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Heart failure development is characterized by persistent inflammation and progressive
fibrosis owing to chronic catecholamine stress. In a chronic stress state, elevated
catecholamines result in the overstimulation of beta-adrenergic receptors (βARs),
specifically β2-AR coupling with Gαi protein. Gαi signaling increases the activation of
receptor-stimulated p38 mitogen-activated-protein-kinases (p38 MAPKs) and
extracellular signal-regulated kinases (ERKs). Phosphorylation by these kinases is a
common way to positively regulate the catalytic activity of A Disintegrin and
Metalloprotease 17 (ADAM17), a metalloprotease that has grown much attention in
recent years and has emerged as a chief regulatory hub in inflammation, fibrosis, and
immunity due to its vital proteolytic activity. ADAM17 cleaves and activates
proinflammatory cytokines and fibrotic factors that enhance cardiac dysfunction via
inflammation and fibrosis. However, there is limited information on the cardiovascular
aspect of ADAM17, especially in heart failure. Hence, this concise review provides a
comprehensive insight into the structure of ADAM17, how it is activated and regulated
during chronic catecholamine stress in heart failure development. This review highlights the
inflammatory and fibrotic roles of ADAM17’s substrates; Tumor Necrosis Factor α (TNFα),
soluble interleukin-6 receptor (sIL-6R), and amphiregulin (AREG). Finally, how ADAM17-
induced chronic inflammation and progressive fibrosis aggravate cardiac dysfunction is
discussed.
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INTRODUCTION

Heart failure (HF) is a serious clinical and public health issue that affects over 23 million people
globally, resulting in significant mortality, morbidity, and healthcare expenditures (Ayoub et al.,
2017; Orso et al., 2017; Frantz et al., 2018). Despite advances in understanding its pathophysiology
and treatment, the prognosis of patients with HF remains poor. Approximately 2–17% of patients die
during their first hospital stay, with over 50% of patients dying within 5 years (Ayoub et al., 2017).
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Chronic stress-induced adverse cardiac remodeling and HF
are generally associated with prolonged activation of
proinflammatory responses (Adzika et al., 2021; Huo S. et al.,
2021). In an inflammatory driven HF, the inflammatory
responses are orchestrated by myosin and troponin (damage-
associated molecular patterns (DAMPs)) released from necrotic
cardiomyocytes. These cardiac antigens activate and induce the
infiltration of neutrophils, macrophages, dendritic cells, as well as
T and B cells into the myocardia (Lafuse et al., 2020; Adzika et al.,
2021). Following cardiac injury, neutrophils and CD86+

macrophages are rapidly recruited to the injured area, where
they initiate inflammatory responses with the goal of cleaning up
dead cell debris. However, excessive accumulation and/or delayed
switch from these proinflammatory cells infiltration to reparative
inflammatory cells (such as CD206+ macrophages) has
detrimental effects. By releasing reactive oxygen species,
granular components, and proinflammatory mediators such as
tumor necrosis factor-alpha (TNFα), soluble interleukin-6

receptor (sIL-6R), and CXC chemokine receptor 2 (CXCR2),
neutrophils and macrophages contribute to adverse myocardial
injury and remodeling (Adu-Amankwaah et al., 2021a; Ma,
2021). Additionally, the activation of T and B lymphocytes by
dendritic cells has been shown to play crucial roles in myocardial
inflammation (Santos-Zas et al., 2018; Santos-Zas et al., 2021).
Ultimately, without timely resolution of these proinflammatory
responses and initiates of reparative functions, genes encoding
proinflammatory mediators and fibrotic factors are upregulated
excessively (Epelman et al., 2014; Heidt et al., 2014; Adamo et al.,
2020).

Proteolytic cleavage of transmembrane proteins is a vital post-
translational modification that controls several transmembrane
proteins’ biological function, including proinflammatory
mediators and growth factors (Lichtenthaler et al., 2018;
Düsterhöft et al., 2019). Amid the 560 proteases encoded in
the human genome, A Disintegrin and Metalloprotease 17
(ADAM17) has grown much attention in recent years and has
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emerged as a chief regulatory hub in inflammation, fibrosis, and
immunity due to its vital proteolytic activity (Düsterhöft et al.,
2019). In immune and non-immune cells, ADAM17 cleaves a
number of substrates, including ligands of the epidermal growth
factor receptor (EGFR), adhesion molecules, proinflammatory
cytokines, and chemokines and their receptors. Some of these
substrates include amphiregulin (AREG), epigen, epiregulin,
neuregulin, tomoegulin-2, transforming growth factor-alpha
(TGF-α), heparin-binding epidermal growth factor (HB-EGF),
TNFα, tumor necrosis factor β (TNFβ), the TNF receptors 1 and 2
(TNFR 1 and 2), and interlukin-6 receptor (IL-6R), CXCR2,
collagen XVII, desmoglein-2 and nectin-4 (Black et al., 1997;
Moss et al., 1997; Tellier et al., 2006; Reddy et al., 2009;
Riethmueller et al., 2017; Kawai et al., 2021). According to
Cabron et al. ADAM17 is a key regulator of soluble TNFα
surface levels in proinflammatory macrophages and dendritic
cells (Cabron et al., 2018). Additionally, sIL-6R and CXCR2 on
human and mouse neutrophils surfaces are regulated by
ADAM17 (Wright et al., 2014; Mishra et al., 2015).

In a physiological state, the expressions of ADAM17 in
immune and non-immune cells are regulated by
transcriptional and post-transcriptional factors, including
nuclear factor kappa B (NF-κB) and Brahma-related gene 1
(BRG1). Furthermore, subcellular localization in the
perinuclear region of cells has been shown to regulate
ADAM17’s activity (Chemaly et al., 2017; Adu-Amankwaah
et al., 2021a). Overexpression and chronic activation of
ADAM17 can trigger excessive release of TNFα, sIL-6R, and
CXCR2 on the surface of proinflammatory cells, which play
crucial roles in the pathogeneses of several inflammatory
diseases, including heart failure. Increased levels of TNFα,
sIL-6R and CXCR2 have been implicated in immune cells
(CD86+ macrophages, neutrophils, and dendritic cells)
trafficking, migration, and activation as well as inducing
excessive fibrosis, myocardial stiffness, and left ventricular
diastolic dysfunction (Cumberbatch and Kimber, 1992;
Bozkurt et al., 1998; Satoh et al., 2000; Russo et al., 2009;
Jones et al., 2010; Anderson et al., 2013; Arokiasamy et al., 2017).

Several studies have shown that myocardial ADAM17, TNFα,
and sIL-6R expressions in both mRNA and protein levels are
higher in patients with cardiovascular diseases and complications,
although ADAM17’s expression is downregulated in a normal
state (Satoh et al., 1999; Damås et al., 2000; Satoh et al., 2000;
Satoh et al., 2004; Anderson et al., 2013). Thus, establishing a
positive correlation between ADAM17 and heart failure
development. The increased expression of ADAM17, TNFα,
and sIL-6R has a vital implication in aggravating cardiac
dysfunction during heart failure development (Satoh et al.,
1999; Satoh et al., 2000; Satoh et al., 2004; Adu-Amankwaah
et al., 2021a). Additionally, pro-AREG, a bi-functional growth
factor converted to its active form by ADAM17, is crucially
involved in enhancing cardiac fibrosis and aggravating cardiac
dysfunction (Liu et al., 2018). Besides inducing HF via facilitating
hyperactive proinflammatory responses, ADAM17 has been
implicated along with HB-EGF and betacellulin (BTC), and
angiotensin-converting enzyme 2(ACE2) in causing congenital
heart diseases and hypertensive-induced HF, respectively

(Jackson et al., 2003; de Queiroz et al., 2015; Xu et al., 2017;
Mukerjee et al., 2019). This comprehensive review provides an
insight into the structure of ADAM17, how it is activated and
regulated during chronic catecholamine stress in heart failure
development. This review highlights the inflammatory and
fibrotic roles of ADAM17’s substrates; TNFα, sIL-6R, and
sAREG. Finally, how ADAM17-induced chronic inflammation
and progressive fibrosis aggravate cardiac dysfunction is also
discussed.

A DISINTEGRIN AND METALLOPROTEASE
17 AND OTHER RELATED
METALLOPROTEINASES
Overview
A disintegrin and metalloproteinases (ADAMs) consist of
membrane-bound proteins that belong to a Zn2+-dependent
protease superfamily. They are similar to other metalloenzymes,
including matrix metalloproteinases (MMPs), meprins, and snake
venom metalloproteinases (SVMP) (Calvete et al., 2007; Gooz,
2010). Physiologically, ADAMs and their related metalloenzymes
are widely expressed in various body tissues and regulate diverse
cellular activities, including cell migration, adhesion, proteolysis, and
cellular signaling (Black et al., 1997; Jones et al., 2016). Hence, it is
not astonishing that alterations in the expression or function of these
proteases are implicated in several pathologies, including cancer,
rheumatoid arthritis, kidney fibrosis, diabetes, Alzheimer’s disease,
and cardiovascular diseases (Sandgren et al., 1990; Black et al., 1997;
Satoh et al., 2000; Umemura et al., 2014; Kefaloyianni et al., 2016;
Zhang et al., 2016; Kim et al., 2020; Shalaby et al., 2020; Adu-
Amankwaah et al., 2021a). Increasing evidence suggests that various
ADAMs and other related metalloenzymes play crucial roles in
cardiovascular pathophysiology via themodulation of inflammation,
angiogenesis, metabolism, cell proliferation, and cell migration
(Adu-Amankwaah et al., 2021a; Kawai et al., 2021). Among the
ADAMs identified so far (22 in humans, 34 inmice), ADAM8, 9, 10,
12, 17, 19 and closely related metalloenzymes including MMP2,
MMP9, and meprin β are associated with cardiovascular conditions
such as hypertension, atherosclerosis, aortic aneurysms, restenosis,
acute coronary syndrome, cardiomyopathies and HF
(Papazafiropoulou and Tentolouris, 2009; Broder and Becker-
Pauly, 2013; Zhang et al., 2016; Adu-Amankwaah et al., 2021a;
Kawai et al., 2021). According to Wichert et al., active meprin β is
capable of inducing the proteolytic activities of ADAM9, 10, and
17 via specific prodomain cleavage (Wichert et al., 2019). The
activation of MMP2 and MMP9 is part of the downstream
signaling of ADAM10 and 17, which are closely related in
structure and function (Xiao et al., 2012; Jones et al., 2013).
While ADAM10’s expression may be important in cancer and
neurological disorders, ADAM17 is primarily responsible for
coordinating proinflammatory responses during stress. The
various substrates of ADAMs have been extensively reviewed
elsewhere (Kawai et al., 2021). Remarkably, several members of
the ADAM family share the same substrates, and this nonspecific
relationship between ADAMs and their substrates complicates and
intrigues the physiology of ADAMs. However, the main focus of this
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review is to elucidate the mechanistic signaling pathways of
ADAM17 in HF development during chronic stress.

ADAM17 was discovered in 1997 and named TACE (TNFα
converting enzyme), as it was initially known as the protease
that converts membrane-bound pro-TNFα (mTNFα) to a
soluble form through its cleavage activity (Black et al., 1997;
Moss et al., 1997). However, recent studies show that this
protease is not only responsible for the liberation of soluble
TNFα (sTNFα) but has a relatively broad spectrum of over 90
substrates (Black et al., 1997; Moss et al., 1997; Lammich et al.,
1999; Garton et al., 2003; Reddy et al., 2009; Riethmueller et al.,
2017). ADAM17 can be activated by intracellular kinases, which
include phosphate kinase c (PKC), receptor-stimulated p38
mitogen-activated-protein-kinases (p38 MAPKs), and
extracellular signal-regulated kinases (ERKs) (Bell and Gööz,
2010; Xu et al., 2012; Adu-Amankwaah et al., 2021a). These
kinases can also phosphorylate and activate rhomboid 1 and 2
(also known as iRhoms or pseudoproteases) (Grieve et al.,
2017), which are responsible for trafficking, stabilization as
well as activation of ADAM17 (Adrain and Freeman, 2012;
McIlwain et al., 2012; Maretzky et al., 2013; Li et al., 2015). Its
inhibition is mostly done via tissue inhibitor of
metalloproteinase 3 (TIMP3), integrins and protein disulfide
isomerases (PDIs) (Düsterhöft et al., 2013; Düsterhöft et al.,
2019; Park et al., 2019; Figure 1).

A Disintegrin and Metalloprotease 17’s
Structure
ADAM17 is a type-I transmembrane protein (Bode et al., 1993;
Düsterhöft et al., 2019) with a similar class III snake venom

metalloenzymes structure (Bode et al., 1993; Gooz, 2010). It
comprises a prodomain, a catalytic domain, a disintegrin-like
domain, a membrane-proximal domain (MPD), and a short stalk
region, which together forms the extracellular part of the protease
and are linked to an intracellular region (ICR) by a
transmembrane part (Grötzinger et al., 2017). The catalytic
domain possesses this metalloprotease’s proteolytic activity
(Bode et al., 1993; Stöcker et al., 1995; Black et al., 1997);
however, the preceding prodomain has chaperone-like
functions that inhibit this catalytic activity, and it is cleaved
off by furin proteases during the maturation of the protease
(Schlöndorff et al., 2000). Though this cleavage step was primarily
considered a prerequisite for the proteolytic activity of ADAM17,
a study by Schwarz et al., revealed that ADAM17 was also active
when cleavage by furin proteases was prevented by mutagenesis
of the cleavage site (Schwarz et al., 2013). The disintegrin-like
domain is needed for the interaction with integrins, a feature that
ADAM17 shares with other ADAM family members (Bode et al.,
1993; Düsterhöft et al., 2019). However, the membrane-proximal
domain is only found in ADAM10 and ADAM17, but not the
other family members (Stöcker et al., 1995; Grötzinger et al.,
2017), and it is crucially involved in substrate recognition and
coordination of the shedding process (Düsterhöft et al., 2013).
The membrane-proximal domain is regulated by two disulfide
bonds that are vulnerable to isomerization by PDI activity
(Düsterhöft et al., 2013). The stalk region of ADAM17
contains the CANDIS motif (Conserved ADAM 17 Dynamic
Interaction Sequence), which is located closer to the membrane-
proximal domain near the plasma membrane and is vital for
substrate recognition (Düsterhöft et al., 2014; Düsterhöft et al.,
2019; Figure 1).

FIGURE 1 | Schematic overview of the structure, function, maturation process, and regulation of ADAM17. The metalloprotease ADAM17 can be divided into
seven domains with distinct functions, here separated by different colors. During maturation of ADAM17, the pro-domain is cleaved of by furin proteases. The activation
of this metalloprotease is via its intracellular region by kinases; PKC, ERKs, and p38 MAPKs. These kinases are also known to phosphorylate and activate iRhoms for
trafficking, stabilization, and cell surface expression of ADAM17. However, the inhibition of ADAM17 is mostly carried out by TIMP3, PDIs, and integrins.
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ACTIVATION OF A DISINTEGRIN AND
METALLOPROTEASE 17 DURING
CHRONIC STRESS
Chronic stress is a renowned risk factor for several cardiovascular
diseases (Kivimäki and Steptoe, 2018). One of the central neural
pathways activated by stress is the autonomic nervous system.
During chronic stress, the sympathetic nervous system can be
continuously activated, which results in elevated levels of
catecholamines (epinephrine and norepinephrine) (Won and
Kim, 2016). Epinephrine and norepinephrine function as
hormones and neurotransmitters that maintain homeostasis
via adrenergic receptors (ARs), including alpha-adrenergic
receptors (α-ARs) and beta-adrenergic receptors (β-ARs).
Studies have demonstrated the involvement of ADAM17 with
α1-AR (Chen et al., 2006) and β-AR signaling (Zhu and Steinberg,
2021). β-ARs account for the majority of the total ARs in the heart
(O’Connell et al., 2014), particularly in apical myocytes (Paur
et al., 2012; Machuki et al., 2019) and cardiac non-myocytes such
as endothelial and immune cells (Myagmar et al., 2017; Adzika
et al., 2021). Hence, a continuous increase in the levels of

epinephrine and norepinephrine can result in overstimulation
of β-ARs (Machuki et al., 2019). Epinephrine is a more potent
ligand for β-ARs compared to norepinephrine (Scanzano and
Cosentino, 2015). β-ARs are 7-transmembrane, G-protein
coupled receptors which are divided into four subtypes,
namely; β1-AR, β2-AR, β3-AR, and β4-AR (Ahlquist, 1948;
Bylund et al., 1994; Granneman, 2001). In the heart, the β1-
AR, β2-AR, and β3-AR are all broadly expressed, with the β1-AR
having the highest expression and the β3-AR having the lowest
(Ahlquist, 1948; Madamanchi, 2007). The β4-AR is a low-affinity
state of the β1-AR that is yet to be genetically and
pharmacologically characterized (Granneman, 2001). The β2-
AR and β3-AR can couple with Gαs or Gαi while β1-AR
primarily couples with Gαs when activated (Machuki et al.,
2019; Schena and Caplan, 2019). In physiological state, the
activation of β2-AR and β3-AR couple with Gαs (Adzika
et al., 2019; Machuki et al., 2019) and Gαi (Tchivileva et al.,
2009; Schena and Caplan, 2019), respectively. Among these βARs,
β2-AR is rarely depleted during stress, and it is also the most
implicated in mediating signaling cascades in ventricular apical
myocytes, cardiac endothelial and immune cells resulting in the

FIGURE 2 | Schematic illustration of ADAM17’s activation during chronic catecholamine stress. Elevated catecholamines owning to chronic stress results in
overstimulation of β2-ARs coupling with Gαi. Gαi signaling induces the activation of intracellular kinases, ERKs and p38 MAPKs. These kinases are known to either
directly phosphorylate and activate ADAM17 or activate iRhoms responsible for trafficking, stabilization, and cell surface expression of ADAM17, thereby initiating its
cleaving process.
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initiation and progression of cardiovascular diseases (Paur et al.,
2012; Adzika et al., 2019; Adu-Amankwaah et al., 2021a).

In the heart, the overstimulation of β-ARs on ventricular
apical myocytes, cardiac endothelial and immune cells due to
elevated levels of circulating catecholamine desensitize β1-ARs
(Bristow et al., 1990; Paur et al., 2012; Machuki et al., 2019).
According to Zhu and Steinberg, the inactivation of β1-ARs and
its irresponsiveness to catecholamines in cardiomyocytes during
stressful events is via a mechanism involving N-terminal
truncation at R31↓L32 by ADAM17 (Zhu and Steinberg, 2021).
As such, β2-ARs coupling to Gαi is induced (Bristow et al., 1990;
Paur et al., 2012; Machuki et al., 2019; Adzika et al., 2021). In
short-terms, Gαi signaling increases via Akt/PI3K/p38 MAPKs/
ERKs to prevent cardiac insult (Magocsi et al., 2007; Lajevic et al.,
2011; Hou et al., 2018). Recent findings have suggested that the
prolonged hyperstimulation of β2-ARs on ventricular apical
myocytes and cardiac immune cells induces the bindings of
β-arrestin-2 and G protein-coupled receptor kinases (GRKs) to
scaffold non-canonical signaling that activates ERKs and p38
MAPKs activities maladaptively, ultimately resulting in HF
(Shenoy et al., 2006; Paur et al., 2012; Adzika et al., 2019;
Adzika et al., 2021). Intriguingly, ADAM17 initiates its
adverse remodeling cascade upon being phosphorylated by
these kinases directly and indirectly. For instance, during the
maturation of ADAM17, ERK-dependent threonine 735
(Thr735) phosphorylation is vital for it to reach the secretory
pathway (Díaz-Rodríguez et al., 2002; Chemaly et al., 2017). Also,
indirect ERKs or p38 MAPKs phosphorylation at 14-3-3 binding
sites on the N-terminal of iRhoms turns to induce ADAM17’s
trafficking, stabilization, and cell surface expressions (Bell and
Gööz, 2010; Adrain and Freeman, 2012; McIlwain et al., 2012; Xu
et al., 2012; Li et al., 2015; Grieve et al., 2017). On the cell surface,
mature ADAM17 proteins exist as inactive homodimers coupled
to their inhibitor, TIMP3. However, activation of the ERK or p38
MAPK pathway directly phosphorylates Thr735 on the
intracellular domain of ADAM17 and transforms it from a
dimer structure into an active monomer structure liberating it
from TIMP3 (Xu et al., 2012; Chemaly et al., 2017). Following
monomerization, ADAM17 then binds to the phosphatidylserine
exposure at the outer leaflet of the cell membrane via its MPD and
CANDIS, thereby initiating its cleaving process (Gooz, 2010;
Figure 2).

A DISINTEGRIN AND METALLOPROTEASE
17 IN CARDIAC INFLAMMATION

ADAM17 plays a key role in cardiac inflammation, as it can cleave
and activate several proinflammatory cytokines and their receptors.
The most prominent examples include the cytokine TNFα, the
TNFR 1 and 2, and the IL-6R (Black et al., 1997; Moss et al., 1997;
Tellier et al., 2006; Reddy et al., 2009; Riethmueller et al., 2017).

Tumor Necrosis Factor α and its Receptors
The cytokine TNFα is a typical type-II transmembrane protein
that belongs to the TNF superfamily (Düsterhöft et al., 2019). It is
expressed as a membrane-bound protein, activated by the

cleavage process of ADAM17 to release sTNFα (Black et al.,
1997; Moss et al., 1997). The majority of the proinflammatory
activities of TNFα are attributed to its soluble form. This cytokine
activation can signal via two different receptors, TNFR1 and
TNFR2 (Defer et al., 2007; Salmeri et al., 2015), expressed on
cardiac myocytes (Defer et al., 2007). Interestingly, TNFR1 and 2
can also be cleaved from the surface of cells by ADAM17, and the
resulting soluble TNFR (sTNFR) ectodomains retain their ability
to bind mTNFα and therefore act as antagonistic decoy receptors
(Rego et al., 2013; Figure 3). Besides their function as decoy
receptors, sTNFR1 and 2 can also perform a very different
biological function by binding to mTNFα on the cell surface
and inducing signals within TNFα-expressing cells. This concept
is known as “reverse signaling,” which is common among other
TNF family members (Juhász et al., 2013). Although both
TNFR1/2 can bind to the ligand sTNFα, the intracellular
signaling cascades triggered, and the biological responses are
markedly different (Düsterhöft et al., 2019). Most importantly,
the intracellular region of TNFR1 contains a death domain
capable of inducing direct programmed cell death when
activated, which is absent in the intracellular region of TNFR2
(Düsterhöft et al., 2019). The binding of sTNFα to TNFR2 can
result in the activation of nuclear factor kappa B (NF-κB)
(Albensi, 2019; Adu-Amankwaah et al., 2021a), which is also
expressed in myocytes, cardiac endothelial, and immune cells (Li
et al., 2020). The NF-κB complex exists in an inactive state in the
cytoplasm (Ghosh et al., 1998; Albensi, 2019). However,
activation of TNFR2 can interact with the IκB kinase (IKK)
complex resulting in the phosphorylation of IκB, subsequently
causing IκB ubiquitination and degradation, leading to the
activation of NF-κB dimer (Li and Karin, 2000; Israël, 2010).
When activated, it then migrates into the nucleus (Sen and Smale,
2010) or mitochondria (Bottero et al., 2001; Cogswell et al., 2003).
In the nucleus, it encodes genes of proinflammatory cytokines
(pro-IL-18 and pro-IL-1β) and NLR family pyrin domain
containing 3 (NLRP3) (Sen and Smale, 2010; Albensi, 2019).
NLRP3 is an intracellular sensor that identifies a wide range of
environmental irritants, microbial motifs, and endogenous
danger signals, resulting in the formation and activation of the
NLRP3 inflammasome. Activation of the inflammasome triggers
caspase 1, which in turn, cleaves pro- IL-1β and pro- IL-18 to
release their soluble forms (Bauernfeind et al., 2009; Xing et al.,
2017; Swanson et al., 2019), thereby inducing necrosis and
inflammation in cardiac cells (Li et al., 2018). Studies show
that activated NF-κB can stimulate the intrinsic apoptotic
pathway in the mitochondria via releasing cytochrome c,
which triggers caspase cascades resulting in programmed cell
death (Liu et al., 2004; Albensi, 2019; Adu-Amankwaah et al.,
2021a; Figure 3). Irrefutably, increased levels of TNFα in the
stress state has been linked to the pathophysiology of heart failure
development in various clinical investigations (Ferrari et al., 1995;
De Biase et al., 2003; Dunlay et al., 2008) and animal models
(Bozkurt et al., 1998; Bryant et al., 1998; Moe et al., 2004;
Guggilam et al., 2007; Adzika et al., 2021; Hou H. et al., 2021).
For instance, a study carried out by Bryant et al. reveals that
cardiac myocytes’ overproduction of TNFα is sufficient to cause
heart failure, implying that this cytokine plays a causative role in
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the development of heart failure (Bryant et al., 1998). In an
experimental heart failure model, in vivo TNFα inhibition
reduced cardiac mitochondrial dysfunction, oxidative stress,
and apoptosis (Moe et al., 2004). Additionally, in heart failure
rats, TNF-alpha inhibition reduced chronic catecholamine-
induced stress in the paraventricular nucleus and ameliorated
cardiac function (Guggilam et al., 2007).

IL-6 and its Receptor
IL-6 is a pleiotropic cytokine released in response to perturbations
in homeostasis (Fontes et al., 2015). This cytokine has well-defined
pro- and anti-inflammatory properties when activated.
Interestingly, its receptor, IL-6R, can be cleaved by ADAM17
(Riethmueller et al., 2017; Garbers et al., 2018). The properties
of IL-6 are determined by its stimulation and signaling processes.
Thus, acute stimulation of IL-6 is mostly protective, while its
chronic response causes long-term signaling leading to
inflammation and autoimmunity (Fontes et al., 2015). Signaling

via the membrane-bound IL-6 receptor (IL-6R) termed “classic
signaling,” can only occur on cell types that express surface IL-6R,
including hepatocytes and certain leukocytes’ subpopulations such
as neutrophils (Wolf et al., 2014). However, signaling via soluble
forms of the IL-6R, called IL-6 trans-signaling, can occur on all
body cells since the IL-6/sIL-6R complex can directly bind to and
activate the ubiquitously expressed glycoprotein-130 (gp130)
without the need of a membrane-bound IL-6R (Wolf et al.,
2014; Düsterhöft et al., 2019). IL-6 trans-signaling accounts
mainly for the cytokine’s proinflammatory properties (Fontes
et al., 2015; Düsterhöft et al., 2019). The glycoprotein-130
(gp130) receptor is widely expressed in mammals, including the
developing and adult hearts (Podewski et al., 2003). In
physiological state, activation of gp130 in the heart by IL-6 type
cytokines induces signaling through three main pathways: 1) the
Janus kinase/signal transducer and activator of transcription (JAK/
STAT) pathway, 2) the phosphatidylinositol-3-kinase-dependent
(PI3K)/Akt pathway and 3) the Ras/mitogen-activated protein

FIGURE 3 | Schematic illustration of the inflammatory roles of ADAM17’s substrates, sTNFα and sIL-6R in a cardiac cell during chronic catecholamine stress.
Following the proteolytic processing of ADAM17, sTNFα and IL-6 can bind to TNFR1/2 and sIL-6R, respectively activating downstream signaling cascades.
Activated TNFR1 can directly induce inflammation and programmed cell death. The activation of TNFR2 can cause it to interact with the IκB kinase (IKK) complex
resulting in the phosphorylation of IκB, thereby activating NF-κB. Also, the IL-6/sIL-6R complex formed from IL-6 binding to sIL-6R can directly activate the
ubiquitously expressed glycoprotein-130 (gp130), thereby activating NF-κB. Activated NF-κB can either migrates into the nucleus or mitochondria. In the nucleus, it
encodes genes of proinflammatory cytokines (pro-IL-18 and pro-IL-1β) and NLRP3, increasing their protein expression. NLRP3 inflammasome can activate
caspase 1, which in turn cleaves pro- IL-1β and pro- IL-18 to release their soluble forms, to induce necrosis and inflammation in cardiac cells. Additionally, in the
mitochondria, activated NF-κB can stimulate intrinsic apoptotic pathways via releasing cytochrome c, which triggers caspase cascades resulting in programmed
cell death and inflammation.
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kinase (MAPK) and extracellular signal-regulated kinase (ERK)
signaling pathway (Podewski et al., 2003; Fischer and Hilfiker-
Kleiner, 2008). These pathways have been demonstrated to play
vital roles in cardiac development and protection (Yajima et al.,
2006; Fischer and Hilfiker-Kleiner, 2008). However, in a chronic
stress state characterized by elevated IL-6 and sIL-6R, continuous
activation of gp130 in the heart can induce cardiac inflammation
via gp130/JAK/STAT pathway (Podewski et al., 2003). This
pathway can promote NF-κB activation, resulting in the release
of proinflammatory cytokines, formation, and activation of
inflammasomes, which mediate cell death and cardiac
inflammation (Fischer and Hilfiker-Kleiner, 2008; Figure 4).
Undeniably, it has been revealed that increased levels of gp130
proteins and IL-6 cytokines are strong predictive markers for
morbidity and mortality in patients with HF (Fischer and
Hilfiker-Kleiner, 2008). According to Ritschel et al., elevated
levels of circulating sIL-6R and IL-6 were linked to future
cardiovascular events and mortality in patients, implying that
the IL-6 signaling pathway plays an essential role in the
development of HF (Ritschel et al., 2016). Studies have also
reported that the local gp130 receptor system in myocytes is
altered in failing human hearts (Podewski et al., 2003; Fischer
and Hilfiker-Kleiner, 2008). Furthermore, many animal
studies have demonstrated that in a stress state, upregulated
levels of IL-6 in myocardia enhance the development of heart
failure while its inhibition improves cardiac function. (Lai
et al., 2012; Zhao et al., 2016; Adzika et al., 2021; Hou H.
et al., 2021; Huo S. et al., 2021).

Currently, ADAM17 has not been directly associated with the
regulation of T and B cells functions in the myocardia; however,
these immune cells secret TNFα, which is keenly regulated by
ADAM17 (Opata et al., 2013; Yang et al., 2013; Adu-Amankwaah
et al., 2021a). Also, ADAM17’s targets on T and B cells have been
implicated in their migration, differentiation, and effector
functions (Link et al., 2017). Typically, Marczynska et al.
demonstrated that the costimulatory ligand, ICOS ligand
(ICOSL), is preferentially downregulated on the surface of
B cells in an ADAM17-dependent way, despite the fact that
recombinant ADAM17 does not proteolyze it in vitro
(Marczynska et al., 2014). Therefore, it can be speculated that
ADAM17 might directly regulate T and B cells’ functions in the
myocardia during inflammation.

A DISINTEGRIN AND METALLOPROTEASE
17 IN CARDIAC FIBROSIS

ADAM17 is known to activate amphiregulin (AREG) via its
proteolytic cleavage activity (Liu et al., 2018). AREG is
synthesized as a type-I transmembrane protein (pro-AREG)
that can engage in juxtracrine signaling on adjacent cells
(Berasain and Avila, 2014). Alternatively, after proteolytic
processing, the release of soluble AREG (sAREG) can act as
an autocrine or paracrine factor (Berasain and Avila, 2014).
sAREG is a ligand of the EGFR (Berasain and Avila, 2014; Liu
et al., 2018), widely expressed on cardiac myocytes and fibroblasts
(Berasain and Avila, 2014; Liu et al., 2018). In a physiological

state, activation of EGFR in the heart induces major intracellular
signaling cascades governing fibroblasts proliferation, migration,
and collagen synthesis. However, prolonged activation of EGFR
in a chronic stress state characterized by continuous elevation of
sAREG can enhance cardiac fibroblast activation, proliferation,
differentiation to myofibroblast, migration, and collagen
synthesis (Liu et al., 2018). The binding of sAREG to EGFR,
causes the receptor to undergo a conformational change inducing
homo- or heterodimers formation (Dawson et al., 2005; Rayego-
Mateos et al., 2018). This precedes an intracellular domain
activation in its tyrosine residues by phosphorylation,
promoting these same residues’ autophosphorylation in their
homolog. Autophosphorylation of EGFR can activate it to
induce the JAK/STAT pathway (Dawson et al., 2005; Rayego-
Mateos et al., 2018). This signaling pathway plays a vital role in
transducing stress and growth signals in the heart during cardiac
fibrosis (Wagner and Siddiqui, 2012). The activation of the JAK/
STAT pathway can increase the gene expression of fibroblasts and
pro-fibrotic factors such as transforming growth factor-beta
(TGF-β) (Wang et al., 2002). Physiologically, cardiac
fibroblasts are responsible for the homeostasis of the
extracellular matrix (ECM), which provides a structural
scaffold for cardiomyocytes, distributes mechanical forces
through the cardiac tissue, and mediates electrical conduction
(Travers et al., 2016). However, elevated fibroblasts can result in
fibroblast activation, both mechanically by altered activation
patterns and chemically by inflammatory mediators (Wang
et al., 2002). Notably, elevated TNFα and IL-6 secretions from
macrophages, T and B lymphocytes during chronic inflammation
also contributes to the aggravation of cardiac fibrosis as these
cytokines stimulate fibroblast proliferation, differentiation to
myofibroblast, and their migration (Wang et al., 2002;
Adekunle et al., 2021). Also, TGF-β plays a vital role in ECM
remodeling, cell mobility, and modulation of immune function.
Increased levels of it are crucial in cell differentiation and
proliferation of activated fibroblasts to myofibroblasts (Baum
and Duffy, 2011). Myofibroblasts are not present in normal
cardiac tissue unless during cardiac injury (Manabe et al.,
2002). Myofibroblasts can induce pathological ECM
remodeling (Manabe et al., 2002) via the expression of smooth
muscle alpha-actin (α-SMA) (Sousa et al., 2007), collagen
synthesis, and secretion of MMPs (Manabe et al., 2002).
MMPs are responsible for the breakdown of the extracellular
matrix in many diseases (Liu et al., 2006). Chronic secretion of
MMPs in the heart leads to the degradation of collagen and elastin
into peptide fragments resulting in elevated collagen deposition
in the ECM, leading to scar formation. Although the formation of
fibrotic scar tissue is an adaptive way of maintaining the
structural integrity and pressure-generating capacity of the
heart, myofibroblast persistence due to chronic stress can
eventually result in the development of adverse changes in
ventricular structure and compliance, which characterizes
cardiac fibrosis (Liu et al., 2006; Figure 4). Intriguingly,
ADAM17 upregulation does enhance the secretions of the
aforementioned cytokine from both innate and adaptive
immune cells either via direct or indirect cascade to cause
maladaptive interstitial fibrosis.
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SYNERGY OF A DISINTEGRIN AND
METALLOPROTEASE 17-INDUCED
INFLAMMATION AND FIBROSIS IN HEART
FAILURE DEVELOPMENT

HF development is characterized by a progressive condition
associated with left ventricular (LV) systolic or diastolic
dysfunction resulting in insufficient oxygen and nutrient supply to
peripheral organs. It can exist in two main forms, namely, HF with
preserved ejection fraction (HFpEF) and HF with reduced ejection
fraction (HFrEF) (Van Linthout and Tschöpe, 2017; Adu-
Amankwaah et al., 2021b). HFpEF is accompanied by diastolic

dysfunction characterized by impaired ventricle relaxation and
filling, increased ventricle stiffness, and elevated filling pressure to
respond to pressure overload (Adekunle et al., 2021). On the flip side,
HFrEF is associated with systolic dysfunction characterized by
impaired left ventricular contractility, resulting in a reduced
ejection fraction (Tanai and Frantz, 2015). Cardiac inflammation
and fibrosis play a central role in HF development (Liu et al., 2018).
Both can trigger HF development under several conditions, ranging
from acute stress to chronic catecholamine stress.

The outcome of inflammation and fibrosis can contribute to
the pathogenesis of the two main forms of HF. Although elevated
serum concentrations of proinflammatory cytokines and fibrotic
factors are common in both forms of HF, the pathomechanisms

FIGURE 4 | Schematic illustration of the fibrotic role of sAREG, a substrate of ADAM17. After the proteolytic process of ADAM17, sAREG can activate EGFR, which
is widely expressed on cardiac cells. The binding of sAREG to EGFR causes the receptor to undergo a conformational change known as “Dimerization,” resulting in
homo- or heterodimers formation. This precedes an intracellular domain activation in its tyrosine residues by phosphorylation, promoting these same residues’
autophosphorylation in their homolog. Autophosphorylation of EGFR can activate it to induce the JAK/STAT pathway, leading to an increase in gene and protein
expression of fibroblasts and pro-fibrotic factors such as TGF-β. Elevated fibroblasts can result in fibroblast activation, both mechanically by altered activation patterns
and chemically by inflammatory mediators. Activated fibroblasts are transformed into myofibroblasts by TGF-β. Myofibroblasts are not present in normal cardiac tissue
unless during cardiac injury and can induce pathological ECM remodeling, which characterizes cardiac fibrosis via the expression of α-SMA, collagen synthesis, and
secretion of MMPs.
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involved in each are different. For HFpEF, studies reveal that the
outcome of chronic inflammation leads to progressive fibrosis,
which eventually results in LV hypertrophy (Manabe et al., 2002;
Salles et al., 2007; Wynn, 2008). Excessive increase in ECM
components and cross-linking during LV hypertrophy can
induce myocardial stiffness, thereby triggering HFpEF-specific,
characterized by concentric cardiac remodeling and LV diastolic
dysfunction (Paulus and Tschöpe, 2013). For example, collagen I
which stiffens the myocardia, accounts for about 80% of the total
collagen in the myocardia and increases most during LV
hypertrophy (Barison et al., 2015). In addition, excessive cross-
linking during LV hypertrophy stiffens the collagen matrix,
making it more difficult to be broken down by proteinases
(Travers et al., 2016). According to Hieda et al., increased
myocardial stiffness is frequently observed in patients with
HFpEF (Hieda et al., 2020). Regarding HFrEF, excessive
cardiomyocyte death preceding necrosis or apoptosis due to
persistent cardiac inflammation can result in cardiac atrophy.
Continued loss of cardiac tissue can induce systolic dysfunction
leading to HFrEF-specific, characterized by eccentric cardiac
remodeling and dysfunction (Van Linthout and Tschöpe,
2017). Undeniably, several large studies have reported that
patients with HFrEF characterized by systolic dysfunction have
elevated serum levels of proinflammatory cytokines such as
TNFα, IL-6, and IL-1β (Torre-Amione et al., 1996; Rauchhaus
et al., 2000; Deswal et al., 2001).

CONCLUSION AND FUTURE
PERSPECTIVES

ADAM17 is widely expressed by several mammalian cells. Evidence
suggests that the number of identified substrates of this
metalloprotease keeps increasing, implying that ADAM17 may
play a central role in regulating several physiological and
pathophysiological processes. Hence, its implicated in several
human diseases as such heart failure is expected. Although,
current drug treatments and the subsequent use of recognized
medications have reduced mortality and hospitalization rate,
particularly in HF patients with reduced ejection fraction
(Berliner and Bauersachs, 2017), HF remain a major clinical and
public health concern since it affectsmore than 23millionworldwide
(Ayoub et al., 2017; Orso et al., 2017; Frantz et al., 2018); hence there
is still a lot to discover about this condition which will serve as a key
in establishing specific treatment and management guidelines to
significantly reduced the rate of HF. This comprehensive review has
provided extensive insight into the mechanisms underlying
catecholamine-induced HF. Therefore, therapeutic prospects for
the treatment and management of catecholamine-induced HF
should also target the inhibition of ADAM17 and/or antagonize
its activation and activities.

For decades, ADAM17 has been the subject of intense research.
Since its identification as the tumor necrosis factor convertase, it has
been an important therapeutic target, particularly in the setting of
inflammatory diseases. Nonetheless, developing medications that
target ADAM17 has proven more difficult than anticipated. This is
owing to ADAM17’s multifunctionality, which includes the release

of approximately 90 other substrates aside from tumor necrosis
factor (TNF), as well as its structural similarities to other
metalloproteinases (Calligaris et al., 2021). The most promising
targets of ADAM17 (without any significant physiological
consequences) appear to be inhibiting its phosphorylation by
ERKs, p38 MAPKs, iRhom1, and iRhom2. These regulators are
vital for trafficking, stabilization, and activation of ADAM17 (Bell
and Gööz, 2010; Adrain and Freeman, 2012; McIlwain et al., 2012;
Xu et al., 2012; Li et al., 2015; Grieve et al., 2017). Usage of
pharmacologic agents capable of impeding ADAM17
phosphorylation by ERKs and p38 MAPKs may be an attractive
potential target for downregulating ADAM17’s proteolytic activity.
Also, it is well-known that iRhom2 is mainly expressed in
proinflammatory immune cells, such as macrophages and
neutrophils (Adrain and Freeman, 2012), whereas iRhom1 is
predominantly expressed in non-immune cells (Issuree et al.,
2013; Chemaly et al., 2017). Hence, it is tempting to hypothesize
that inhibition of iRhom2 would aid in the downregulation of
ADAM17 with no effects on non-immune cells. iRhom1 activities
may then compensate for the iRhom2 blockade. Also, the inhibition
of ADAM17 could be achieved by injecting its natural inhibitors
(TIMP3, PDIs, and integrins). Notably, injection of TIMP3 has been
shown to prevent heart failure post-myocardial infarction (Martz,
2014; Takawale et al., 2017; Chintalgattu et al., 2018). PDIs can also
interact directly with ADAM17’s MPD, which catalyzes the
isomerization of two disulfide bridges, lowering ADAM17’s
activity (Willems et al., 2010). Furthermore, the binding of
integrin α5β1 to ADAM17 via its disintegrin domain, according
to Bax et al., inhibited its activity by altering its mediated cell
adhesion and migration (Bax et al., 2004). Besides its natural
inhibitors, miRNAs such as miR-124 (Sun et al., 2013), miR-145
(Doberstein et al., 2013), miR-152 (Su et al., 2014), andmiR-326 (Cai
et al., 2015) have been shown to suppress ADAM17 expression and
limit substrate release by binding directly to the ADAM17 3′-UTR.

The modulation of ADAM17 is key in ameliorating cardiac
function via attenuation of myocardial inflammation during
chronic catecholamine stress. Thus, minimizing the levels of
TNFα and other proinflammatory cytokines is necessary for
the heart’s normal function; hence, inhibiting ADAM17 which
facilitates the activities of these cytokines, might enhance cardiac
health or delay the progression of its pathological remodeling
into HF.
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