement than TE mode [19]. Figure 7e illustrates
the optical microscope cross-section picture of borosilicate glass WG written with an
average fluence of 39.1 kJ/cm2 and a writing speed of 10 mm/s. The arrow suggested that
the guiding area is brighter in color [160]. Figure 7f depicts the output facet’s near-field
mode pattern while red laser coupling is used with the same WG. The transverse mode was
found to be almost circularly symmetric. The mode field width is approximately 2 µm [16].
The camera image of a red laser coupling with a microscope lens of fs written glass WG is
shown in Figure 7g [160].
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field pattern of the Y-splitter for TE-polarized light [19], (d) Near field pattern of the Y-splitter for
TM-polarized light [19], (e) Microscope view of the fs-written borosilicate glass WG [160], (f) Near
field profile of 650 nm red laser light of the same WG [160], (g) Camera view of the red laser beam
coupling of fs written WG [160].

3. Author’s Commentary on Silica-Titania Optical Platform Development via a Sol-gel
Dip-Coating Method

Due to their potential optical applications, silica, titania, and silica-titania materials
obtained by the sol-gel method have been comprehensively studied [35,161–173]. The
origins of their application for fabrication of silica-titania WG films dates back to the first
half of the 1980s. Herrmann and Wildman were the first who successfully achieved it.
However they did not synthetize sols, but applied commercially available liquicoat solu-
tions provided by MERCK [169]. These WG films deposited on glass substrates using the
dip-coating method have refractive n ~ 1.8 (λ = 612.5 µm) and became the material platform
for planar evanescent WG chemical/biochemical sensors developed in the research group
led by W. Lukosz [170–172,174]. The optical losses of those films were ~2.5 dB/cm for
λ = 632.8 µm [174]. Jiwei et al. reported fabrication of SiO2-TiO2 WG films deposited on
SiO2/Si (111) substrates using the spin-coating method [173]. Those films had maximum re-
fractive index of n ~ 1.87 (λ = 632.8 µm), but their optical losses were quite high ~7.4 dB/cm.
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It should be mentioned that such a high value of refractive index was achieved for anneal-
ing temperatures of 750 ◦C. One should expect that for such high temperatures the phase
transition from anatase to rutile occurs, rendering WG films much more loss-prone. There
are also several papers reporting fabrication and characterization of composite SiO2-TiO2
films, but their waveguiding properties were not examined [162,175–177].

The sol-gel based fabrication technology of SiO2-TiO2 is very difficult if the content
of titania is larger than 20% wt. That is because titania has the strong tendency to crys-
tallization and formation of separate phases, as a result of which, fabricated films are not
amorphous and have high optical losses [178]. Long term stability is another problem
which leads to rise of optical losses over time [179]. Our research group managed to over-
come these difficulties. We are able to fabricate low-loss, long-time stable SiO2-TiO2 WG
films having TiO2 content of 50% wt. [161]. Silica–titania WG layers with a SiO2-TiO2 = 1:1
molar ratio were formed by applying the dip-coating method on BK7 glass substrates and
then heated at the temperature of 500 ◦C. Tetraethyl orthosilicate Si (OC2H5)4 (TEOS) and
tetraethyl orthotitanate Ti (OC2H5)4 (TET) are the main reagents providing the precursors
of silica SiO2 and titania TiO2, respectively. The other reagents employed in the process
are water, ethanol, and hydrochloric acid (HCl), catalyzing the reactions of hydrolysis and
condensation. A schematic representation of the fabrication technique with photographs of
substrates and products of the reaction is shown in Figure 8.
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Figure 8. Graphical illustration of the sol-gel fabrication technique for SiO2-TiO2 WG layers [35].

All SiO2-TiO2 layers are fashioned to be single-mode WGs. In our previous work [180],
the technological technique utilized in the formation of the WG layers and the impact of the
extraction rate of the substrate on the thickness and RI were shown. The results associated
with the uniformity of the chemical composition of the WGs, surface morphology, and
optical transmission losses are presented in [161]. The sol-gel method is highly effective and
does not involve costly high-tech devices [181,182]. Furthermore, by utilizing the sol-gel
process, the RI of the WG layers can be precisely controlled, and the optical losses suffered
by these WGs are analogous to the WGs acquired from the LPCVD method [183].

Utilizing the dip-coating method, the layers of two-component sol SiO2-TiO2 were
deposited on glass substrates (n = 1.509), enabling the precise control of film thickness with
the fine-tuning of the substrate extraction speed from the sol [116]. The schematic diagram
of the dip-coating method is revealed in Figure 9a. The impact of the sample extraction
speed (v) on the thickness (d) and the refractive index (n) of films is shown in Figure 9b.
Afterward, the sample was annealed at 500 ◦C for 60 min. The experimental points are
marked with open squares and open triangles [180].
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Figure 9. (a) Graphical illustration of a dip-coating method for the deposition of SiO2-TiO2 WG
layers [35], (b) Dependence of the sample extraction speed from the sol on the WG film thickness and
the RI, respectively [180].

In our previous works [183–185], rib WGs and directional couplers (DCs) were manu-
factured using conventional optical photolithography and wet chemical etching in SiO2-
TiO2 WG layers. With the process shown in Figure 10, the DCs were manufactured. The WG
layers designed in the sol-gel method were spin-coated with a positive Shipley S1813SP15
photoresist (PR). Soft baking is done before the PR is exposed to UV light through the
positive Cr-mask. The development process provides the selective removal of the PR from
the SiO2–TiO2 layer, which facilitates the formation of rib structure during chemical etching.
DCs were formed utilizing selective etching of sol-gel derived silica-titania WG films in the
solution of ammonia fluoride. The projected WG rib height can be controlled by observing
the etching time.
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Figure 10. Fabrication steps of DC as mentioned in [184].

In Figure 11a, a graphical illustration of the DC structure is indicated. Shallow-etched
single-mode WG structures (T ≈ 180 nm, h ≈ 5 nm, W = 2 µm) were obtained, having a
single-mode propagation range defined by the single-mode propagation condition [184].
The atomic force microscopy (AFM) of the rib WG is shown in Figure 11b. The near field
images of the outputs of DCs, as well as optical power distributions corresponding to them,
are also shown. Four different cases were explored where the light distribution in DC can
be controlled by the WG separation (d) and interaction length (L). Consequently, a different
proportion of the output power, such as 1:0.27, 1:1, 0.42:1, and 0.93:1, is presented at the
outputs of distinct DC as shown in Figure 11c–f [184].
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Figure 11. (a) Cross-sectional view of the directional coupler based on SiO2-TiO2 platform, (b) Atomic
force microscopy of the rib WG. Adapted with permission from [184]. Near-field image of a 1 × 2 DC
and related distributed optical power when the coupling length (L), (c) 1.5 mm, (d) 3.0 mm, (e) 3.0 mm,
(f) 4.5 mm. Adapted with permission from [184].

4. Future Goals and Challenges

The research on the silica-titania platform demonstrates extraordinary attributes such
as low-cost WG technology development, low transmission loss, and chemical resistance to
oxidation [186]. This opens up the doors for this technology to compete with the existing
mainstream integrated photonics platforms, especially in low-volume niche applications
such as sensing [187]. The silica-titania PIC technology was designed from the start to be a
low-cost option for possible application by SMEs or less-developed research organizations.
In comparison to mainstream technology, the proposed innovation can save money on three
fundamental steps: (a) WG film procurement (using gaseous phase film deposition, such as
LPCVD in the case of SiN and InP, or ordering SOI wafers), (b) lithography (electron-beam
or deep UV lithography), and (c) plasma etching (RIE or ICP). Expensive equipment is
required for each of these stages. The purpose of silica-titania technology is to replace
these procedures with a two-step technique that includes the acquisition of a sol-gel WG
film and direct nanoimprinting of the WG pattern. Both procedures are significantly less
expensive than the previously indicated three-step procedure, making the suggested SiO2-
TiO2 technology an economically appealing option for SMEs. In Table 1, the features of
the three major WG platforms are compared to the SiO2-TiO2 WG layer technology, which
shows the neck-and-neck rivalry among them. When this technology matures, we believe
that the SiO2-TiO2 platform can conquer the existing expensive and difficult-to-handle WG
technologies in the longer run.

Table 1. Comparison of developed SiO2-TiO2 integrated photonics technology with InP, SOI and SiN
technologies [35].

WG Layer InP SOI SiN SiO2-TiO2

RI 3.4 3.42 2.0 1.81–2.2

Spectral range [µm] NIR 1.1–6.5 VIS-NIR VIS-NIR

Propagation loss (dB/cm) >0.4 <0.1 <0.1 ~0.1

Fabrication method of WG films LP MOCVD Wafer bonding LPCVD Sol-gel

Implementation costs High High High Low

Technological maturity High High High Increasing (under
development)

Cost-efficiency Moderate Very high Moderate Very high

Available integration scale Very high Very high Moderate Moderate

Tailoring of the RI No No Yes (only for SiOxNx) Yes (1.2–2.2)
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Table 1. Cont.

WG Layer InP SOI SiN SiO2-TiO2

Applications Telecommunication Telecommunication,
MEMS, sensors

Telecommunication,
MEMS, sensors

Sensors, special
applications

Chemical resistance Low (tendency
to oxidation)

Low (tendency
to oxidation)

Moderate (tendency
to oxidation) Very high

5. Conclusions

Herein, we have reviewed the most desirable and widely used thin-film fabrication
techniques along with the advantages/disadvantages associated with each of them. In
a few decades, thin-film technology has evolved, offering several methods based on the
physical, chemical, and local modification of the RI of the material for the implementation
of integrated photonic devices. There is always a need to find cost-effective and easy-
to-implement solutions to deposit high-quality thin films over the substrate. As a result,
the technology that combines the sol-gel method and dip-coating technique has emerged
as a viable solution for the deposition of a high-quality and low-loss thin film in a less
complicated way.

Many production methods favor CVD because it is not limited to line-of-sight deposi-
tion, which is a common property of sputtering, evaporation, and other PVD methods. As
a result, CVD has a lot of throwing power. PVD offers various benefits, including the ability
to generate coatings with better qualities than the substrate material, the ability to use all
sorts of inorganic and organic materials, and the ability to employ all types of inorganic and
organic materials. When compared to other procedures like electroplating, the technique is
more ecologically friendly. However, its major limitations are as follows: The PVD method
necessitates the use of specialized equipment at a considerable cost. PVD coatings have
a slower manufacturing rate than other coating deposition methods. In substrates with
complicated geometries, the PVD method is restricted.

Fs-laser inscription has long been established as a significant instrument for engineer-
ing a wide range of materials for a variety of purposes. WGs with a variety of designs have
been created using fs-laser writing to effectively modify the refractive indices of dielectric
crystals. The waveguiding qualities are determined not only by the laser writing settings,
but also by the composition of the crystal. Because of the unique properties of fs-laser pulses,
technological advances in the field of fs-laser processing have been developed, specifically,
in the manufacture of two- and three-dimensional permanent structures within transparent
optical materials for use as WGs, photonic crystals, diffraction gratings, beam splitters, and
other essential elements in the disciplines of optics, photonics, and communications.

Spray pyrolysis has several advantages, including an open atmosphere process, the
ability to monitor the deposition protocol, inexpensive and continuous operation, the
absence of high-quality regents as precursors, a high rate of production, manageable crystal
size with large surface area, and compositional uniformity of the products.

Ion-exchanged WG technology, according to the authors, will seek to function as an
essential platform for testing new ideas and showing novel device designs due to its simple
design. Ion-exchanged splitting devices for fiber optic communications may play a key role
in commercial applications as markets grow. The technology is also expected to remain
a popular choice for several “niche” applications, including WG lasers and a wide range
of sensors.

The sol-gel approach has several advantages, including ease of fabrication, good
film homogeneity, the ability to cover surfaces of any size and over huge regions, and a
low processing temperature. Silica-titania is an interesting and evolving platform for the
implementation of active and passive integrated photonic elements which can be employed
in optical interconnects and sensing applications. This WG system has not been widely
explored as a silicon-on-insulator platform. There is still much room for exploring its
physical, chemical, and optical properties to make it an easily accessible platform that
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can be employed in several interesting applications. This review also presents our recent
accomplishments in the silica-titania platform developed via a sol-gel dip-coating method.
We believe that our paper will be valuable for researchers working in thin-films technology,
especially silica-titania sol-gel dip-coating developed optical elements.
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Waveguide = WG; Flame hydrolysis deposition = FHD; Chemical vapor deposition = CVD; Silica-
titania = SiO2-TiO2; Physical vapor deposition = PVD; Electron beam = E-beam; Vapor-liquid-
solid = VLS; Cathodic arc deposition = CAD; Argon = Ar; Ion beam deposition = IBD; Focus
ion beam = FIB; Ion beam assisted deposition = IBAD; Metal-organic chemical vapor deposi-
tion = MOCVD; Plasma enhanced CVD = PECVD; Liquid phase deposition = LPD; Refractive
index = RI; Atomic force microscopy = AFM; Silicon-on-insulator = SOI; Silicon nitride = SiN; Indium
phosphide = InP.
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Karasiński, P. Efficient, low-cost optical coupling mechanism for TiO2-SiO2 sol-gel derived slab waveguide surface grating
coupler sensors. Opt. Appl. 2020, 50, 539–549. [CrossRef]

http://doi.org/10.1364/OE.17.005118
http://www.ncbi.nlm.nih.gov/pubmed/19333275
http://doi.org/10.1080/01468030.2019.1645388
http://doi.org/10.3389/fphy.2015.00037
http://doi.org/10.1109/TMTT.1973.1128129
http://doi.org/10.1145/122431.122433
http://doi.org/10.18287/2412-6179-2019-43-6-1079-1083
http://doi.org/10.1016/0924-4247(90)87093-X
http://doi.org/10.1080/09500340.2019.1609613
http://doi.org/10.1109/piers.2016.7734964
http://doi.org/10.4302/plp.v12i3.1044
http://doi.org/10.1109/JLT.2018.2890718
http://doi.org/10.1016/j.optlastec.2020.106863
http://doi.org/10.37190/oa200403


Materials 2022, 15, 4591 19 of 25
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