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Abstract

Background: Progressive lung disease accounts for the majority of morbidity and mortality observed in cystic fibrosis (CF).
Beyond secondhand smoke exposure and socio-economic status, the effect of specific environmental factors on CF lung
function is largely unknown.

Methods: Multivariate regression was used to assess correlation between specific environmental factors, the presence of
pulmonary pathogens, and variation in lung function using subjects enrolled in the U.S. CF Twin and Sibling Study (CFTSS:
n = 1378). Significant associations were tested for replication in the U.S. CF Foundation Patient Registry (CFF: n = 16439), the
Australian CF Data Registry (ACFDR: n = 1801), and prospectively ascertained subjects from Australia/New Zealand (ACFBAL:
n = 167).

Results: In CFTSS subjects, the presence of Pseudomonas aeruginosa (OR = 1.06 per uF; p,0.001) was associated with
warmer annual ambient temperatures. This finding was independently replicated in the CFF (1.02; p,0.001), ACFDR (1.05;
p = 0.002), and ACFBAL (1.09; p = 0.003) subjects. Warmer temperatures (20.34 points per uF; p = 0.005) and public insurance
(26.43 points; p,0.001) were associated with lower lung function in the CFTSS subjects. These findings were replicated in
the CFF subjects (temperature: 20.31; p,0.001; insurance: 29.11; p,0.001) and similar in the ACFDR subjects (temperature:
20.23; p = 0.057). The association between temperature and lung function was minimally influenced by P. aeruginosa.
Similarly, the association between temperature and P. aeruginosa was largely independent of lung function.

Conclusions: Ambient temperature is associated with prevalence of P. aeruginosa and lung function in four independent
samples of CF patients from two continents.
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Introduction

Cystic fibrosis (CF) is an autosomal recessive disorder caused by

mutations in the CFTR gene. Progressive obstructive lung disease

and recurrent respiratory infections account for the majority of

morbidity and mortality associated with CF. Significant variation

in CF lung disease exists, even among individuals with identical

mutations [1–3], and approximately half of this variation is

attributable to environmental and/or stochastic (random) factors

[4,5]. To improve outcomes for this life-limiting disorder, it is

important to identify specific environmental factors that amelio-

rate or exacerbate disease. Prior CF studies have demonstrated

associations between lung function and local environmental

factors, including secondhand smoke exposure [6–10], air

pollution [11], household income [12–14], maternal education

[13], and insurance status [13,15–17]. However, with the

exception of air pollution [11], there has been limited work

examining environmental factors operating on a geographic scale,

such as climate.

Using data from the U.S. CF Twin and Sibling Study, we

sought to determine (i) whether selected geographic factors (factors

mapped using geospatial techniques) were associated with the

presence of significant respiratory pathogens in CF, (ii) whether

geographic factors were associated with variation in lung function,

and (iii) the relative impact of geographic factors compared to

other environmental factors (demographic or household) in

multivariate analyses. We attempted to replicate key findings in

subjects from two national CF patient registries (United States and
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Australia). The role of infection was also examined in a prospective

sample of CF patients from Australia and New Zealand.

Methods

Ethics Statement
Written informed consent was obtained from CFTSS subjects.

This study, including the CFF, ACFDR, and ACFBAL data

downloads, were specifically approved by the Johns Hopkins

University Institutional Review Board (NA_00035659, NA_

00019677). Participants: U.S. CF Twin and Sibling Study
(CFTSS): Subjects were recruited from CF centers based on

having a twin or sibling also with CF (n = 1658 in 817 families)

[18]. Data were collected between 10/27/00 and 9/25/09 with

data supplementation from the U.S. CF Foundation Patient

Registry through 12/31/08. U.S. CF Foundation Patient
Registry (CFF): Anonymized data from the calendar year 2007

was provided (n = 24,799). Australian Cystic Fibrosis Data
Registry (ACFDR): Anonymized data from 1998–2008 was

provided (n = 3789). Australian Cystic Fibrosis Bronchoal-
veolar Lavage Trial (ACFBAL): Anonymized data was

provided for 168 infants diagnosed with CF in Australia and

New Zealand between 6/10/99 and 1/18/05 who were prospec-

tively followed for microbial acquisition until 5 years of age.

Subjects were excluded if lung function (CFTSS, CFF, ACFDR),

respiratory culture, or residential postal/zip code data were not

available, or if actively smoking (CFTSS, CFF)(Figures S1 and S2).

CFTSS subjects enrolled in the CFF Patient Registry (n = 1435)

were excluded from the CFF sample.

Household Variables
Secondhand smoke exposure was defined as any reported home

exposure (Table 1). Maternal education was characterized as 1 = less

than a high school education; 2 = high school graduate; 3 = some

college education; 4 = college graduate. Household income was

estimated using zip code and 2000 U.S. Census data. Insurance

status was determined from the most recent year of data. Household

density was the number of persons residing within the household.

Household data were not available for Australian subjects.

Geographic Variables
U.S. subjects were mapped to the center of their most recent

known residential zip code (finest resolution available), to derive

measures for humidity, temperature, air pollution (Fine particulate

matter: PM2.5), elevation, and distance to the CF care center of

record using ArcGIS 9.3 (ESRI; Redlands, CA) and ERDAS

Imagine 9.3 (ERDAS; Atlanta, GA). Source data were selected on

the basis the time period available that matched the clinical data

and included 1961–1990 mean monthly and annual relative

humidity and temperatures (The Climate Source; Corvallis, OR;

2 km resolution), 2006 PM2.5 measures (U.S. Environmental

Protection Agency), elevations (U.S. Geological Survey), and

population densities (2000 U.S. Census). PM2.5 measures were

derived for only subjects living within 30 miles of a pollution

monitor based on previous work by Goss et al. [11]. Australian

subjects were mapped to the center of their residential postal code

to derive measures for mean annual temperature using System for

Automated Geoscientific Analyses (SAGA User Group Associa-

tion; Hamburg, Germany), GDAL libraries and Python bindings

(Open Source Geospatial Foundation; Vancouver, BC), and

Shapely v1.2 (Python Software Foundation; Wolfeboro Falls,

NH). Source data included 1961–1990 and 1971–2000 mean

annual temperatures (Australian Bureau of Meteorology and the

[New Zealand] National Climate Database, respectively).

Outcome Variables
Raw FEV1 (liters) measurements were converted into CF-specific

percentiles [19], excluding measurements obtained before 6 years of

age and after lung transplantation. Lung function was defined as the

best percentile in the most recent year of data. The higher lung

function measured in the CFTSS subjects vs. other subjects likely

reflects the younger age of CFTSS subjects (Table 1; Table S1). The

lower lung function observed in the ACFDR subjects may represent

the limitation of applying of a U.S.-based phenotype to an Australian

population. Using all available respiratory culture data, subjects were

considered to be positive for an organism (Pseudomonas aeruginosa,

mucoid P. aeruginosa, or Burkholderia cepacia complex) if they had any

cultures positive for that organism. The higher prevalence of

infectious organisms in the CFTSS and ACFDR subjects vs. the

CFF subjects reflects the multi-year culture data compared to the

single year data, respectively (Table 1). Age of acquisition for an

organism was defined as the date of the first positive culture following

at least one prior negative culture (CFTSS, ACFBAL) [20]. Means of

ascertainment likely account for age of acquisition differences

between the retrospective CFTSS and prospective ACFBAL samples.

Data Analysis
Regressions clustered by family (CFTSS) or by CF care center

(CFF), ANOVA, chi square, and student’s t-tests were performed

using Stata 10 (StataCorp LP; College Station, TX). Center-level

data were not available for Australian subjects. CFTSS subjects

served as the primary population being the best characterized of the

study populations. The CFTSS preliminary multivariate (logistic for

presence of pathogens; linear for lung function) regression models

included all predictor variables significant in univariate modeling.

The final CFTSS models were generated by dropping non-

significant (p$0.05) predictors from the preliminary models in a

stepwise manner. The final CFTSS models were used in replication

regressions for the other samples. For U.S. and Australian subjects,

temperature quartiles were derived from all CFTSS subjects

(n = 1557) and ACFDR subjects (n = 3635) with temperature data,

respectively. Kaplan-Meier plots were constructed for the age of

acquisition for P. aeruginosa by temperature quartiles for the CFTSS

and ACFBAL subjects. The effect of mediation by infection on lung

function was estimated by dividing the difference of regression

coefficients of temperature adjusted and unadjusted for the mediator

by coefficient of temperature unadjusted for the mediator [21,22].

The mediation effect by lung function on infection was estimated

similarly using the logarithms of the temperature odds ratios.

Results

Mean Annual Temperature is Associated with Prevalence
of and Age at P. Aeruginosa Infection

Given the importance of bacterial infection in CF lung function

decline [23,24], we tested whether selected environmental factors

were associated with specific organisms using multivariate logistic

regression. Among CFTSS subjects, ambient temperature (Table 2:

OR = 1.06 per uF; p,0.001) was associated with the prevalence of

P. aeruginosa. CFTR genotype (based on the number of the most

common mutation (F508del) present, OR = 2.05 per F508del

mutation; p,0.001), age at the last respiratory culture (OR =

1.19 per year; p,0.001), and age at diagnosis (OR = 0.84 per year;

p,0.001) were also associated with P. aeruginosa prevalence, as

previously reported (Complete regression results in Table S2)

[3,20,25]. In contrast to previous studies [26,27], none of the

household factors tested were associated with the presence of P.

aeruginosa. The observed association was not accounted for by

increased culturing frequency in warmer regions, as a higher
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Table 1. Study Sample Demographics.

Variable (Mean ± SD) [Range] CFTSS (n = 1378) CFF (n = 16439) ACFDR (n = 1801) ACFBAL (n = 167)

Demographics Sex (% Female) 48.7 47.9 46.9 47.3

CFTR Genotype (% F508del homozygote)1 58.6 (n = 1371) 50.0 (n = 14733) 51.2 (n = 1646) 66.5

Race/Ethnicity (% Non-Hispanic White only)2 90.9 88.8 (n = 16406) - 95.2

Age at Diagnosis (yrs)3 2.365.4 [0 – 52.0] 3.868.2 [0 – 73.7] 2.066.5 [0 – 67.3]
(n = 1578)

0.160.1 [0 – 0.4]

Age at time of lung function test (yrs)4 17.468.9 [6.0 – 63.2] 20.5611.4 [6.0 – 74.0] 20.2610.6 [6.0 – 76.1] -

Age at time of last respiratory culture (yrs)5 17.469.0 [5.3 – 63.9] 20.8611.4 [5.7 – 74.2] 19.3610.4 [0 – 76.0] 4.960.8 [0.6 – 6.3]

Household Factors Secondhand Smoke (% Exposed)6 33.8 (n = 1313) 29.4 (n = 8477) - -

Maternal Education (Scale: 1–4)7 3.06.0 (n = 1296) 3.061.0 (n = 6874) - -

Income (log $)7 4.6760.16
[4.15 – 5.19]

4.6560.15
[3.87 – 5.26]
(n = 15977)

- -

Insurance Status (%)7

No Insurance
Any state MA
Other

2.8
39.4
57.9
(n = 1357)

1.2
39.7
59.1
(n = 16258)

- -

Household Density (persons/household)7 4.261.7
[1–12]
(n = 1275)

3.461.4
[1–12]
(n = 11847)

- -

Geographic Factors
(by residential zip
code)

PM2.5 level (mg/m3) 11.962.5
[4.8 – 22.4]
(n = 677)

11.962.6
[3.4 – 22.4]
(n = 7698)

- -

Elevation (log m)7 2.1360.63
[0 – 3.30]
(n = 1372)

2.0860.67
[0 – 3.51]
(n = 15532)

- -

Relative Humidity (%)7 67.665.6
[43.5 – 85]
(n = 1372)

66.766.1
[34 – 83]
(n = 15532)

- -

Temperature (uF)7,8 53.667.1
[37.8 – 75.0]
(n = 1372)

55.367.8
[34.3 – 77.5]
(n = 15532)

63.364.8
[46.1 – 80.8]
(n = 1791)

62.965.9
[49.8 – 81.2]
(n = 166)

Distance from Care (log Km)7 1.6860.60
[21 – 3.61]
(n = 1377)

1.6360.60
[21 – 3.77]
(n = 16121)

- -

Population Density
(log persons/km2)

2.3160.78
[20.45 – 4.53]
(n = 1364)

2.3560.80
[21.15 – 4.70]
(n = 15973)4

- -

Outcomes P. aeruginosa (% Positive)9 87.9 60.5 80.3 60.5

First P. aeruginosa Positive Culture (yrs)10 6.766.3
[0.2 – 49.9]
(n = 919)

- - 2.361.4
[0.1 – 5.3]
(n = 101)

Mucoid P. aeruginosa (% Positive)7 61.3 42.8 - -

First Mucoid P. aeruginosa Positive
Culture (yrs)

11.367.9
[0.3 – 53.8]
(n = 797)

- - -

B. cepacia complex (% Positive)11 7.7 3.4 6.8 -

First B. cepacia complex Positive Culture (yrs) 13.868.4
[1.0 – 43.9]
(n = )

- - -

Lung Function (CF-specific FEV1 Percentile)12 69.3626.3 65.3626.4 62.8624.6 -

1The ACFBAL sample has a higher frequency of F508del homozygotes than other samples (ANOVA p,0.001). 2The CFF sample has a lower proportion of Non-Hispanic
Whites than other samples (ANOVA p = 0.002). 3CFF and ACFBAL samples diagnosed at older and younger ages, respectively, than other samples (ANOVA p,0.001).
4The CFTSS sample has a younger age of pulmonary function testing than other samples (ANOVA p,0.001). 5All samples differ from each other by age of last
respiratory culture (ANOVA p,0.001). 6Definition of secondhand smoke for the CFTSS sample (ever having been exposed) differs from the CFF sample definition
(exposure within the past year (2007)). 7CFTSS and CFF samples are statistically different (T test or chi square p,0.01). 8Mean temperatures of ACFDR and ACFBAL
samples are not statistically different (T test p = 0.34). 9The ACFDR sample has a higher prevalence of P. aeruginosa than the CFF and ACFBAL samples, and the CFTSS
sample has a higher prevalence than all other samples (ANOVA p,0.001). 10The ACFBAL sample has an earlier age of acquisition than the CFTSS sample (ANOVA
p,0.001). 11The CFF sample has a lower prevalence of B. cepacia complex than other samples (ANOVA p,0.001). 12All samples differ by mean lung function (ANOVA
p,0.001).

doi:10.1371/journal.pone.0027784.t001
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frequency of cultures was associated with colder temperatures

(Regression coefficient p,0.001; n = 1370). Also, the association

was not accounted for by a temperature-humidity interaction

(Interaction term p = 0.45).

The association of warmer temperatures and an increased P.

aeruginosa prevalence was also seen in the CFF subjects (OR = 1.02;

p,0.001). As both the CFTSS and CFF subjects are U.S.-based,

this association could be subject to regional biases in socio-economic

status, culture, or clinical care patterns. Australian subjects are ideal

for replication of geographic modifiers of health outcomes in CF as,

like the U.S., the continent has a European immigration-derived CF

population and a wide range of climatic conditions, including

temperature. The association of warmer temperatures and the

prevalence of P. aeruginosa was replicated in both the ACFDR (OR:

1.05; p = 0.002) and ACFBAL subjects (OR: 1.09; p = 0.003). Only

older age was associated with the presence of mucoid P. aeruginosa

(Table S3: CFTSS, CFF) or B. cepacia complex (Table S4: CFTSS,

CFF, ACFDR), which corresponds to age-specific rates of

prevalence reported in CF [24].

To examine whether the relationship between temperature and P.

aeruginosa was non-linear (as regression analysis assumes linearity), we

examined the prevalence of P. aeruginosa by temperature quartiles

(Table S5). In all four samples of CF subjects, the prevalence of P.

aeruginosa was higher in warmer temperature quartiles (p val-

ues,0.001–0.005) paralleling the results of the regression analysis.

In addition, age at acquisition of P. aeruginosa in the retrospective

CFTSS and prospective ACFBAL samples were 15 and 9 months

earlier, respectively, in the warmest temperature quartile compared

to the coldest (CFTSS p = 0.04; Figure S3: log rank test p = 0.006;

ACFBAL p = 0.04; log rank test p = 0.001). There were no replicated

associations between temperature quartile and prevalence or age of

acquisition of mucoid P. aeruginosa or B. cepacia complex.

Mean Annual Temperature is Associated with Lung
Function

We examined the role of environmental factors on lung function

among CFTSS subjects and found that warmer temperatures

(20.34 per uF; p = 0.005) were associated with lower lung function

(Table 3; complete regression results in Table S1). Although the

lung function measure used does account for age [19], older age

was associated with lower lung function (20.40 per year;

p,0.001), likely due to cohort or survival effect. Public insurance

(vs. private insurance) was also associated with lower lung function

(26.43; p,0.001), consistent with prior studies [13,15,16].

Temperature also was associated with lung function in the CFF

subjects (20.31; p,0.001), with a similar magnitude to the CFTSS

(20.34). This corresponds to ,3 percentile point drop in FEV1 for

each 10uF increase in mean annual temperature. In addition,

warmer temperatures tended to be associated with lower lung

function in the ACFDR subjects (20.23; p = 0.057). Mean annual

temperatures in Australia are higher than in the U.S., which may

influence the magnitude of the coefficient and its significance. The

lower lung function observed in the ACFDR subjects could be a

function of overall warmer temperatures in Australia. To assess

whether this association was independent of CFTR genotype, we

examined white patients in the largest sample of CF subjects (CFF)

who had identical CFTR genotypes (F508del homozygotes) and

found that warmer temperatures remained associated with lower

lung function with a similar co-efficient (20.35; n = 6367;

p,0.001) to that from the entire CFF sample (20.31).

Seasonal Difference in Temperature is also associated
with Lung Function

To examine the possibility of seasonal effects, lung function data in

both January and July was examined in both U.S. samples of subjects

(Table 4). In the larger CFF sample, lung function was higher in

January than in July (n = 2145; p,0.001) and there was a trend

towards higher lung function in January in all four quartiles. Thus,

there is a suggestion that individual patients have higher lung function

in January than in July, which may reflect temperature differences

between the two seasons. Of note, lung function was higher in colder

temperature quartiles in both CFTSS and CFF subjects, regardless of

whether sampled in January or July, suggesting the predominance of

average annual temperatures over seasonal fluctuations.

Temperature may act on Lung Function and P.
aeruginosa through Independent Mechanisms

Having observed temperature to be associated with lung function

and P. aeruginosa, we sought to determine whether temperature acts

through the same or different mechanisms on these outcomes. One

pathway might be that temperature affects infection rates, which in

turn alters lung function. To test this, we included the presence of P.

aeruginosa as a predictor of lung function in a mediation analysis, and

found that the association between temperature and lung function

decreased (Table S6: CFTSS: 20.34 to 20.29 per uF; CFF: 20.31

to 20.29; ACFDR: 20.23 to 20.18). Using these regression co-

efficients, infection with P. aeruginosa is estimated to account for 15%

of the association between temperature and lung function among

CFTSS subjects (e.g., (20.34 – 20.29)/ 20.34), 6% among CFF

subjects and 22% among ACFDR subjects. The alternate pathway

is that temperature affects lung function, which in turn alters the

acquisition of infection. For this pathway, lung function is estimated

to account for 7% of the association between temperature and P.

aeruginosa among CFTSS subjects (e.g., (ln(1.057456)-ln(1.053488))/

ln(1.057456)), 20% among CFF subjects, and 6% among ACFDR

subjects (Table S7). Thus, there is limited overlap between the

Table 2. Annual Ambient Temperature is a Predictor of P. aeruginosa Infection.1

Study CFTSS CFF ACFDR ACFBAL

Study design (Country)
Retrospective
(U.S.)

Retrospective
(U.S.)

Retrospective
(Australia)

Prospective
(Australia)

N 1366 13956 1474 166

Adjusted Odds Ratio for Temperature (per 6F) [95%CI] 1.06
[1.03, 1.09]

1.02
[1.01, 1.02]

1.05
[1.02, 1.08]

1.09
[1.03, 1.16]

Odds Ratio p Value ,0.001 ,0.001 0.002 0.003

1Complete results from multivariable regression analyses, including adjustments, can be found in Table S2. CFTR genotype, age at the time of the last respiratory culture,
and age at diagnosis were all significant predictors of P. aeruginosa infection for the CFTSS, CFF, and ACFDR samples, but not the ACFBAL sample.

doi:10.1371/journal.pone.0027784.t002
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effects of temperature on the two clinical outcomes, suggesting that

mechanisms through which temperature may act on lung function

vs. on P. aeruginosa infection are largely different.

Discussion

Ambient temperature has been demonstrated to affect the

prevalence of both infectious and non-infectious diseases [28]. Our

analysis demonstrates that CF patients living in areas with warmer

annual temperatures have a higher prevalence of and an earlier age

of acquisition of P. aeruginosa. Given a constant temperature (37uC)

within the airways, the association of P. aeruginosa and temperature is

likely mediated outside the host. Our findings may be due to

increased prevalence of P. aeruginosa in the environment secondary to

more favorable conditions for the organism in warmer climates.

Regional P. aeruginosa biodiversity may also play a role as genotypes

of soil isolates of P. aeruginosa differ by geographic distance [29].

Genetic differences that alter the adhesion or biofilm properties of P.

aeruginosa may interact with local environmental features to affect the

likelihood of acquisition by a CF patient [30–32]. Indeed, higher

ambient temperatures (30uC vs. 15uC) have been shown to alter the

capacity of P. aeruginosa to adhere to surfaces [33]. It is possible that

regional differences in neonatal screening, and P. aeruginosa detection

and prevention may lead to differences in the longitudinal

development of infection [27,34].

Regarding lung function, we estimate that patients residing in

the warmest regions in the U.S. would have CF-specific lung

function 10 percentile points lower than if they had resided in the

coldest regions of the U.S. where mean temperatures are ,30

degrees (uF) lower. Translated to more clinically familiar measures

(NHANES FEV1 percentages) [35], a hypothetical 18 year old

white male with CF (Height: 175cm) with an FEV1 of 73.5%

percent living in a cold climate would be expected to have an

FEV1 of 66.1% had he resided in a 30 degree (uF) warmer climate.

Furthermore, lung function is likely associated with season, as

patients tend to have higher lung function in the colder month of

Table 3. Annual Ambient Temperature and Insurance Status are Predictors of Lung Function (CF-specific FEV1).1

Study CFTSS CFF ACFDR

Subjects All Available All Available
White, F508del
homozygotes All Available

n 1313 15174 6367 1791

Adjusted Co-efficient for Temperature (per 6F)
[95%CI]

20.34
[20.57, 20.10]

20.31
[20.41, 20.21]

20.35
[20.46, 20.23]

20.23
[20.47, 0.01]

Temperature Co-efficient p Value 0.005 ,0.001 ,0.001 0.057

Adjusted Co-efficient for Insurance Status
(0 = Private, 1 = Public) [95%CI]

26.43
[29.68, 23.19]

29.11
[210.44, 27.79]

28.26
[29.90, 26.62]

Not Applicable

Insurance Co-efficient p Value ,0.001 ,0.001 ,0.001 -

1Complete results from multivariable regression analyses, including adjustments, can be found in Table S1. Age at the time of pulmonary function testing was a
significant predictor of lung function for the CFTSS and CFF samples, but not the ACFDR sample.

doi:10.1371/journal.pone.0027784.t003

Table 4. Comparison of Lung Function (CF-specific FEV1) by Temperature Quartile and Seasonal Extremes.

Variable
Temperature Quartiles based on Entire CFTSS Population
(n = 1557)

Study
Sample Mean Annual Temperature (6F) All Quartiles , 49.2 49.2 – 52.0 52.1 – 58.1 .58.1

FEV1

ANOVA
p value

CFTSS Quartile n 1043 269 248 268 258

January Mean CF-specific FEV1

[Temperature (uF)]
59.2628.1
[31.3611.4]

62.7626.9
[19.665.4]

57.8629.6
[27.263.9]

60.1627.5
[31.664.1]

55.8628.3
[47.267.1]

0.033

July Mean CF-specific FEV1

[Temperature (uF)]
58.9628.0
[74.664.6]

62.4627.0
[70.462.2]

57.8628.8
[72.662.7]

60.0627.9
[76.162.7]

55.2627.9
[79.464.2]

0.023

FEV1 T test p value 0.64 0.76 0.99 0.94 0.57

Mean Annual Temperature (6F) All Quartiles , 49.2 49.2 – 52.0 52.1 – 58.1 .58.1

FEV1

ANOVA
p value

CFF Quartile n 2145 467 414 524 740

January Mean CF-specific FEV1

[Temperature (uF)]
54.4627.7
[33.5612.1]

57.3627.5
[19.764.9]

58.2627.3
[26.162.6]

54.2628.2
[32.364.4]

50.6627.2
[47.267.2]

,0.001

July Mean CF-specific FEV1

[Temperature (uF)]
53.2628.0
[75.764.8]

56.3627.7
[70.761.8]

56.0627.8
[73.561.4]

53.4628.3
[75.863.0]

49.5627.8
[80.164.2]

,0.001

FEV1 T test p value ,0.001 0.17 0.005 0.22 0.06

doi:10.1371/journal.pone.0027784.t004
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January compared to July. Although temperature is associated with

lung function, based on the univariate regression r-value (r = 0.0069),

temperature accounts for only 0.7% of the variation seen in CF lung

function. Also, the mechanisms through which temperature acts on

lung function are unclear, but may include infectious agents,

aeroallergens, air pollution, and socio-economic status.

Our study supports the concept that infectious agents may mediate

the association between temperature and lung function, at least

through P. aeruginosa, which accounts for 6–22% of the association

between temperature and lung function. Further investigation into

viruses and other CF pathogens may reveal other mediators. Tem-

perature is a predictor of pollen loads as well as mold production [36],

although differences in lung function have not been seen with allergy

sensitive in CF (n = 55) [37]. Higher temperatures may exacerbate

the effects of air pollution [38,39], and air pollution has already been

demonstrated to be associated with lower CF lung function [11]; thus,

temperature and air pollution may interact to worsen CF lung

function. Geographic variation in temperature does not appear to

serve as a proxy for socio-economic status in our study as the

association between lung function and temperature remained robust

after adjusting for significant socio-economic factors (Table S1).

Study limitations include that subjects may reside in multiple

locations over a lifetime. Lung function from the most recent year of

data and each subject’s last known postal or zip code were used to

minimize this uncertainty. Furthermore, for the U.S. subjects, 79.5%

(CFTSS) and 77.6% (CFF) live within the state in which they were

born with another 8% (CFTSS) and 7.3% (CFF) living within an

adjacent state. A limitation of cross-sectional data is the uncertainty

in measuring infection status, and hence accurate ascertainment of

infection prevalence. To address this issue, longitudinal respiratory

culture data were obtained in the CFTSS and ACFDR samples; it

should also be noted that this longitudinal assessment may lead to

temporal effects as cultures and lung function data may have been

obtained for different subjects as much as 10 years apart. Another

limitation is our largely retrospective culture ascertainment, thus we

sought out a prospectively ascertained sample (ACFBAL). There are

other confounding factors that we were unable to assess, such as co-

morbidities, family support, physical activity, etc. Finally, ACFDR

lung function results are subject to the caveat of applying a U.S-

based FEV1 phenotype to an Australian population.

Our findings suggest that accounting for temperature should be

considered in the design of both epidemiological studies of

infection and/or lung function and clinical trials that encompass

broad geographic areas. As the effects of temperature upon lung

function and P. aeruginosa are not within patients’ and clinical

providers’ control, geography may need to be considered when

comparing the performance of CF Care Centers.
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