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Abstract: Identifying species is challenging in the case of organisms for which primarily molecular data are available. Even if 
morphological features are available, molecular taxonomy is often necessary to revise taxonomic concepts and to analyze environmental 
DNA sequences. However, clustering approaches to delineate molecular operational taxonomic units often rely on arbitrary parameter 
choices. Also, distance calculation is difficult for highly alignment-ambiguous sequences. Here, we applied a recently described 
clustering optimization method to highly divergent planktonic foraminifera SSU rDNA sequences. We determined the distance function 
and the clustering setting that result in the highest agreement with morphological reference data. Alignment-free distance calculation, 
when adapted to the use with partly non-homologous sequences caused by distinct primer pairs, outperformed multiple sequence 
alignment. Clustering optimization offers new perspectives for the barcoding of species diversity and for environmental sequencing. 
It bridges the gap between traditional and modern taxonomic disciplines by specifically addressing the issue of how to optimally account 
for both genetic divergence and given species concepts.
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Introduction
A reliable taxonomy is crucial for the assessment of 
biodiversity and for the comparison of habitats based 
on their species composition. However, delimiting 
taxa is challenging in the case of organisms for which 
(almost) exclusively molecular data are available, even 
in the case where robust phylogenetic hypotheses can 
be inferred. For the species delimitation in microor-
ganisms such as bacteria, fungi, and many other uni-
cellular eukaryotes, only few diagnostic characters 
may be present, and an increasing number of such 
organisms are only known by their DNA sequences.1–9 
Even in the case of organisms with well-established 
phenotypic characteristics, molecular taxonomy is 
necessary to validate established species concepts 
and identify those that require a taxonomic revision. 
Molecular data are also essential to detect so-called 
cryptic species (or pseudocryptic species),10 ie, species 
for which no morphological differences exist (or have 
not been determined so far). Finally, molecular tax-
onomy is needed to analyze sequences that have been 
directly sampled from their natural environment, eg, 
in the context of metagenomics projects.11,12 Despite 
its obvious utility in a number of cases, the entire 
concept of molecular taxonomy has been intensively 
debated in the literature, particularly regarding DNA 
barcoding.13–18 The basic question is, whether or not 
morphological and molecular data can be combined 
in an objective and reproducible way for taxonomic 
purposes. Is it possible to devise tools for (molecular) 
identification of taxonomic units that reflect morphol-
ogy-based taxonomic concepts?

For sequence data-based species delimitation, 
researchers mostly use a predefined threshold T for 
pairwise genetic distances in clustering algorithms to 
assign sequences to molecular operational taxonomic 
units.1–3,5,8,9 Values of T used for clustering differ 
in literature, even if applied to the same groups of 
organisms and molecular markers,4,6,7,9 and are often 
based on subjective criteria or on a recently emerged 
tradition for the sake of comparability between studies. 
However, the number and the content of the obtained 
clusters greatly varies with T (see19 and below). 
In addition to T, the clustering algorithm also affects 
the circumscription and the shape of the clusters 
formed.20(192) In the context of linkage clustering, a 
link is defined as a pairwise distance shorter than 
or equal to the chosen threshold T. To add a new 

object to a given cluster one can either request that 
at least one distance to the cluster member is a link 
(single linkage; F = 0.0) or that all distances are links 
(complete linkage; F = 1.0), or any proportion F of 
the distances between (see overview in).20 However, 
F has hardly been addressed in the recent literature 
on molecular taxonomy. For instance, Meier et  al21 
regarded the clustering of triplets of sequences as 
“logically inconsistent” if only two of the three dis-
tances are links. However, values of F smaller than 
1.0 are well established in the clustering literature.19 
An apparent solution for this inconsistency was 
to explicitly specify F.19 For a given T mean and 
maximum within-cluster distances may be much 
larger for small values of F,20(192) even though this 
becomes relevant in cases where genetic divergence 
differs between morphologically defined lineages.22 
Methods more advanced than linkage clustering have 
been suggested,23,24 but these focus on identification, 
ie, the assignment of query sequences to predefined 
groups, and thus require a correct reference taxon-
omy. However, misidentifications even of organisms 
with well-established microscopical characteristics 
are possible, and sequences in public databases are 
frequently mislabeled.25 Thus, it is obvious that meth-
ods are needed that can adapt molecular taxonomy to 
reference data based on traditional taxonomy, with-
out requiring that the latter is 100% correct.

A recently introduced method, clustering 
optimization,19 allows one to obtain taxonomic units 
from non-hierarchical clustering that are in optimal 
agreement with a given reference dataset. Reference 
data can be derived from traditional taxonomy. For 
instance, the morphology-based species identification 
of specimens results in a partition, ie, a non-overlapping, 
non-hierarchical division, of the objects (specimens). 
In fact, every biological classification which comprises 
only a single taxonomic rank represents a partition. 
Because the non-hierarchical clustering of the sequences 
also results in a partition, a metric for the disagreement 
between two partitions allows one to determine those 
clustering parameters T and F that result in the highest 
agreement between the clustering partition and the 
reference data. Because clustering optimization does 
not require full agreement between the partitions, is it 
suitable for biological datasets in which the reference 
partition may contain errors due to misidentification or 
current taxon boundaries that do not fully reflect the 

Göker et al

98	 Evolutionary Bioinformatics 2010:6

http://www.la-press.com


natural history of the organisms. This principle can be 
extended to more than two parameters to be optimized, 
for instance by also optimizing the inference of the dis-
tance matrix to which the clustering is applied.

Calculating distances may be difficult because of 
alignment ambiguity,26,27 particularly in the case of 
highly divergent markers. For example, in the case 
of our target organisms, planktonic foraminifera, 
approximately 50% of the 3’ part of the small subunit 
ribosomal DNA (SSU rDNA) represented in most 
published fragments can be aligned across all lineages 
but comprise limited phylogenetic signal; the sig-
nal contained in the highly length-polymorphic, 
extremely divergent and generally “nonalignable” 
regions of the multiple sequence alignment (MSA) is 
lost.28 MSA-free sequence comparison methods have 
been suggested (which may be based on pairwise 
alignment).29–31 Even though some of them are very 
fast, they have never been used in molecular taxonomy. 
This is despite the advantages of such methods in an 
era of rapidly advancing DNA sequencing technolo-
gies and the thus exponentially increasing amount of 
molecular data.32

Modern planktonic foraminifera (PF) are classified 
into about 50  species based on the morphology of 
their calcite shells (termed “morphotaxonomy” in 
the following), so that the paleontological taxonomy 
of this group is consistent with that of the living 
species.33 Their shells accumulate in huge quantities 
on the sea floor making their fossil record one of the 
most complete and continuous of all organisms and 
PF one of the most important proxies in paleocli-
matology (eg,).34,35 However, proxies for past-ocean 
properties are empirically derived and require species-
specific calibrations. Therefore, correct assessment 
of species taxonomy, ecology and biogeography is 
essential for reliable reconstructions. PF SSU rDNA 
is characterized by generally higher substitution rates 
than in many other groups, making it, unusually, 
a suitable marker for genetic diversity below the level 
of morphological species (eg,).36 The distinct genetic 
types found within many PF morphospecies (reviewed 
in)37–39 could be considered as biological species, 
since they do not show any signs of introgression or 
interbreeding, and are often restricted to certain oce-
anic regimes and areas.38,40–42 However, until now this 
cryptic diversity has been used to arbitrarily define 
and label “genotypes” (eg,).37 Because established 

morphospecies are not genetically uniform, there is 
an urgent need for standardization.

We here apply clustering optimization in three 
dimensions (T, F, and distance function) to PF 
SSU rDNA sequences and their currently accepted 
taxonomy. To cope with alignment ambiguity, we 
apply MSA-free distance methods, which we improve 
for use with partial sequences. Optimal settings for 
both clustering parameters and distance functions are 
then used to define taxonomic units. As in a previous 
study,19 resampling and permutation techniques are 
applied to determine the robustness of the optimiza-
tion regarding taxon sampling and errors in the ref-
erence partition. The outcome is discussed regarding 
current species concepts for PF and the general appli-
cability of our methods for combining morphological 
and molecular data in an objective and reproduc-
ible way for taxonomic purposes and for automated, 
sequence-based identification.

Material and Methods
Data sources and data preparation
The dataset comprised 299 (mostly partial) sequences 
from the 3’ end of the PF SSU rDNA. 146 of these 
sequences were recently published and have been 
obtained from specimens collected in the Northeast 
Atlantic Ocean and the Mediterranean Sea in the 
course of the study of Aurahs et al28 The remaining ones 
were downloaded on 28/01/2008 from the GenBank 
database (http://www.ncbi.nlm.nih.gov/). Taxonomic 
information for clustering optimization was extracted 
from the GenBank flat files using the program 
GBK2FAS,19 which is freely available at http://www.
goeker.org/mg/clustering/. To optimize for the agree-
ment with morphotaxonomy, the species affiliations 
of corresponding specimens were taken as reference 
partition. The PF taxonomy used in the “organism” 
identifiers of the GenBank accessions follows mor-
photaxonomy, with two exceptions. In the case of 
Globigerinella siphonifera and Orbulina universa s.l. 
(including “Orbulina sp.”), a unique “organism” is 
not present, but highly similar or identical sequences 
are partly denoted with different names for genotypes 
(G. siphonifera) or individuals (Orbulina) although 
they belong to the same morphospecies in the original 
literature.38,41,43 Vice versa, some “organism” names 
include significantly divergent SSU fragments. 
Therefore, to obtain a reference partition consistently 
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based on morphospecies, we assigned these acces-
sions to either “G. siphonifera” or “Orbulina sp.” 
The downloaded GenBank data contained 60 distinct 
“organism” names, which we corrected down to 23 
distinct morphospecies by removing the parts after 
the epithet. The morphotaxonomic reference data of 
the 146 specimens published in28 relies on the exper-
tise of the original collectors. The total reference par-
tition comprised 27 reference taxa, as documented in 
detail in the electronic supplementary material (ESM; 
File 1).

Distance calculation
Distances between SSU rDNA sequences were 
computed using the MSA-free method GBDP 
(“genome BLAST distance phylogeny”),44–46 which 
had been applied to whole genomes of prokaryotes45,46 
and organelles44 and here was adapted for use with 
single sequence regions (“gene BLAST distance phy-
logeny”). GBDP applies BLAST47 to identify local 
regions of high sequence similarity, “high-scoring 
segment pairs” (HSPs), between two sequences. 
Among the formulae for inferring distances from 
BLAST results44–46 the following one performed best 
in recovering evolutionary relationships:44,46

	
D x y

I I

x y
xy yx( , ) :
( , )

=
 + 

1-
λ

	 (1)

D(x,y) denotes the distance between sequences x 
and y, and Ixy denotes the sum of the number of identi-
cal base pairs over all HSPs obtained by using x as the 
query and y as the subject sequence for blast. In the 
case of whole genomes, the denominator λ(x,y) can 
correspond to the average length of both sequences45 
(Formula 2), but here was corrected for the use with 
single gene regions.

MSA-independent phylogenetic inferences can 
suffer from limitations that are not present in MSA-
based approaches. Most importantly, evolutionary 
relationships should be inferred from homologous 
characters only (48(96),49(63),50(120) among others). Let 
“fragment homology” denote the situation in which 
two sequence fragments are, as a whole, homologous 
to each other. In the case of MSA, fragment homology 
is established implicitly by establishing the homology 
of individual nucleotide (or amino acid) residues and 

their non-homology by the insertion of gaps. Although 
single-gene data have been amplified from homolo-
gous gene regions, they can violate the fragment 
homology condition. For instance, Figure  1  shows 
three HSPs (gray boxes) between sequences x and y. 
While nucleotide (or amino acid) homology is estab-
lished within these HSPs, the fragment homology 
of a non-HSP region enclosed between two adjacent 
HSPs is established as long as the insertion of, eg, 
a novel protein domain can be ruled out. In the case 
of foraminifer SSU rDNA, regions between HSPs are, 
of course, much more likely do be due to high evo-
lutionary rates.28,36,51 In contrast, leading and trailing 
non-HSP regions may as well be caused by the use of 
distinct primer pairs; fragment homology is not nec-
essarily given in this case. Leading and trailing gaps 
in an alignment often represent missing data and not 
evolutionary events.52 Because MSA-independent 
methods treat entire sequences as single characters, 
fragment homology is likely to matter. The robustness 
of MSA-free sequence comparison against the vio-
lation of the fragment homology assumption has, to 
the best of our knowledge, not yet been examined in 
simulation or empirical studies. The problem is also 
present in PF SSU data; for instance, most short ampl-
icons of “Orbulina sp.” from GenBank corresponded 
only to parts of the few long amplicons of “Orbulina 
universa”.

To correct for a potential length artifact on D(x,y), 
two modifications of the denominator λ(x,y) in 

fy Fy Ly ly

fx Fx Lx lx
x

y

Figure 1. Corrected alignment-free distance formulae.
Notes: How to correct GBDP for the violation of fragment homology 
(trimmed sequence ends). Symbols used: x and y, sequences; grey 
boxes, location of HSPs; fx, first position; Fx, first position within the first 
HSP; Lx, last position within the last HSP; and lx, globally last position, 
within sequence x; fy, Fy, Ly, and ly are defined analogously. Without 
background information, fragment homology is only established explicitly 
between the Fx - Lx part of x and the Fy - Ly part of y. If the sequences 
violate the fragment homology condition, using the full sequence lengths 
in the denominator (λ0; Formula 2) will thus overestimate the number 
of base pairs that can be compared in a biologically meaningful way. 
The corresponding distances that use λ0 will thus be overestimated 
(Formula 1). The modifications of the denominator in formulae 3 and 4 
correct the distances that use λ1 and λ2 downwards.
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Formula 1 (see also Formula 2) were applied (Fig. 1; 
Formulae 3 and 4). The uncorrected mean length λ0 
of two sequences, x and y, is given by:

	
λ0 1

2
( , ) :x y

l lx y=
 + 

- 	 (2)

which has been applied to complete genomes. We 
hypothesize that this denominator must be corrected 
downwards in the case of strong deviations from 
fragment homology because otherwise the range of 
base pairs that can be compared in a biologically sen-
sible way is overestimated.44–46 Correction λ1 is shown 
in Formula 3:

	
λ1 2

1( , ) :x y
L F L Fx x y y=

+ 
+

- -
	 (3)

The meaning of Lx and Fx is explained in Figure 1. 
That is, the lengths of the fragment-homologous 
parts of the sequences are estimated as the range 
between the first position in the first HSP and the last 
position in the last HSP (inclusively). Here, character 
homology, which is established within HSPs, is used 
to estimate the homology of whole sequence frag-
ments (both within and outside HSPs). Formula 
4 introduces a correction (λ2), which is intermediary 
between Formulae 2 and 3:

	

λ2 2
1( , ) :

min( , ) min( , )

x y
L F L F

F F l L l L

x x y y

x y x x y y

=
+ 

+

+ +

- -

- - 	(4)

Here, the shorter of the sequence sections before 
the first HSP in each sequence is considered as part 
of the homologous fragment, as well as the shorter of 
the sequence sections after the last HSP (see Fig. 1).

Importantly, we here do not attempt to demonstrate 
that the above-mentioned formulae necessarily result 
in distance metrics in a mathematical sense; for 
instance, they might violate the triangle inequali-
ty.53 However, the same holds for distances derived 
from MSA, which apparently does not limit their 
usability for phylogenetic inference.54(158) W. Gish’s 
implementation of BLAST (http://blast.wustl.edu/) 
was run with a word length of 4 and without the use 

of the low-complexity filter. The GBDP program is 
freely available at http://www.auch-edv.de/GBDP/.

The eleven MSAs from Aurahs et al28 were used, 
inferred with six different software packages, CLUST-
ALW version 2.0,55,56 KALIGN v. 2.03,57 MAFFT 
v. 6.24,58 MUSCLE v. 3.7,59 the NRALIGN derivative 
of MUSCLE,60 and POA v. 2.0,61 using the respec-
tive default parameters. POA was also run in global 
scoring mode (command-line switch -do_global; 
henceforth referred to as POAGLO), CLUSTALW 
also with the gap parameters optimized for RNA 
alignments (abbreviated CLWOPT),62 and MAFFT 
also in EINSI, GINSI and LINSI running modes. 
Distances were inferred from the alignments with 
PAUP* version 4b10,63 using the following formulae: 
uncorrected (“P”) distances; JC; F81; K2P; F84; K3P; 
TamNei; GTR; and LogDet (see64 for a survey of 
these distance methods). As far as possible (ie, except 
for P and LogDet distances), we combined the for-
mulae not only with equal, but also with gamma (Γ) 
distributed substitution rates, using an alpha param-
eter of 0.5.64 Distances were also calculated under the 
maximum likelihood (ML) criterion with RAxML 
version 7.0465,66 and GTR+Γ as model. Accordingly, 
198 MSA-based distance approaches were subjected 
to clustering optimization in the same way as the 
GBDP formulae.

Clustering optimization
Clustering optimization was conducted as previously 
described19 and as implemented in the program OPT-
SIL, freely available at http://www.goeker.org/mg/
clustering/. Values of T and F were varied between 
0.0 and 1.0, with a step width of 0.0001 (T) or 0.05 
(F), and the resulting agreement with the reference 
partition, measured using the Modified Rand Index 
(MRI), was recorded. Cluster affiliations from the 
globally optimal clustering were mapped on a NJ67 
tree inferred from the best distances with PAUP* 
version 4b10.63 To assess the stability of our method, 
we applied taxon jackknifing.19 Within each jack-
knifing replicate, a defined proportion of randomly 
selected sequences is removed before optimizing 
the parameters. We here assessed removal of 5% to 
50% of the sequences, using a step width of 5%, and 
reported the respective range of optimal clustering 
parameters. In theory, each resulting cluster defines 
a TU equaling a morphospecies. However, because 
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of limitations in distance calculation, considerable 
difference in genetic divergence between the 
morphospecies, or misidentification or mislabeling of 
specimens, even the optimal MRI may not achieve 
1.0. In this context, it is of interest how robust optimi-
zation is against errors in the reference partition.19 To 
assess this effect, we introduced a defined proportion 
of randomly selected errors (between 5% and 50%, 
step width was 5%) in the morphotaxonomy-based 
partition before re-optimizing the parameters. 1,000 
replicates per proportion were run, and the range of 
optimal clustering parameters was reported for each 
replicate.

Whereas phylogenetic trees are nested classifica-
tions and thus can neither be directly compared to 
nor replace a non-hierarchical clustering to define 
TU, it is of course of interest whether the inferred 
TU are monophyletic in a tree.48 We thus compared 
the final TU and the morphotaxonomy with conven-
tional MSA-based phylogenetic analysis, ie, with a 
tree inferred under the ML criterion (GTRMIX model 
approximation) with RAxML version 7.0465,66 from 
a MSA obtained with MAFFT version 6.2458 with-
out further manual refinement or manual exclusion of 
columns. This tree was the most representative one 
in our recent study,28 which explicitly addressed the 
effect on phylogenetic reconstruction of using distinct 
MSAs of full (unfiltered) SSU rDNA sequences (the 
eleven ones used here for distance calculation, see 
above and refs.).27,68 Node support was established 
with 100 RAxML bootstrap replicates; for details of 
all eleven MSAs and ML analyses, see ref.28

Results
Taxonomic units based on three-
dimensional clustering optimization
An overview of the results from clustering optimization 
of the distinct distance matrices is provided in Table 1. 
Three-dimensional optimization resulted in the follow-
ing two optimal parameter combinations: λ1-corrected 
GBDP distances, F = 0.75, T = 0.25735, and F = 0.70, 
T = 0.25475, which gave identical results and corre-
sponded to a Modified Rand Index (MRI) of 0.8001 
and 22 different clusters. The optimization plot for the 
optimal values of F and distance formula but varying 
T is shown in Figure  2; the full results are included 
in the ESM (File 1). An accordingly annotated 

neighbor-joining (NJ) phylogram based on λ1-corrected 
distances is shown in Figure 3. The highest MRI (ie, 
best agreement with the reference partition) obtained 
with an MSA-based method was 0.7843 from the com-
bination of POAGLO alignment, TamNei distances 
and equal substitution rates (Table  1). λ2-corrected 
GBDP distances also performed better than any align-
ment software (MRI = 0.7878). In the optimal partition 
inferred from λ0-distances (MRI = 0.7744), short SSU 
rDNA fragments tended to form new clusters; other-
wise the same TU were obtained as with λ1-distances 
(not shown). In addition to the MRI, a direct compari-
son might also illustrate the effect of the distance cor-
rection (for the data, see ESM, File 1). From a total 
of 44,551 (non-trivial) distances, λ1-distances were as 
large as λ0-distances in 2098 cases but shorter in 42,453 
cases; λ2-distances were as large as λ0-distances in 2202 
cases but shorter in 42,349 cases. A total of 129 dis-
tances were zero in the case of λ1 but non-zero with λ0, 
whereas 126 distances were zero in the case of λ2 but 
non-zero with λ0. One of the most striking examples is 
the sequence pair Orbulina universa (AF102229; 955 
base pairs) vs. Orbulina sp. ‘isolate A492’ (AJ229093; 
434 base pairs), whose distance is 0.37509 with λ0 but 
0.0 with either λ1 or λ2.

The effect of applying suboptimal T values to 
λ1-distances on the TUs MAC-A/MAC-B and SIP-A/
SIP-B is shown with figures in the ESM (File 2).

The clusters inferred with the optimal parameters, 
each defining a TU, matched largely the assigned 
morphospecies (Figs. 3, 4; Table 2); exceptions are 
two clones with missing data (a large number of N’s) 
in the middle of the sequence (Cluster 1, Cluster 5; 
Fig. 3). Misidentified sequences were identified and 
the affiliation of sequences with ambiguous morpho-
logical reference (eg, Globigerina sp. and Orbulina 
sp., GenBank data; “undetermined spinose”, new 
data) was clarified. Seven clusters included more 
than one reference taxon, and four to six morphotaxa 
(depending on the underlying taxonomic concept; 
Table 2) comprised more than one TU. Morphotaxa 
combined in a single cluster are the nonspinose 
macroperforate species Globorotalia inflata and 
Neogloboquadrina pachyderma (s.str.; MAC-A) as 
well as N. dutertrei and Pulleniatina obliquilocu-
lata (MAC-B). The spinose Globigerinoides ruber, 
Globigerinella siphonifera, Hastigerina pelagica 
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and Turborotalita quinqueloba, and the microperfo-
rate Globigerinita uvula formed two TU, respectively 
(Fig. 4; Table 2). The two N. pachyderma TU con-
firm the taxonomic amendment by Darling et al69 and 
refer to the coiling types dextral, assigned by Dar-
ling et al to the species N. incompta (INC in Fig. 3),69 
and sinistral, ie, N. pachyderma s.str. (included in 
MAC-A; Figs. 3, 4; Table 2).

Robustness of clustering optimization
Results from taxon jackknifing and from random 
permutations of the reference partition are included 
in the ESM (File 3). The optimal F and T values 
inferred from the original dataset remain optimal in 
the vast majority of the replicates if up to 15% of the 
sequences are deleted (ESM, File 3, Figs. S1–S4). In 
most replicates, the optimal T changes only slightly 

Table 1. Optimal clustering results in dependence on the distance formula.

Alignment/
alignment-free 
approach

Best alignment-based 
distance formula

Best threshold (T ) Best linkage  
fraction (F )

Highest  
MRI

Mean 
MRI

GBDP,  
uncorrected (λ0)

∼ 0.27295 0.05 0.77440 0.74153

GBDP,  
corrected (λ1)

∼ 0.25475/0.25735 0.70/0.75 0.80006 0.77958

GBDP,  
corrected (λ2)

∼ 0.12705 0.00 0.78781 0.77282

clustalw F84+G 0.39070/0.40250 0.40/0.45
0.25/0.35/
0.40/0.45/
0.50/0.30

0.77177 0.73574
clwopt F81+G/TamNei+G 0.37270/0.38265/0.38330/ 

0.38690/0.38800/0.40380/ 
0.40525/0.40670/0.40805/ 
0.41165

0.76263 0.73247

einsi GTR/GTR+G/TamNei/ 0.10300/0.10490/0.10935/ 
0.11420/0.11615/0.12260/ 
0.12125/0.12340/0.12955/ 
0.13600/0.13860/0.14860/ 
0.11355/0.11550/0.12190/ 
0.11560/0.12145/0.12785/ 
0.13360/0.13650/0.14565000

0.15/0.20/ 
0.25/0.30/ 
0.35/0.40/ 
0.10

0.75983 0.72110
TamNei+G

ginsi GTR+G
RAxML/F81/F81+G/F84/
F84+G/GTR/GTR+G/JC/
JC+G/K2P/K2P+G/K3P/
K3P+G/LogDet/TamNei/
TamNei+G

0.70360 1.00 0.76705 0.72616
kalign 0.06205/0.05910/0.06410/ 

0.05915/0.06420/0.05950/ 
0.06560/0.06405/0.05920/ 
0.06430/0.05785/0.05680/ 
0.064450

0.00 0.77756 0.75664

linsi GTR/GTR+G/LogDet/ 0.12520/0.12625/0.12955/ 
0.15285/0.15495/0.15805/ 
0.12365/0.12465/0.12440/ 
0.12525/0.14930/0.15090/ 
0.15540000

0.35/0.40/ 
0.45

0.73862 0.71920
TamNei/TamNei+G

mafft P/TamNei 0.10545/0.12495/0.131550 0.25/0.35/ 
0.40

0.76322 0.73867

muscle TamNei 0.17965 0.15 0.74915 0.70428
nralign F81/F84/GTR+G/JC/ 

JC+G
0.16595/0.16600/0.21925/ 
0.16575/0.20845

0.15 0.76217 0.71718

poa F81+G/JC/JC+G/K2P/
K2P+G/K3P/TamNei+G

0.16755/0.13815/0.16710/ 
0.13830/0.16765/0.13840/ 
0.16870

0.10 0.76758 0.73450

poaglo TamNei 0.13610 0.10 0.78435 0.71880

Note: Highest MRI and corresponding best values of T and F for the MSA-based and GBDP distance functions. For each GBDP formula, the arithmetic 
mean over all F values is also indicated and for each MSA the mean over all F values and distance formulae.
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even for higher deletion proportions. Because the 
range of optimal threshold values may be larger if 
subsets of the data are analyzed, small deviations in 
the reported median optimal F and T values do not 
imply that the resulting clustering partition is altered. 
Thus, the jackknifing results indicate a considerable 
robustness of clustering optimization. Likewise, the 
originally optimal F values are still optimal in almost 
all replicates if up to 20% errors are introduced in the 
reference partition; optimal T remains stable for up to 
15% errors (ESM, File 3, Figs. S6–S9).

The best ML tree inferred with RAxML from the 
MAFFT alignment, rooted according to the accepted 
classification of PF in spinose macroperforate, non-
spinose macroperforate and non-spinose microperfo-
rate taxa,33 is shown in Figure 4 with ML bootstrap 
values. (For a discussion of the backbone of the tree, 
ie, the interrelationships of the PF genera, and the 
effect of using other MSAs on topology and support 
values see).28 Conventional phylogenetic reconstruc-
tion and MSA-free clustering agreed well, most mor-
photaxa and TU were present as clades (Fig. 4). Only 
H. pelagica, and G. ruber sensu reference data were 
placed in two distinct clades, respectively, and only 
the members of two TU (MAC-A, SIP-A) were not 
placed within the same clade. Support for these con-
flicting arrangements was low for MAC-A but sig-
nificant for SIP-A. As Figure 3 shows a monophyletic 
SIP-A, the discrepancy was due to the GBDP method 
and not due to the clustering.

Discussion
Clustering optimization  
for molecular taxonomy
Clustering optimization had a number of benefits for 
PF taxonomy; analogous benefits are to be expected 
with other groups of organisms and other sequence 
regions. First, the best distance functions could be 
identified because each function was independently 
optimized. Calculating MSA-based distances can be 
problematic in the case of foraminifer SSU rDNA due 
to common length-polymorphism of highly divergent 
sequence regions with unknown transcriptional fate, 
the so-called “expansion segments” (eg,).28,36,40,70 
Within these expansion segments, nucleotide homol-
ogy is difficult to establish for all PF.28 Table 1 shows 
that each alignment requires different optimal distance 
models to reach the highest possible MRI. In the case 
of the CLUSTALW, GINSI, MUSCLE and POAGLO 
alignments, a single distance model (F84+Γ, GTR+Γ, 
TamNei) outperforms the others, whereas in the case 
of the KALIGN alignment most distance models per-
form equally. Optimal T and F values vary as well 
both within and between the distinct combinations of 
alignment and distance function (Table 1, 3rd and 4th 
column; ESM, File 1). For instance, T values between 
0.373 and 0.388 coupled with F values between 0.25 
and 0.50 result in the highest MRI obtained with 
CLWOPT and F81+Γ distances in contrast to optimal 
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Figure 4. Maximum-likelihood tree. 
Notes: ML phylogram inferred from the MAFFT alignment and rooted according the separation of planktonic foraminifera in spinose macroperforate, 
non-spinose macroperforate and non-spinose microperforate taxa. Branch lengths are scaled in terms of the number of substitutions per site. Bootstrap 
support values are shown on the branches. TU annotations from optimal settings (as in Fig. 3 and Table 2) are provided on the right side. The names of 
the morphotaxa are provided near the leaves of the tree. Stars indicate morphotaxa that are not supported as monophyletic (cf.);28 the position of the two 
sequences with missing data (white dots) is indicated by respective cluster numbers in brackets (see also Table 2).

T of 0.125 or 0.133 and optimal F of 0.35 or 0.40 
obtained with TamNei distances and MAFFT.

GBDP outperformed alignment methods and the 
corrections for the violation of fragment homology 
performed significantly better than uncorrected 
GBDP (Table 1), which frequently misplaced short 
sequences. Only two apparent artifacts (Fig.  3; 

Table 2) remained if the correction was applied due 
to sequences containing missing data (N’s) in their 
center, a phenomenon the GBDP distances (so far) 
have not been corrected for. Whether MSA-free 
approaches are superior to MSA for optimal 
clustering of other organisms and sequence regions, 
or for phylogenetic inference, remains to be seen. 
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Table 2. Interpretation of taxonomic units.

Assigned morphotaxon  
(accession nos., individuals)a

Original  
cluster number

Associated 
TU

Status

Globigerina bulloides 17 BUL OK
G. indet. sp. U80793 17 BUL Identified using clustering
G. indet. sp. from Okinawa trough 17 BUL Identified using clustering
Indiv. R043, determined as G. bulloides;
clone 1

5 [Cluster 5] Missing data (‘N’) artefactb

Indiv. R043, determined as G. bulloides;
clone 2

12 SIP-A Possible misdetermination

G. falconensis 3 FAL Few data
Globigerinella calida Z83960 12 SIP-A Possible misdetermination78

G. siphonifera AJ251213, AJ390578, 20 SIP-B Includes G. siphonifera type IV41

AJ390580
G. siphonifera, all other sequences 12 SIP-A Includes G. siphonifera types I, 

IIa,IIb/III40,41,78,79

Undetermined spinose individual P125 12 SIP-A Identified using clustering
Undetermined spinose individual P155 20 SIP-B Identified using clustering
Globigerinita glutinata 22 GLU OK
G. uvula AF387173 4 UVU-A Provisional, very few data
Two small individuals, possibly G. uvula28 2 UVU-B Provisional, few data
Globigerinoides conglobatus 9 CON Very few data
G. ruber ‘pink’ or ‘white’ 8 RUB Synonym ofG. ruber types I and 

P73,79,80

G. ruber ‘white’ AF102230 9 CON Synonym ofG. ruber type II40,73

G. sacculifer Z69600 9 CON Known misnomer81

G. sacculifer, all other sequences 7 SAC OK
Globorotalia crassaformis AY453134 13 MAC-A Possible misdetermination (Kimoto 

and Tsuchiya, unpublished; 
available in GenBank

G. inflata 13 MAC-A OK
G. hirsuta indiv. R002 clone 09 1 [Cluster 1] Missing data (‘N’) artefactb

G. hirsuta , all other sequences 18 HIR OK
R021, undetermined globorotaliid (possibly 
G. scitula)

18 HIR Identified using clustering

R034, undetermined globorotaliid 14 MAC-B Could be first true G. crassaformis; 
more data needed

G. menardii 11 MEN Very few data
G. truncatulinoides 19 TRU OK
Hastigerina pelagica Z83958 and 6 PEL-A OK28

individuals R022/P101
H. pelagica, remaining individuals 21 PEL-B OK28

Neogloboquadrina dutertrei 14 MAC-B Few data
N. incompta, including revised  
N. pachyderma 

16 INC Synonym of N. pachyderma 
dextral; type R;72  
N. pachyderma dextral types I, II82

N. pachyderma 13 MAC-A Synonym of N. pachyderma  
type I;69

N. pachyderma sinistral  
types I–VII72,74

Orbulina spec., O. universa 10 ORB Synonym of Orbulina 
mediterranean, caribian, 
Sargasso type78,80

Pulleniatina obliquiloculata 14 MAC-B Very few data

(Continued)
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Table 2. (Continued)

Assigned morphotaxon  
(accession nos., individuals)a

Original  
cluster number

Associated 
TU

Status

Turborotalita quinqueloba AF250116 0 QUI-A Very few data
T. quinqueloba, all other sequences 15 QUI-B Few data

Note: Molecular taxonomic units (TU) from clustering using the optimal parameters and their correspondence with the reference taxonomy. The “original 
cluster number” is an arbitrary number directly found in the OPTSIL results with a 1:1 correspondence to the TU names. 
aAccession nos. refer to sequences downloaded from GenBank; individuals refer to data of Aurahs et al28(cf. Material and Methods). If no accession nos. or 
individuals are given, all sequences assigned to the respective taxon are adressed; bBoth sequences comprise missing data in the center of the sequences 
(incompletely sequenced clones). The distance formulae have not been corrected for this situation.

In particular, other MSA-free distance algorithms 
should be tested.28–30 However, since our distance 
corrections are based on HSPs, it is at present uncer-
tain how an equivalent adaption could be obtained 
with distances that do not rely on the determination 
of HSPs. In any case, our results imply that fragment 
homology plays an important role in MSA-free phy-
logenetic inference. 

Second, the OPTSIL algorithm results in geneti-
cally homogeneous clusters (particularly if high F 
values are optimal; see)20(192) in optimal agreement 
with the reference partition of interest, a possible 
advantage over the use of predefined thresholds,1–3,5,8,9 
as long as the reference is biologically meaningful. 
Optimization may not work with all datasets, but 
failure can be ruled out if the optimal MRI values are 
significantly larger than 0.0 and much closer to 1.0. 
Additionally, taxon jackknifing and random permu-
tation can be used to assess the robustness of param-
eter optimization. Thus, the algorithm can be applied 
to each combination of a reference partition and a 
distance matrix; the user just has to closely examine 
the results for sufficiently high optimal MRI values. 
Applied to downy mildew ITS rRNA19 or PF SSU 
rRNA sequences (this study), the algorithm is robust 
against misidentifications and a taxonomy that only 
partially reflects natural relationships (Figs.  3, 4; 
Table  2), most likely because full agreement with 
the reference partition is not required. The optimal 
parameters can be used for sequence identification 
and for the recognition of new sequence types just 
by applying them to enlarged datasets.

Running time might be an issue, particularly 
if clustering optimization is combined with taxon 
jackknifing and random permutation. However, 
results are expected to increase in stability with 
increasing dataset size. Once the suitability of the 

algorithm for a particular type of data has been 
established, jackknifing and random permutation 
could be omitted in future runs with enlarged 
datasets. A drawback of jackknifing is that it 
presupposes that the data come from the same under-
lying population, but this problem also diminishes 
with increasing dataset size as it becomes increas-
ingly unlikely that entirely novel (shapes of) clus-
ters are encountered. Optimizing T for a given F 
is efficient even with small step sizes of T because 
the clustering results obtained with each previous 
(lower) T are reused in every step (the clusters 
might fuse with increasing T, but never split). Runs 
for exploring distinct F values can be trivially par-
allelized by independently starting the program. In 
our experience, the limiting step is the calculation 
of the distance matrix, whose running time is pro-
portional to the square of the sequences.

Third, reference taxonomies can usually be 
generated with ease. Automated processing of 
taxonomic descriptors found in public databases is 
possible, as applied here to obtain valid PF species 
names. The same technique can also be applied for 
filtering the input data and conducting the parameter 
optimization for the subset of the data characterized 
by annotation suitable for use as a reference partition. 
Other types of reference partitions may also be of use. 
For instance, in the case of apparently highly special-
ized symbiotic (mutualist or parasitic) organisms 
(eg, downy mildews),71,72 sequence clustering could 
be optimized regarding the agreement with the host 
taxonomy.19 If several suitable reference partitions 
are present (eg, a matrix of morphological characters 
or alternative codings of the same underlying data 
to represent uncertainty), the MRI can be averaged 
between the distinct partitions, as already imple-
mented in the OPTSIL program.
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Implications for a taxonomic synopsis  
in planktonic foraminifera
By using three-dimensional clustering, we were able 
to define taxonomic units (TU) that well reflect the 
current morphotaxonomy but also identified new 
TU, the latter being candidates for yet undetermined 
or undescribed morphotaxa. The distance formulae 
applied in this study can deal with sequences as 
short as 200  bp (Fig.  3; ESM, File 1). This makes 
our approach most valuable for the automatic 
taxonomic identification of morphospecies present 
in environmental samples of PF by analyzing a frag-
ment of their SSU rDNA. For a full automation, addi-
tional differentiation would be necessary between 
Pulleniatina obliquiloculata, Neogloboquadrina 
dutertrei and the species of R034, which are currently 
placed in the same TU, MAC-B (Fig.  4; Table  2). 
Corresponding optimal clustering settings could be 
obtained by optimizing this subset of the data, and 
a second identification step could be applied once a 
sequence has been assigned to this TU. 

Clustering optimization is a means of identi-
fying genetically circumscribed clusters within 
morphospecies that represent a level of genetic diver-
gence, which is otherwise indicative of separate mor-
phospecies. In this way, the hierarchy among (pseudo-)
cryptic species may be defined consistently, which 
is the first step towards an enhanced (standardized) 
classification of PF. For instance, Neogloboquadrina 
pachyderma (part of MAC-A) and N. incompta 
(INC) were originally considered to be conspecific73 
but later on revised to accommodate molecular evi-
dence.69 The second example is the obviously diphyl-
etic “G. ruber”,28,40,42,74 which included members of 
the RUB and CON clusters (Fig. 4; “Globigerinoides 
ruber-conglobatus cluster”);40 CON-type G. ruber 
individuals have been erroneously synonymized with 
the RUB-type G. ruber.28,74

Further candidates for (pseudo-)cryptic species 
are all morphospecies represented by more than one 
TU in our analyses, ie, Globigerinella siphonifera, 
Globigerinita uvula, Hastigerina pelagica and Tur-
borotalita quinqueloba. Clustering demonstrates that 
some of the genetic types distinguished within these 
species are of higher rank than SSU rDNA genotypes 
described in Globigerina bulloides, Globorotalia 
truncatulinoides, Neogloboquadrina pachyderma and 

Orbulina universa.38,40,41,43,73,75 A more comprehensive 
phylogenetic background needs to be established to 
clarify the status of the potential new species as well 
as of clusters such as MAC-A and MAC-B, compris-
ing several morphotaxa, and SIP-A, which could be 
non-monophyletic (Figs. 3, 4). 

While phylogenetic reconstruction is necessary to 
identify monophyletic units, it only provides crite-
ria for grouping, not for ranking. By the additional 
use of clustering optimization it is possible to define 
species as monophyletic units that are also charac-
terized by a specific morphology and a comparable 
genetic diversity, thus deserving the same taxonomic 
rank. To establish an enhanced, standardized taxo-
nomic system for PF including important prox-
ies used for (paleo-)oceanographic reconstruction, 
research can now focus on the discrepancies between 
phylogenetic trees, morphotaxa and TU to identify 
new molecular and non-molecular characteristics for 
formerly (pseudo-)cryptic species or ambiguously 
ranked genotypes.

Conclusion
Our results obtained with clustering optimization 
are an excellent starting point for further 
methodological improvements. For instance, novel 
MSA-based and MSA-free distance functions can 
be tested. Formulae for pairwise distances that 
are not based on a statistical model can be calcu-
lated independently of each other, thus represent-
ing an embarrassingly parallel algorithm, which 
enables one to obtain a near-linear speedup on 
multi-processor architectures (eg,).76 Given that 
genetic divergence may differ between morpho-
logically defined lineages,22 it is crucial that the 
algorithm can be used to obtain distinct optimal 
settings for distinct groups of organisms. Using 
values of F smaller than 1.0 already relaxes the 
assumption of homogeneous genetic within-species 
divergence. Nevertheless, it is of interest to test 
clustering algorithms other than linkage clustering 
which are even independent of fixed threshold 
values. Whether our current or any improved algo-
rithm is sufficient for molecular classification in 
the case of loci with high intra-individual variabil-
ity (eg,),77,78 remains to be investigated, but it is 
obvious that clustering optimization will at least 
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minimize the number of discrepancies. Alternative 
measures for the agreement between clustering 
results and reference data are also of interest. 
However, most likely all of these improvements 
will be based on the same principle: Optimizing 
the agreement between molecular classification 
and external information.

Since our optimization approach shows so much 
promise for PF, we expect it to be of general use. 
Whether its strict objectivity and reproducibility will 
help to dispel some of the criticism on the “unholy” 
aspects of molecular taxonomy17 remains to be 
seen. At the very least, the adaption of molecular 
taxonomy to reference data based on traditional 
taxonomy, without requiring that the latter are 
100% reasonable, is an appealing concept for both 
groups, traditional and molecular taxonomists. By 
specifically addressing the issue of how to optimally 
account for both, traditional species concepts and 
genetic divergence, clustering optimization bridges 
the gap between traditional and modern taxonomic 
disciplines. It thus allows us to optimally define 
taxa in groups with high cryptic diversity and to 
automatically classify unknown DNA sequences in 
these groups.
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